ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

Katedra elektroenergetiky a ekologie

DIPLOMOVÁ PRÁCE

Stínění vysokofrekvenčního pole u indukčních ohřevů

vedoucí práce: autor:

Ing. Oldřich Kroupa Bc. Jan Košťál

ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Akademický rok: 2012/2013

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Jan KOŠŤÁL
Osobní číslo:	E11N0119P
Studijní program:	N2612 Elektrotechnika a informatika
Studijní obor:	Elektroenergetika
Název tématu:	Stínění vysokofrekvenčního pole u indukčních ohřevů
Zadávající katedra:	Katedra elektroenergetiky a ekologie

Zásady pro vypracování:

- Popište problematiku indukčního ohřevu včetně příslušné teorie. Naznačte problematiku základního a přídavného stínění u indukční kelímkové pece.
- Uveďte základní průmyslové aplikace indukčního ohřevu a druhy indukčních průmyslových pecí.
- Srovnejte účinnost stínění indukční kelímkové pece s ohledem na použití nízké a vysoké frekvence u názorně zvolených variant geometrického uspořádání na základě hodnot získaných měřením fyzikálního laboratorního modelu.
- 4. Proveďte počítačovou simulaci pro porovnání s naměřenými hodnotami.
- Stanovte závěry pro praxi a popište rozdíly při použití nízké a vysoké frekvence u stínících prvků indukčního ohřevu.

Rozsah grafických prací:

Rozsah pracovní zprávy:

podle doporučení vedoucího 30 - 40 stran Forma zpracování diplomové práce: tištěná/elektronická

Seznam odborné literatury:

1. LANGER, E., KOŽENÝ, J.: Elektrotepelná zařízení indukční, Plzeň, VŠSE, 1982

2. RADA, J. a kolektiv: Elektrotepelná technika, Praha, SNTL, ALFA 1985

Vedoucí diplomové práce:

Konzultant diplomové práce:

Ing. Oldřich Kroupa Katedra elektroenergetiky a ekologie Prof. Ing. Jiří Kožený, CSc. Katedra elektroenergetiky a ekologie

Datum zadání diplomové práce: Termín odevzdání diplomové práce:

15. října 2012 9. května 2013

- Ph.D JIE Hz dēkan

V Plzni dne 15. října 2012

Holla'

Doc. Ing. Karel Noháč, Ph.D. vedoucí katedry

Anotace

Předkládaná diplomová práce je zaměřena problematiku stínění na vysokofrekvenčního pole u indukčních ohřevů. Úvodní kapitola je věnována příslušné teorii, kdy je uvedeno odvození základních rovnic jak pro rovinné, tak zejména pro válcové harmonické elektromagnetické pole. Dále je popsána problematika základního stínění u indukčních kelímkových pecí. V druhé kapitole jsou popsány nejčastější aplikace indukčního ohřevu. Třetí kapitola je věnována popisu druhů indukčních průmyslových pecí. Čtvrtá a pátá kapitole popisuje měření a simulace laboratorního modelu indukční kelímkové pece pro tři kmitočty a dva proudy. V závěrečné kapitole je provedeno zhodnocení výsledků měření, simulací a jsou zde uvedeny důsledky stínění pro provoz.

Klíčová slova

Indukční ohřev, Maxwellovy rovnice, válcové harmonické elektromagnetické vlnění, stínění, stínící plášť, svazky transformátorových plechů, indukční prohřívání, povrchové kalení, indukční tavení, indukční kelímková pec, indukční kanálková pec, napájení indukčních pecí, RillFEM, MKP

Abstract

The Diploma thesis presents the shielding of high-frequency fields in induction heating process. The introductory chapter is devoted to the theory, where fundamental equations for planar and particularly for cylindric harmonic electromagnetic fields are derived and the basic problem of shielding the induction crucible furnaces is described. In the second chapter are described the most frequently applications of induction heating. Third chapter is devoted to the description of the types of the induction furnaces in the industry. The fourth and fifth chapter describes the measurement and simulation of laboratory model of the induction crusible furnace for three frequencies and two currents. In final chapter are presented the results of the measurement, simulation and also are described the effects of the shielding for operation.

Key words

Induction heating, Maxwell equation, cylindrical harmonic electromagnetic waves, shielding, shielded shell, stack of transformer sheets, induction heating, surface hardening, induction melting, induction crusible furnace, induction channel furnace, power induction furnaces, RillFEM, FEM

Prohlášení

Předkládám tímto k posouzení a obhajobě diplomovou práci, zpracovanou na závěr studia na Fakultě elektrotechnické Západočeské univerzity v Plzni.

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně, s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této diplomové práce.

Dále prohlašuji, že veškerý software, použitý při řešení této diplomové práce, je legální.

V Plzni dne 7.5.2013

Jan Košťál

.....

Poděkování

Tímto bych rád poděkoval vedoucímu diplomové práce Ing. Oldřichu Kroupovi za cenné rady, připomínky a metodické vedení práce. Dále bych chtěl poděkovat panu prof. Ing. Jiřímu Koženému, CSc. za poskytnuté konzultace, za prostudování diplomové práce a věcné připomínky k ní.

Obsah

Ú	JVOD	10
S	EZNAM SYMBOLŮ A ZKRATEK	11
1	PROBLEMATIKA INDUKČNÍHO OHŘEVU	13
		12
	1.1 INDUKCNI OHREV	13
	1.2 ODVOZENI ROVNIC ELEKTROMAGNETICKEHO POLE	14
	1.2.1 Maxwellovy tovnice	14
	1.2.2 Ouvozeni obecných rovnic elektromugnenckého pole [4], [0]	15
	1.5 ROVNICE ROVINNEHO HARMONICKEHO ELEKTROMAONETICKEHO VENENI [4, 51K, 52], [0, 51K, 144]. 1.4 Vál cové hadmonické el ektromachetické vl nění [4, str. 113] [6, str. 170]	17
	1.4 Obecné rovnice válcového harmonického elektromagnetického vlnění [4] str. 115]. [6] str. 18	0119
	1.5 PROBLEMATIKA STÍNĚNÍ U INDUKČNÍCH KELÍMKOVÝCH PECÍ	21
	1.5.1 Stínění vodivým pláštěm	
	1.5.2 Stínění svazky transformátorových plechů [3, 8].	24
2	PRUMYSLOVA APLIKACE INDUKCNIHO OHREVU	27
		27
	2.1 INDUKCNI PROHRIVANI	21
	2.2 INDUKCNI POVRCHOVE KALENI.	20
	2.2.1 I ovicnové kalení valcu maleno prumeru	20
	2.2.2 I Ovicnové kalení válců pro válcovací stolici	20
	2.2.5 1 Ovrenove kalení valcu pro valcovaci slouči	29
	2.5 INDUKČNÍ SVAŘOVÁNÍ [6.3]	30
	2.4 INDORCHU SVAROVAN [0, 5] 2.5 INDUKČNÍ TAVENÍ	
2		22
3	INDUKCINI FRUM I SLOVE FECE	
	3.1 INDUKČNÍ KANÁLKOVÁ PEC	32
	3.2 INDUKČNÍ KELÍMKOVÁ PEC	
	3.2.1 Účinnost indukčních kelímkových pecí [3]	36
	3.2.2 Typy indukčních kelímkových pecí	37
	3.2.3 Elektrické schéma indukční kelímkové pece [3, 17]	40
	3.3 INDUKČNÍ VAKUOVÁ PEC [16]	41
	3.4 Zdroje napájení indukčních pecí	42
	3.4.1 Napájení zařízení na síťový kmitočet	42
	3.4.2 Napájení středofrekvenčních zařízení	43
	3.4.3 Napájení vysokofrekvenčních zařízení	45
4	MĚŘENÍ NA FYZIKÁLNÍM LABORATORNÍM MODELU	46
		10
	4.1 MERENI NA LABORATORNIM MODELU PRI KMITOCTU 50 HZ	49
	4.1.1 Velikost proudu 15 A	49
	4.1.2 Veukost proudu 51 Α	
	4.2 WIEKENI NA LABOKATUKNIM MODELU PKI KMITOCTU 4 100 HZ	
	4.2.1 veukost proudu 15 A	
	4.2.2 VEIKOSI Proudu 31 Α	04
	4.5 INTERENTINA LABORATORNIM MODELU PRI RMITOCTU TU UUU ΠΖ	09
	7.3.1 venkost proudu 15 A. 4.3.2 Valikast proudu 31 A	09 71
	4.4 Chyry Mřření [19]	<i>74</i> 70
_		,
5	SIMULACE LABORATORNIHO MODELU	81

5.1	STRUČNÝ POPIS PROGRAMU RILLFEM 2D [7],[18]	
5.2	POSTUP ŘEŠENÍ V PROGRAMU RILLFEM	
5.3	SIMULACE LABORATORNÍ ÚLOHY - PROUD 15 A	
5.4	SIMULACE LABORATORNÍ ÚLOHY - PROUD 31 A	91
6 Z	HODNOCENÍ VÝSLEDKŮ A DŮSLEDKY STÍNĚNÍ PRO PROVOZ	97
ZÁVĚ	CR	
DOUŽ		102
PUUZ		103
PŘÍLO	OHY	1
Příl	LOHA I BESSELOVY ROVNICE [4, STR. 296] [6, STR. 183]	2
PŘÍI	LOHA II - NAGAOKOVY SOUČINITELE A [3, STR 171 A 172]	3
Příl	OHA III - LABORATORNÍ ÚLOHA, PŘÍSTROJE	5
PŘÍI	OHA IV - NÁKRES INDUKTORU SE SVAZKY TRANSFORMÁTOROVÝCH PLECHŮ	7
PŘÍL	loha V - Indukční kelímková pec pro odlévání litiny v provozu	8
Příl	LOHA VI - VLIV SVAZKŮ TRANSFORMÁTOROVÝCH PLECHŮ NA INDUKČNOST INDUKTORU	12
PŘÍI	OHA VII - ANALYTICKÝ VÝPOČET INTENZITY MAGNETICKÉHO POLE PRÁZDNÉHO INDUKTORU [13]	15
PŘÍL	OHA VIII - SROVNÁNÍ PROCENTUÁLNÍHO ROZDÍLU STÍNĚNÍ, 2D GRAFY PRO KMITOČET 4 100 HZ	16

Úvod

Indukční ohřev je v dnešním průmyslu hojně využívaným elektrotepelným procesem, který umožňuje dostatečně rychlý, snadno regulovatelný způsob ohřevu elektricky vodivých materiálů. Charakteristickým rysem indukčního ohřevu je vývin tepla v samotném materiálu, což ve výsledku přináší rychlejší a efektivnější ohřev daného materiálu. Ale podobně jako jiné způsoby ohřevu, tak i indukční ohřev se vyznačuje specifickou nevýhodou, typickou pro indukční ohřev. Při indukčním ohřevu se vznikající magnetické pole uzavírá vně induktoru a negativně ovlivňuje okolní konstrukci z elektricky vodivých materiálů. Pokud by se neprovedla patřičná opatření, okolní konstrukce by se zahřívaly, což by vyvolalo vznik ztrát a snížení elektrické účinnosti tavicí pece. Pro eliminování tohoto jevu se provádí tzv. stínění, kdy jsou známy dva způsoby stínění. Prvním způsobem je stínění vodivým pláštěm, které využívá dobře vodivý plášť a principu elektromagnetické indukce a Lenzova zákona. Druhým případem, technicky dokonalejším způsobem, je stínění pomocí svazků transformátorových plechů umístěných vně induktoru (jsou využívána magneticky vodivá jádra), kterými se uzavírá magnetický tok vně induktoru. Je proto na místě se touto problematikou zabývat.

Ve své práci se zabývám měřením stínění vysokofrekvenčního pole u indukčních ohřevů a jejím porovnáním se simulací uskutečněné v programu RillFEM 2D. Pro provedení stínění bylo použito 10 svazků transformátorových plechů pravidelně rozmístěných okolo induktoru. Jako zdroj vysokofrekvenčního pole byl použit pulzní generátor, kterým jsem generoval pole o kmitočtu 4 100 Hz a 10 000 Hz pro proudy 15 A a 31 A. Měření jsem dále obohatil o měření pole síťového kmitočtu, aby bylo možné provést porovnání nízkých a vysokých kmitočtů na úrovni stínění.

Seznam symbolů a zkratek

А, В	Integrační konstanty
<i>a</i> [m]	Hloubka vniku
α[-]	Fázová konstanta
$\alpha_1, \alpha_2, \alpha_3, F_{ij}$	Nagaokovy součinitele
B [T]	Magnetická indukce
B _r , B _a [T]	Magnetická indukce v radiálním/axiálním směru
β[-]	Měrný útlum
<i>C</i> [F]	Kapacita
C_1, C_2	Integrační konstanty
γ [S/m]	Elektrická vodivost
<i>D</i> [m]	Průměr roztečné kružnice
<i>d</i> [m]	Průměr, tloušťka
div	Divergence
<i>E</i> [V/m]	Intenzita elektrického pole
el.	Elektrický
elmag.	Elektromagnetické
ε [F/m]	Permitivita prostředí
$\mathcal{E}_r[-]$	Relativní permitivita
$\varepsilon_0 [\mathrm{F/m}]$	Permitivita vakua
<i>F</i> [N]	Elektrodynamická síla
FEM	Finite element method
<i>f</i> [Hz]	Kmitočet
φ [°]	Úhel
G [kg]	Hmotnost
grad	Gradient
<i>H</i> [A/m]	Intenzita magnetického pole
H_r [A/m]	Odražená vlna intenzity magnetického pole
H_p [A/m]	Postupná vlna intenzity magnetického pole
h [m]	Výška vzdutí
I_{ef} [A]	Efektivní proud
<i>I</i> [A]	Proud
\boldsymbol{J} [A/m ²]	Proudová hustota naindukovaných proudů
J_1	Cylindrické funkce prvního řádu prvního druhu
<i>k</i> [-]	Konstanta šíření elmag. vlnění
k [-]	Konstanta měřící/křížové cívky
$L_1, L_2, L_3[H]$	Vlastní indukčnosti
<i>l</i> [m]	Výška
M_{12}, M_{23}, M_{31} [H]	Vzájemná indukčnosti
МКР	Metoda konečných prvků

MR	Maxwellova rovnice
μ [H/m]	Permeabilita prostředí
μ_r [-]	Relativní permeabilita
μ_0 [H/m]	Permeabilita vakua
N_1, N_2, N_3	Počet závitů
N_1	Cylindrické funkce prvního řádu druhého druhu
η [-]	Účinnost
Obr.	Obrázek
<i>P</i> [W]	Joulovy ztráty, výkon, příkon
P_{Fe} [kW]	Ztráty v železe
<i>R</i> [Ω]	Odpor materiálu
<i>r</i> [m]	Poloměr
resp.	Respektive
rot	Rotace
$\rho [\mathrm{C/m}^3]$	Objemová hustota elektrického náboje
$\rho [\text{kg/m}^2]$	Měrná hmotnost
ø [Wb]	Magnetický tok
S [m ²]	Průřez
SiO ₂	Oxid křemičitý
str.	Strana
<i>š</i> ₃ [m]	Tloušťka pláště
Tab.	Tabulka
U_g [V]	Napětí generátoru
VN	Vysokonapěťové
vf	Vysokofrekvenční
<i>x</i> , <i>y</i> , <i>z</i>	Souřadnice
ω [1/s]	Úhlová frekvence
Ζ [Ω]	Impedance prostředí
Z	Počet zubů
∇	Laplaceův operátor

Grafická úprava veličin

Н	obecná veličina	Times New Roman, kurzíva, velikost písma 12
Η	vektor	Times New Roman, tučně, kurzíva, velikost písma 12
Н	fázor skalárů	Arial, tučně, kurzíva, velikost písma 12
Н	fázor vektorů	Times New Roman, tučně, velikost písma 12

1 Problematika indukčního ohřevu

1.1 Indukční ohřev

[6, str. 135] [3, str. 9] [4, str. 15][8]

Indukční ohřev patří v současné době mezi nejrozšířenější způsob ohřevu. Jedná se o moderní způsob ohřevu, jenž je dostatečně rychlý, relativně snadno regulovatelný a efektivní. Je aplikován zejména v průmyslovém měřítku, kdy postupem času je v upravené podobě stále častěji používán také v domácnostech pro přípravu pokrmů. V průmyslu je indukční ohřev aplikován pro tavení kovových a nekovových materiálů v indukčních pecích. Dále se s indukčním ohřevem můžeme setkat při výrobě trubek (indukční svařování), při pájení, prohřívání vývalků pro tvářecí účely nebo při povrchovém kalení.

Princip indukčního ohřevu je založen na přeměně energie elektromagnetického vlnění na energii tepelnou uvnitř vsázky, která musí být z elektricky vodivého materiálu. Vloží-li se tato elektricky vodivá vsázka do proměnného elektromagnetického pole, které je vytvořeno induktorem napájeným střídavým proudem o kmitočtu k dané aplikaci, tak se část elektromagnetického vlnění dopadajícího na stěnu vodivé vsázky odrazí zpět a část vlnění vstoupí stěnou dovnitř vsázky. Toto vlnění vyvolává naindukování vířivých proudů (podle Lenzova zákona opačného smyslu než napájecí proud) uvnitř vsázky, které průchodem materiál zahřívají (vznikají Joulovy ztráty $P = R \cdot I_{ef}^2$). Dochází k útlumu elektromagnetického vlnění ve stěně, jehož energie se přemění na energii tepelnou. Množství naindukovaného tepla ve vsázce je úměrné $P \sim H^2$.

Výhodou indukčního ohřevu je skutečnost, že teplo vzniká uvnitř vsázky. Teplo není dopravováno žádným tepelným spádem, ale nýbrž díky přenosu energie elektromagnetickým polem, což v důsledku přináší rychlejší ohřev. Další neméně významnou výhodou indukčního ohřevu je, že se může volbou kmitočtu ovlivnit rozložení tepla vyvíjeného ve vsázce (volba tloušťky vrstvy pro ohřátí). Zde se vychází ze vztahu pro hloubku vniku naindukovaných proudů (86% z celkového tepla ve vsázce vzniká ve vrstvě o hloubce *a*).

$$a = \sqrt{\frac{2}{\omega \cdot \mu \cdot \gamma}}, \qquad (1-1)$$

kde μ permeabilita prostředí [H/m] γ elektrická vodivost [S/m] $\omega = 2\pi \cdot f$ úhlová frekvence [1/s] Zdrojem elektromagnetického záření může být každý vodič, kterým protéká střídavý proud. Tento vodič bývá upraven do vhodného tvaru s ohledem na vsázku, která se bude ohřívat. Teorie elektromagnetického pole u indukčního ohřevu je popsána obecnými vlnovými rovnicemi pro šíření elektromagnetického vlnění, vyplývajících z Maxwellových rovnic.

1.2 Odvození rovnic elektromagnetického pole

1.2.1 Maxwellovy rovnice

Obecné vlnové rovnice šíření pro elektromagnetické vlnění v prostředí, jenž je charakterizováno parametry ε , μ , γ , se odvodí na základě Maxwellových rovnic.

Maxwellovy rovnice v diferenciálním tvaru: [6]

1.
$$\operatorname{rot} \boldsymbol{H} = \gamma \boldsymbol{E} + \boldsymbol{\varepsilon} \ \frac{\partial \boldsymbol{E}}{\partial t}$$
 (1-2)

2.
$$\operatorname{rot} \boldsymbol{E} = -\mu \frac{\partial \boldsymbol{H}}{\partial t}$$
 (1-3)

3. div
$$\varepsilon E = \rho$$
 (1-4)

4.
$$\operatorname{div} \mu H = 0$$
, (1-5)

- *E* je vektor intenzity elektrického pole [V/m]
- γ je elektrická vodivost [S/m]
- ρ je objemová hustota elektrického náboje [C/m3]
- ε je permitivita prostředí

dána vztahem $\mathcal{E} = \mathcal{E}_0 \cdot \mathcal{E}_r$,

kde ε_r je relativní permitivita, ε_0 permitivita vakua ($\varepsilon_0 \cong \frac{1}{36\pi} \cdot 10^{-9}$ F/m)

 μ je permeabilita prostředí

dána vztahem $\mu = \mu_0 \cdot \mu_r$,

kde μ_r je relativní permeabilita, μ_0 permeabilita vakua ($\mu_0 \cong 4\pi \cdot 10^{-7} \,\text{H/m}$)

1.2.2 Odvození obecných rovnic elektromagnetického pole [4], [6]

Pro odvození obecné rovnice elektromagnetického vlnění je nutné provést rotaci 1. Maxwellovy rovnice (dále jen MR).

$$\operatorname{rot}\left(\operatorname{rot}\boldsymbol{H}\right) = \gamma \operatorname{rot}\boldsymbol{E} + \varepsilon_{0}\varepsilon_{r}\frac{\partial(\operatorname{rot}\boldsymbol{E})}{\partial t}$$
(1-6)

Nyní je vhodné využít 2. MR a dosadit do pravé strany rovnice.

$$\operatorname{rot}\left(\operatorname{rot}\boldsymbol{H}\right) = -\gamma \mu_{0} \mu_{r} \frac{\partial \boldsymbol{H}}{\partial t} - \varepsilon_{0} \varepsilon_{r} \mu_{0} \mu_{r} \frac{\partial^{2} \boldsymbol{H}}{\partial t^{2}} \qquad (1 - 7)$$

Vyjde-li se ze vztahu pro vektorový počet (1 - 8) a 4. Maxwellovy rovnice (1 - 5),

$$\operatorname{rot}\left(\operatorname{rot}\boldsymbol{H}\right) = \operatorname{grad}\operatorname{div}\boldsymbol{H} - \nabla^{2}\boldsymbol{H}$$
(1-8)

div
$$\mu H = 0$$

získá se vztah pro obecnou rovnici elektromagnetického vlnění pro vektor H ve tvaru:

$$\nabla^2 \boldsymbol{H} - \mu_0 \mu_r \boldsymbol{\varepsilon}_0 \boldsymbol{\varepsilon}_r \frac{\partial^2 \boldsymbol{H}}{\partial t^2} - \mu_0 \mu_r \gamma \frac{\partial \boldsymbol{H}}{\partial t} = 0 \qquad (1 - 9)$$

Analogicky se postupuje při odvození obecné rovnice elektromagnetického vlnění pro vektor E. Vychází se ze 2. MR (1 - 3), na kterou se opět aplikuje rotace, dále ze 3. MR (1 - 4) a ze vztahu pro vektorový počet:

rot (rot \boldsymbol{E}) = grad div $\boldsymbol{E} - \nabla^2 \boldsymbol{E}$

Po úpravě a při úvaze, že volné náboje jsou nulové $\rho = 0$, se získá vztah obecné rovnice pro vektor *E* ve tvaru:

$$\nabla^{2} \boldsymbol{E} - \mu_{0} \mu_{r} \boldsymbol{\varepsilon}_{0} \boldsymbol{\varepsilon}_{r} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}} - \mu_{0} \mu_{r} \boldsymbol{\gamma} \frac{\partial \boldsymbol{E}}{\partial t} = 0 \qquad (1 - 10)$$

Ve výše uváděných vzorcích se vyskytuje Laplaceův diferenciální operátor ∇^2 [4]

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Nejčastěji se dané rovnice uvažují pro dva typy prostředí, elektricky vodivé a elektricky nevodivé [6]

Elektricky vodivé prostředí: zde se zanedbává ε_r a výše uvedené rovnice přejdou do tvaru

$$\nabla^2 \boldsymbol{H} - \boldsymbol{\mu}_0 \boldsymbol{\mu}_r \boldsymbol{\gamma} \frac{\partial \boldsymbol{H}}{\partial t} = 0 \tag{1-11}$$

$$\nabla^2 \boldsymbol{E} - \mu_0 \mu_r \gamma \frac{\partial \boldsymbol{E}}{\partial t} = 0 \tag{1-12}$$

Elektricky nevodivé prostředí: je charakterizováno $\gamma = 0$, poté výše uvedené rovnice přejdou do tvaru

$$\nabla^2 \boldsymbol{H} - \boldsymbol{\mu}_0 \boldsymbol{\mu}_r \boldsymbol{\varepsilon}_0 \boldsymbol{\varepsilon}_r \frac{\partial^2 \boldsymbol{H}}{\partial t^2} = 0 \tag{1-13}$$

$$\nabla^2 \boldsymbol{E} - \mu_0 \mu_r \boldsymbol{\varepsilon}_0 \boldsymbol{\varepsilon}_r \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = 0 \tag{1-14}$$

U harmonického průběhu vektoru E a H lze časovou změnu snadno charakterizovat rotujícím fázorem v komplexní rovině. Nejedná se o změnu směru E a H v prostoru, ale jen pouze o vyjádření časové změny. Lze tedy použít fázory a převést výše zobecněné rovnice do tvaru s fázory. [4, str. 22], [6, str. 143]

$$\mathbf{H} = \boldsymbol{H} \cdot \boldsymbol{e}^{j\omega t} \qquad \qquad \mathbf{E} = \boldsymbol{E} \cdot \boldsymbol{e}^{j\omega t}$$

Pro dosazení do zobecněných rovnic je zapotřebí vypočítat první a druhé derivace fázorů \mathbf{E} a $\mathbf{H}[4]$

$$\frac{\partial \mathbf{H}}{\partial t} = j\boldsymbol{\omega} \cdot \mathbf{H} \cdot e^{j\boldsymbol{\omega} t} = j\boldsymbol{\omega} \cdot \mathbf{H} \qquad \qquad \frac{\partial \mathbf{E}}{\partial t} = j\boldsymbol{\omega} \cdot \mathbf{E} \cdot e^{j\boldsymbol{\omega} t} = j\boldsymbol{\omega} \cdot \mathbf{E}$$
$$\frac{\partial^2 \mathbf{H}}{\partial t^2} = -\boldsymbol{\omega}^2 \cdot \mathbf{H} \cdot e^{j\boldsymbol{\omega} t} = -\boldsymbol{\omega}^2 \cdot \mathbf{H} \qquad \qquad \frac{\partial^2 \mathbf{E}}{\partial t^2} = -\boldsymbol{\omega}^2 \cdot \mathbf{E} \cdot e^{j\boldsymbol{\omega} t} = -\boldsymbol{\omega}^2 \cdot \mathbf{E}$$

Z časových derivací je patrná jejich časová nezávislost, toto je s výhodou využíváno pro snadnější řešení zobecněných vlnových rovnic fázorů \mathbf{E} a \mathbf{H} . [6]

$$\nabla^{2}\mathbf{H} - \mu_{0}\mu_{r}\varepsilon_{0}\varepsilon_{r}\frac{\partial^{2}\mathbf{H}}{\partial t^{2}} - \mu_{0}\mu_{r}\gamma\frac{\partial\mathbf{H}}{\partial t} = 0$$

$$\nabla^{2}\mathbf{H} + \omega^{2}\mu\varepsilon\mathbf{H} - j\omega\mu\gamma\mathbf{H} = 0$$

$$\nabla^{2}\mathbf{H} + (\omega^{2}\mu\varepsilon - j\omega\mu\gamma)\cdot\mathbf{H} = 0$$

(1-15)

Analogicky se postupuje u E

$$\nabla^{2}\mathbf{H} - \mu_{0}\mu_{r}\varepsilon_{0}\varepsilon_{r}\frac{\partial^{2}\mathbf{H}}{\partial t^{2}} - \mu_{0}\mu_{r}\gamma\frac{\partial\mathbf{H}}{\partial t} = 0$$

$$\nabla^{2}\mathbf{E} + (\omega^{2}\mu\varepsilon - j\omega\mu\gamma)\cdot\mathbf{E} = 0 \qquad (1 - 16)$$

Zavede-li se do rovnic (1 - 15) a (1 - 16) konstanta šíření elektromagnetického vlnění k, charakterizující vlastnosti prostředí, kde **E** a **H** se šíří. Při harmonickém průběhu **E** a **H** při ω se rovnice upraví do tvaru: [4]

$$\nabla^{2}\mathbf{H} + \boldsymbol{k}^{2} \cdot \mathbf{H} = 0, \quad \nabla^{2}\mathbf{E} + \boldsymbol{k}^{2} \cdot \mathbf{E} = 0, \quad (1 - 17), (1 - 18)$$

kde

$$k^{2} = (\omega^{2}\mu\varepsilon - j\omega\mu\gamma)$$
$$k = \alpha - j\beta,$$

kde α je fázová konstanta, β je měrný útlum

V tabulce Tab. 1. 1 jsou uvedeny hodnoty k^2 , α , β pro prostředí elektricky vodivé a elektricky nevodivé. [20]

	α	β	k ²
$\gamma = 0$	$\frac{\omega}{v}$	0	$\left(\frac{\omega}{v}\right)^2$
$\gamma \neq 0$	$\frac{1}{a}$	$\frac{1}{a}$	$-2 \cdot \frac{j}{a^2}$

Tab. 1. 1Hodnoty konstanty šíření

Obecné rovnice (1 - 17), (1 - 18) jsou platné nejen pro prostředí elektricky vodivá a elektricky nevodivá, ale i pro elektromagnetická vlnění rovinná a válcová (více rozpracované v kapitole 1.4).

1.3 Rovnice rovinného harmonického elektromagnetického vlnění [4, str. 32], [6, str. 144]

Pro snažší řešení a lepší názornost se bere v úvahu invariantní charakter rovinného elektromagnetického vlnění k souřadnicím y a z. To znamená, že derivace E a H podle y a z jsou nulové. Z toho dále vyplývá, že E a H budou konstantní v každé rovině kolmé na osu x.

$$\frac{\partial^2 \mathbf{H}}{\partial y^2} = \frac{\partial^2 \mathbf{H}}{\partial z^2} = 0 \qquad \qquad \frac{\partial^2 \mathbf{E}}{\partial y^2} = \frac{\partial^2 \mathbf{E}}{\partial z^2} = 0$$

blaceův operátor pro rovinnou vlnu přejde na tvar:
$$\nabla^2 = \frac{d^2}{dx^2}$$

Poté Laplaceův operátor pro rovinnou vlnu přejde na tvar:

Vyjde-li se z těchto předpokladů, potom dříve odvozené fázorové rovnice (1 - 17), (1 - 18) přejdou do tvaru

$$\frac{d^2 \mathbf{H}}{dx^2} + \mathbf{k}^2 \cdot \mathbf{H} = 0, \quad \frac{d^2 \mathbf{E}}{dx^2} + \mathbf{k}^2 \cdot \mathbf{E} = 0, \quad (1 - 19), (1 - 20)$$

Rešením této diferenciální rovnice 2. řádu je lineární kombinace dvou exponenciálních funkcí.

$$\mathbf{H} = \mathbf{A} \cdot e^{\lambda_{1} x} + \mathbf{B} \cdot e^{\lambda_{2} x},$$

kde $\lambda_{1,2} = \mp j\mathbf{k} = \mp j(\alpha - j\beta)$

Potom výsledný výraz je ve tvaru:

$$\mathbf{H} = \mathbf{A} \cdot e^{-jkx} + \mathbf{B} \cdot e^{jkx} = \mathbf{H}_{\mathbf{p}} + \mathbf{H}_{\mathbf{r}}$$
(1-21)

Tím jsme získali obecné řešení pro harmonické rovinné vlnění, jak pro prostředí elektricky vodivé, tak i pro prostředí elektricky nevodivé. Ve výrazu se objevuje člen znázorňující postupnou vlnu \mathbf{H}_{p} intenzity magnetického pole (tj. první člen na pravé straně) a člen znázorňující odraženou vlnu \mathbf{H}_{r} vlnění od rovné stěny (tj. druhý člen na pravé straně). Integrační konstanty \boldsymbol{A} , \boldsymbol{B} se určí na základě mezních podmínek v konkrétním případě. [4, str. 32]

Pro vyjádření fázoru **E** se využívá první Maxwellova rovnice. Dle 1. MR je zapotřebí určit rotaci fázoru **H** z rovnice (1 - 21). Vyjde-li se ze vztahu odvozeného v [4, str. 33] $\operatorname{rot}\mathbf{H} = -\frac{\partial \mathbf{H}}{\partial x}$ a provedou-li se patřičné úpravy, vyjde vztah pro fázor **E**. $\mathbf{E} = \sqrt{\left(\frac{j\omega\mu}{\gamma + j\omega\varepsilon}\right)} \cdot [\mathbf{A} \cdot e^{-jkx} - \mathbf{B} \cdot e^{jkx}] = \mathbf{Z} \cdot [\mathbf{A} \cdot e^{-jkx} - \mathbf{B} \cdot e^{jkx}] = \mathbf{E}_{\mathbf{p}} + \mathbf{E}_{\mathbf{r}}$ (1 - 22)

Stejně tak jak tomu bylo u fázoru \mathbf{H} , lze fázor \mathbf{E} vyjádřit ve vlně postupné a ve vlně odražené. Výraz \mathbf{Z} značí impedanci prostředí.

Závěrem je dobré se zmínit, že odvozené výrazy fázorů E a H (1-21), (1-22) představují rovinné elektromagnetické vlnění platné pro elektricky vodivá i elektricky nevodivá prostředí. [4, str. 34]

1.4 Válcové harmonické elektromagnetické vlnění [4, str. 113], [6, str. 179]

V mnoha případech indukčního ohřevu je využívána vsázka válcového tvaru umístěna souose do induktoru také válcového tvaru. Je proto na místě se s touto problematikou blíže seznámit.

Zdrojem válcového elektromagnetického vlnění se uvažuje válcová plocha o

poloměru r, jenž je nekonečně dlouhá a protéká jí střídavý harmonický proud. Ve skutečnosti nahrazujeme uvažovanou válcovou plochu navinutou cívkou se závity obdélníkového průřezu, jejichž rovina proložená závitem je kolmá na osu válce a protéká jimi střídavý harmonický proud. U cívky s teoreticky nekonečnou délkou nelze s velkou přesností uvažovat (předpokládat) stejnou okamžitou hustotu proudu v celé její délce. Toho lze docílit pouze u cívky, jejichž délka je l > d (rozměry

Obr. 1. 1 Vektory H a zářivé vektory S v solenoidu¹ [4]

jsou menší než vlnová délka). Tato válcová plocha vyzařuje válcové elmag. vlnění do dutiny cívky (směřující k ose válce). V dalších teoretických úvahách docílíme toho, že pokud délka cívky je nekonečná, potom vybuzený magnetický tok v dutině cívky se uzavírá vně cívky přes prakticky nekonečný prostor ($r \rightarrow \infty$). Z toho lze usoudit, že intenzita magnetického pole *H* na vnějším povrchu cívky je nulová.

Umístí-li se vyzařující válec tak, aby osa válce byla totožná s osou z a za předpokladu délky cívky $l \gg d$, zjednoduší se studovaný jev na jev závislý pouze na poloměru r. To znamená, že vektory E, H budou za těchto předpokladů ve válcových útvarech závislé pouze na poloměru r. Pro zjištění (určení) těchto vektorů se vhodně aplikují válcové (cylindrické) souřadnice (viz Obr. 1. 2).

1.4.1 Obecné rovnice válcového harmonického elektromagnetického vlnění [4, str. 115], [6, str. 180]

Při odvození obecných rovnic válcového elmag. vlnění vycházíme z výše odvozených rovnic (1 - 17), (1 - 18). Pro určení fázorů \mathbf{H} (resp. \mathbf{E}) je zapotřebí vyjádřit Laplaceův operátor ve válcových souřadnicích.

¹ Příčný řez cívkou, znázorněn úsek délky 1m pro zobrazení vektoru magnetické intenzity vně a uvnitř cívky a výsledných zářivých vektorů S_{p1} a S₁. Okamžitá hodnota hustoty proudu je v celé délce stejná.

Obr. 1. 2 Válcové souřadnice [6]

$$\nabla^{2}\mathbf{H} = \frac{\partial^{2}\mathbf{H}}{\partial r^{2}} + \frac{1}{r^{2}}\frac{\partial^{2}\mathbf{H}}{\partial \varphi^{2}} + \frac{\partial^{2}\mathbf{H}}{\partial z^{2}} + \frac{1}{r}\frac{\partial\mathbf{H}}{\partial r}$$

Za výše zmíněného předpokladu (jev závislý pouze na poloměru r)

$$\frac{\partial^2 \mathbf{H}}{\partial \boldsymbol{\varphi}^2} = \frac{\partial^2 \mathbf{H}}{\partial z^2} = 0$$

Bude potom

$$\nabla^2 \mathbf{H} = \frac{\partial^2 \mathbf{H}}{\partial r^2} + \frac{1}{r} \frac{\partial \mathbf{H}}{\partial r} \qquad (1 - 23)$$

Mezi válcovými a pravoúhlými souřadnicemi je podle Obr. 1. 2 patrný vztah:

$$x = r \cdot \cos \varphi$$
 $y = r \cdot \sin \varphi$ $z = z$

Po dosazení výrazu (1 - 23) do výrazu (1 - 17) vyjde vztah:

$$\frac{\partial^2 \mathbf{H}}{\partial r^2} + \frac{1}{r} \frac{\partial \mathbf{H}}{\partial r} + k^2 \mathbf{H} = 0 \qquad (1 - 24)$$

Tím jsme dostali Besselovu diferenciální rovnici pro harmonický průběh, která obecně má

tvar
$$\frac{d^2 y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + \left(1 - \frac{n^2}{x^2}\right)y = 0, \text{ kde } n \text{ určuje řád rovnice.}$$

Podělíme-li výraz (1 - 24) k^2 a vyřešíme Besselovu diferenciální rovnici, dostaneme vztah pro fázor **H**:

$$\mathbf{H} = \mathbf{C}_{1} \mathbf{J}_{0}(kr) + \mathbf{C}_{2} \mathbf{N}_{0}(kr), \qquad (1 - 25)$$

kde C_1 , C_2 jsou integrační konstanty určené na základě mezních podmínek $J_0(kr)$, $N_0(kr)^2$ jsou cylindrické funkce nultého řádu prvního a druhého

(Neumannova) druhu pro argument kr.

Výraz pro intenzitu E získáme z 1.MR a vztahu rot $\mathbf{H} = -\frac{\partial \mathbf{H}}{\partial x}$

$$\mathbf{E} = -\frac{1}{\gamma + j\omega\varepsilon} \frac{\partial \mathbf{H}}{\partial r} = \frac{\mathbf{k}}{\gamma + j\omega\varepsilon} \left[C_1 \mathbf{J}_1(\mathbf{k}r) + C_2 \mathbf{N}_1(\mathbf{k}r) \right]$$
(1-26)

² Besselovy funkce viz Příloha I

1.5 Problematika stínění u indukčních kelímkových pecí

Prochází-li cívkou střídavý proud, vybudí se magnetické pole, které prochází dutinou cívky. To ve výsledku způsobuje indukování vířivých proudů ve vsázce a následný ohřev. Jelikož se tento magnetický tok uzavírá vně cívky, dochází k nežádoucímu zahřátí konstrukce pece, což vede ke vzniku ztrát a snížení účinnosti. Musí se provést nezbytná opatření k omezení účinků magnetického pole vně cívky. V praxi jsou známy dvě metody, každá pracující na jiném principu: **1**) **dobře vodivý válcový plášť**,

2) svazek transformátorových plechů.

1.5.1 Stínění vodivým pláštěm

[3], [8], [6, str. 337]

První metodou stínění elektromagnetického pole vně cívky je stínění pomocí elektricky vodivého stínícího pláště. Tato metoda je založena na elektromagnetické indukce principu Lenzova zákona, kdy pole procházející dutinou stínícího pláště naindukuje do pláště napětí a proud, který na základě Lenzova zákona vytváří své elektromagnetické pole **ø**, působící proti poli cívky. Tím se dosáhne, že se pole vně cívky odečítají, ale stejně tak se děje uvnitř samotné cívky a dochází ke zhoršení elektrické účinnosti. Oblast za pláštěm je odstíněná. Směr magnetických toků je znázorněn na obrázku Obr. 1. 3.

Pro účinné stínění je stínící plášť vyráběný z dobře vodivého materiálu (např.

měď, dural). Je tedy nutné, aby stínění *Obr. 1. 3 Stínění vodivým pláštěm, magnetické toky [3]* mělo vždy minimální činný odpor (při zachování největší hodnoty indukčnosti), aby vlivem odporu stínění nedošlo naindukovaným napětím k protlačení proudu stíněním. Nejlepším řešením je použití supravodivých materiálů, kdy dochází k tomu, že veškerý magnetický tok

se neprotlačí skrz stínění a odrazí se. Pro zachování minimálních ztrát vznikajících ve stínícím plášti se volí tloušťka stínícího pláště rovna optimální tloušťce $\check{s}_3 = \frac{\pi}{2} \cdot a_3$, kde a_3 představuje hloubku vniku naindukovaných proudů ve stínění. Odvození optimální tloušťky vychází ze vztahů pro určení impedance stěny konečné tloušťky [8], konkrétní odvození v literatuře [4, str. 63]. V praxi se můžeme setkat s větší tloušťkou pláště pro větší mechanickou pevnost.

Ztráty ve stínění se určí ze vztahu:

$$P_3 = R_3 \cdot I_3^{\ 2}, \tag{1-27}$$

Obr. 1. 4 Závislost měrných ztrát stínění na vzdálenosti pláště od cívky [3]

Na obrázku Obr. 1. 4 lze vidět závislost měrných ztrát stínění na poměru průměru pláště d_3 k průměru cívky d_1 . Nejmenších měrných ztrát bychom dosáhli, kdyby průměr pláště byl mnohem větší než průměr cívky. Ve skutečnosti jsme však omezeni prostorem v provozu (i samotnou realizací tak velkého odstínění), a proto se volí průměr stínícího pláště d_3 jako dvojnásobek průměru cívky d_1 . Výška stínícího pláště se většinou volí $l_3 = 1, 2 \cdot l_1$, kde l_1 je výška cívky. Při těchto rozměrech stínícího pláště (\tilde{s}_3, d_3, l_3) činí ztráty v měděném plášti cca 1,51%, u duralové cca 2,5% z pecního příkonu.

V případě výpočtů můžeme skutečné obvody s prostorovým rozložením proudu popisovat jako tři souosé vodivé válce s nulovou tloušťkou, jejichž průměry jsou dány vztahy

(1 - 28) až (1 - 30), za předpokladu, že poloměr cívky, vsázky a stínění je mnohem větší než patřičná hloubka vniku. V případě tavicích pecí je tato podmínka splněna. Výšky jednotlivých náhradních válců se volí stejné jako ve skutečném obvodu. Na obrázku Obr. 1.5 jsou znázorněny tři souosé vodivé válce a ekvivalentní elektrické schéma obvodu s vyznačenými parametry: vlastní indukčnost L_1 , L_2 , L_3 ; odpor R_1 , R_2 , R_3 ; vzájemná indukčnost M_{12} , M_{13} , M_{23} .

Obr. 1. 5 Náhradní obvod, ekvivalentní elektrický obvod [8]

Náhradní průměr cívky	$d_c = d_1 + a_1$	(1-28)
Náhradní průměr vsázky	$d_v = d_2 - a_2$	(1-29)
Náhradní průměr pláště	$d_s = d_3 + a_3$	(1-30)

Jednotlivé parametry elektrického obvodu se určí ze vztahů :

 $L_3 = \mu_0 \cdot \pi \cdot \left(\frac{d_s}{2}\right)^2 \cdot \frac{N_3^2}{l_2} \cdot \alpha_3 \qquad (1-33)$

$$L_{1} = \mu_{0} \cdot \pi \cdot \left(\frac{d_{c}}{2}\right)^{2} \cdot \frac{N_{1}^{2}}{l_{1}} \cdot \alpha_{1} \quad (1-31) \qquad \qquad M_{12} = \mu_{0} \cdot \pi \cdot \left(\frac{d_{v}}{2}\right)^{2} \cdot \frac{N_{1} \cdot N_{2}}{l_{2}} \cdot F_{12} \quad (1-34)$$

$$L_{2} = \mu_{0} \cdot \pi \cdot \left(\frac{d_{v}}{2}\right)^{2} \cdot \frac{N_{2}^{2}}{l_{2}} \cdot \alpha_{2} \quad (1-32) \qquad \qquad M_{13} = \mu_{0} \cdot \pi \cdot \left(\frac{d_{s}}{2}\right)^{2} \cdot \frac{N_{1} \cdot N_{3}}{l_{3}} \cdot F_{13} \quad (1-35)$$

$$M_{13} = \mu_0 \cdot \pi \cdot \left(\frac{d_s}{2}\right)^2 \cdot \frac{N_1 \cdot N_3}{l_3} \cdot F_{13}$$
 (1-35)

$$M_{23} = \mu_0 \cdot \pi \cdot \left(\frac{d_s}{2}\right)^2 \cdot \frac{N_2 \cdot N_3}{l_3} \cdot F_{23} \qquad (1-36)$$

kde parametry α_1 , α_2 , F_{12} se určí z tabulky, viz Příloha II

počet závitů cívky

 N_1

= 1)

$$N_2$$
, N_3 počet závitů vsázky, pláště ($N_{2,3}$
 l_1, l_2, l_3 výška cívky, vsázky, pláště

Při výpočtu proudů v jednotlivých částech elektrického obvodu vycházíme ze tří základních rovnic určených na základě 2. Kirchhoffova zákona. (\overline{V} - fázor veličiny)

$$\overline{U_g} = \overline{Z_1} \cdot \overline{I_1} + j\omega M_{12} \cdot \overline{I_2} + j\omega M_{13} \cdot \overline{I_3}$$
(1-37)

$$0 = \overline{Z_2} \cdot \overline{I_2} + j\omega M_{23} \cdot \overline{I_3} + j\omega M_{12} \cdot \overline{I_1}$$
(1-38)

$$0 = \overline{Z_3} \cdot \overline{I_3} + j\omega M_{13} \cdot \overline{I_1} + j\omega M_{23} \cdot \overline{I_2}$$
(1-39)

Při znalosti geometrických rozměrů lze určit impedanci a vzájemnou indukčnost (viz výše)

$$\overline{Z_1} = R_1 + j\omega L_1 \qquad \overline{Z_2} = R_2 + j\omega L_2 \qquad \overline{Z_3} = R_3 + j\omega L_3$$

Při znalosti všech dílčích parametrů můžeme vypočítat proudy $\overline{I_1}$, $\overline{I_2}$, $\overline{I_3}$ řešením soustavy tří rovnic (1 - 37) až (1 - 39). V literatuře [3, str. 35] jsou uvedeny vzorce pro výpočet proudů $\overline{I_1}$, $\overline{I_2}$, $\overline{I_3}$, ale pro značnou nepřehlednost a rozsáhlost je zde neuvádím.

Stínění s elektricky vodivým pláštěm má v porovnání s druhou metodou stínění větší ztráty v cívce, větší prostorové nároky, menší užitečný výkon a ve výsledku má pec se stínícím pláštěm menší elektrickou účinnost (v důsledku snížení intenzity magnetického pole uvnitř pecní cívky). Dále při stínění se stínícím pláštěm se vyžaduje, aby pecní cívka měla vyšší počet závitů a větší kondenzátorovou baterii. Ale na druhou stranu pořizovací cena tohoto stínění je v porovnání se svazky transformátorových plechů nižší, ale i hmotnost je menší. Stínění pomocí vodivého stínící pláště jsou využívána zejména u malých pecí s obsahem do 250 kg oceli.

1.5.2 Stínění svazky transformátorových plechů [3, 8]

Na jiném principu stínění je založeno stínění se svazky transformátorových plechů (v některé literatuře též nazýváno jako stínění indukční kelímkové pece se železným jádrem vně cívky). Na vnitřní stranu pecního pláště jsou upevňovány svazky transformátorových plechů. Ty se vyznačují vysokou permeabilitou, tj. vysokou magnetickou vodivostí (aby nedocházelo ke vzniku ztrát v důsledku indukování vířivých proudů).

Magnetický tok, buzený cívkou, má snahu vně cívky z velké části procházet cestou nejmenšího magnetického odporu. Vložením svazků transformátorových plechů o vysoké

Obr. 1. 6 Indukční kelímková pec se svazky z transformátorových plechů [3]

vsázky. Dochází ke zvýšení účinnosti.

magnetické vodivosti, resp. nízkého magnetického odporu vytvoříme dobře magneticky vodivou cestu pro tento tok. Rozptylový magnetický tok prochází touto "cestou" a dochází k odstínění oblasti vně cívky.

Tento princip je názorně zobrazen na obrázku Obr. 1. 6, kde vidíme magnetické siločáry procházející svazky transformátorových plechů a odstínění oblasti vně cívky.

Snížením magnetického odporu zařazením svazků dojde ke zvýšení magnetického toku buzeného cívkou. Tím se také zvýší hodnota vlastní indukčnosti cívky a intenzita magnetického pole, která je úměrná naindukovanému výkonu do

Tento princip stínění je v porovnání se stíněním vodivým pláštěm technicky dokonalejší, zvyšuje se účinnost pece (přibližně o 5 procent vyšší než u vodivého pláště), vznikají menší Joulovy ztráty, ale výrobně jsou pece se svazky mnohem dražší, těžší a nastane-li protavení pece, většinou dochází k velkým škodám. V praxi je tento princip stínění provozován u velkých pecí s trvalým provozem.

Zvýšené hodnoty indukčností určí dle vzorců (viz Příloha VI): se $L_{1}' = \mu_{0}\pi r_{c}^{2} \frac{N_{1}^{2}}{l_{1}} \alpha_{1}'$ [H, m] $\alpha_1' = \alpha_1 \frac{L_1'}{L_1}$ (1-40) (1-41) $L_{2}' = \mu_{0}\pi r_{\nu}^{2} \frac{N_{2}^{2}}{l_{2}} \alpha_{2}'$ [H, m] $\alpha_{2}' = \alpha_{2} \frac{L_{2}'}{L_{2}}$ (1-42) (1-43) $M_{12}' = \mu_0 \pi r_v^2 \frac{N_1 \cdot N_2}{l_2} F_{12}'$ [H, m] $F_{12}' = F_{12} \frac{M_{12}'}{M}$ (1-44) (1-45)

Parametry α'_1 , α'_2 , F_{12} ' se orientačně uvádějí: $\alpha'_1 = 1, 14 \cdot \alpha_1$, $\alpha'_2 = 1, 06 \cdot \alpha_2$, $F_{12}' = 1, 1 \cdot F_{12}$ Parametry α_1 , α_2 , F_{12} se určí z tabulky, viz Příloha II

Pro dimenzování magnetického jádra je zapotřebí znát výsledný magnetický tok, který je buzený cívkou a zeslabený vsázkou. Dále je nutné určit magnetickou indukci *B* v železném jádře. Při určování vycházíme z pracovního kmitočtu a hodnotu magnetické indukce *B* volíme z diagramu Obr. 1. 7, s ohledem na měrné ztráty.

Plochu, kterou určíme ze vztahu $S = \frac{\Phi}{B}$, rozdělíme na odpovídající počet svazků a ze znalosti celkové hmotnosti *G* můžeme z Obr. 1. 7 určit celkové ztráty v železe.

$$P_{Fe} = P \cdot G \text{ [kW]} \tag{1-46}$$

REZ A - A

2 Průmyslová aplikace indukčního ohřevu

Indukční ohřev má dnes v průmyslu široké pole působení. Pro své vlastnosti, kterými jsou mnohem kratší doby potřebné pro vykonání dané činnosti nebo vznik tepla uvnitř materiálu (volba tloušťky, ve které teplo vzniká), je využíván obzvlášť při indukčním tavení kovových a nekovových materiálů, při svařování trubek, indukčním pájení, žíhání, kalení nebo při prohřívání materiálu pro tváření. Jednotlivé aplikace jsou v této kapitole blíže popsány.

2.1 Indukční prohřívání

V procesech tepelného tváření oceli a neželezných kovů se mimořádně osvědčilo indukční prohřívání, které umožňuje rovnoměrné prohřátí materiálu v celém průřezu za krátkou dobu. Této vlastnosti je vhodně využíváno při hromadné výrobě, např. v automobilovém průmyslu. [5, 6, 3]

Na obrázku Obr. 2. 2 je zobrazeno indukční prohřívání tyčí 1, které se pomocí vodících kladek 2 pohybují přes řadu ohřívacích cívek 3 a

Obr. 2. 1 Indukční prohřívání vývalku [6]

průběžně se ohřívají na kovací teplotu [6].

Indukční prohřívání umožňuje z velké části automatizovanou výrobu s vysokou produkcí polotovarů pro tváření.

2.2 Indukční povrchové kalení

Indukční kalení je způsob vytváření tvrdé povrchové vrstvy na oceli. Je založeno na rychlém ohřevu indukovaným proudem vysoké frekvence za použití induktoru. Při průchodu střídavého proudu induktorem se indukuje kolem kaleného předmětu střídavé magnetické pole a vznikají vířivé proudy ve vrstvě prokalení. Tyto proudy zahřejí povrch na kalící teplotu a kalení je dokončeno prudkým ochlazením předmětu.

2.2.1 Povrchové kalení válců malého průměru

Na obrázku Obr. 2. 3 je znázorněno povrchové kalení válců malého průměru. Válec 2 je vložen do cívky 1, jejíž rozměry odpovídají potřebné šířce prokalení. Volbou dostatečně vysokého měrného příkonu a vhodného kmitočtu vzhledem ke tloušťce prokalení se docílí zahřátí tenké povrchové vrstvy na kalící teplotu během velice krátké doby. Po dosažení kalicí teploty je vrstva prudce ochlazena. [3]

Obr. 2. 3 Povrchové kalení menších válců [3]

2.2.2 Povrchové kalení ozubených kol a vaček [3]

Pro povrchové kalení ozubených kol se volí cívka s vnitřním průměrem větším než průměr kola. Při volbě kmitočtu není důležitý absolutní rozměr kola, ale nýbrž modul ozubení *m*.

$$f = \frac{6 \cdot 10^5}{2\pi \cdot m^2} [\text{Hz}] \tag{2-1}$$

m = D/z, kde D je průměr roztečné kružnice [mm] a z je počet zubů

U ozubených kol s velkým modulem ozubení se kalení provádí postupně zub po zubu.

Obdobně tomu tak je u kalení vaček, kde volba kmitočtu se volí podle nejmenšího poloměru *r* [cm]

$$f = \frac{3760}{r^2} \, [\text{Hz}] \tag{2-2}$$

2.2.3 Povrchové kalení válců pro válcovací stolici

Pro indukční kalení válců velkých rozměrů (průměr i přes 1m) je používáno speciální zařízení, do kterého je válec upevněn ve svislé poloze a pro symetrický ohřev umožňuje otáčení válce. Aby se předešlo tzv. slupkovému jevu, předehřívá se válec na určitou teplotu několikerým protažením induktorem 2. Poté se může přistoupit k samotnému kalení. Válec pomalým spouštěním prochází induktorem a ohřívá se na kalicí teplotu. Ihned za induktorem dochází k prudkému ochlazování vodou ze sprchy 3, čímž se docílí prokalení povrchové vrstvy. V případě velkých a těžkých válců se nepohybuje válcem, ale pohybuje se samotným induktorem. [3]

Obr. 2. 4 Povrchové kalení velkých válců [6]

Během indukčního povrchového kalení nedochází k porušení vnitřní struktury materiálu a vnitřek válce zůstává houževnatý. [3]

2.3 Indukční pájení

Pájení je tepelný proces, při kterém jsou spojovány dva a více materiálů pájkou, jejíž teplota tání je nižší než spojovaných materiálů. Pájení lze rozdělit na dva druhy, na pájení naměkko (teplota pájky 150 - 450 °C, potřebný výkon se pohybuje cca 0,5 - 5 kW) a pájení natvrdo (teplota pájky 450 - 1050 °C, potřebný výkon cca 3 - 30 kW). Na obrázku Obr. 2. 5 je zobrazeno indukční pájení trubky 3 a příruby 4. Pájka 2, vhodně

vytvarovaná, je umístěna ve spoji obou materiálů. Po zavedení vysokofrekvenčního proudu do cívky 1, obepínající místo spoje, dochází k ohřevu pájky, příruby i trubky. Jelikož teplota tání pájky je nižší než trubky a příruby, pájka se roztaví a vteče do prostoru mezi přírubou a trubkou. Pevný spoj je vytvořen bezprostředně po zatuhnutí. [3, 10]

Výhodou indukčního pájení je malá energetická náročnost, dále nedochází k tepelné deformaci okolo spoje. Uplatnění indukčního pájení je v mnoha odvětvích. Přes potravinářský

průmysl, kde se provádí pájení cínem vík plechových krabic, až po automobilový průmysl (kompletování karoserií). [3, 9]

2.4 Indukční svařování [6, 3]

Indukční svařování je využíváno u součástek, které se kontinuálně podélně svařují. Na obrázcích Obr. 2. 6 a Obr. 2. 7 je zobrazen průběh indukčního svařování trubek (typický příklad indukčního svařování).

Princip indukčního svařování trubek: Ocelový pás 2 o tloušťce cca 1,5 - 5 mm je pomocí speciálního mechanismu bočních kladek vytvarován do tvaru trubky (hrany ocelového pásu těsně přiléhají). Takto zdeformovaný pás prochází většinou vícezávitovou cívkou 1, do které je přiveden vysokofrekvenční proud. Do pásu jsou naindukovány proudy (na obrázku Obr. 2. 7 jsou znázorněny čárkovanou čarou) uzavírající se v bodě A, který vzniká přiblížením hran ocelového pásu působením bočních kladek 5. V místě A se vlivem velké hustoty naindukovaných proudů ohřeje spoj na svařovací teplotu (pro ocel 1400 °C) a vzniká pevný svár (pevnější než okolní materiál).

Při svařování trubek se obvykle používají proudy o vysokém kmitočtu 8 - 500 kHz, cívky o příkonu dosahujícího až stovky kilowatt (až 700 kW). Indukční svařování trubek umožňuje výrobu vysoce kvalitních trubek a s přehledem nahrazuje stávající odporové svařování.

Obr. 2. 6 Indukční svařování - horní pohled [6]

Obr. 2. 7 Indukční svařování - naindukované proudy [3]

2.5 Indukční tavení

Nejvýznamnějším uplatněním indukčního ohřevu je průmyslové tavení kovových a nekovových materiálů v indukčních pecích, dnes zejména v indukčních pecích kelímkových,

ale i v indukčních pecích vakuových a kanálkových. Těmito typy pecí se více zabývám v kapitole 3.

Stavy vsázky při tavbě (konkrétně pro konstrukční ocel) [3]:

- Teplota 20 °C 760 °C (Curieův bod): V rozmezí těchto teplot je vsázka tuhá, kusová a magnetická, permeabilita je větší než 1, měrný odpor oceli roste.
- Teplota 760 °C 1400 °C: Teplota přesáhla teplotu magnetické přeměny oceli, relativní permeabilita je rovna 1, měrný odpor roste až na hodnotu $1,2 \cdot 10^{-4} \ \Omega \cdot cm$, vsázka je stále kusová, tuhá, ale už nemagnetická.
- Teplota 1400 °C 1600 °C: Při teplotě Při teplotě 1400 °C dochází k tavení oceli, z tuhé vsázky se stává vsázka tekutou, nemagnetickou. Měrný odpor se zvýšil na $1,4\cdot10^{-4} \ \Omega\cdot cm$.

Elektrické indukční pece jsou zpravidla plněny tříděným šrotem (kusy z téhož druhu materiálu, ale různých velikostí a tvarů). Pec musí být schopna s dobrou účinností roztavit danou vsázku, což předpokládá správnou volbu kmitočtu a měrného výkonu. [3]

3 Indukční průmyslové pece

3.1 Indukční kanálková pec

[5], [6], [1], [7], [10]

Indukční kanálková pec patří k nejstarším elektrotepelným zařízení. Svojí konstrukcí a činností indukční kanálková pec připomíná transformátor, jehož sekundární vinutí je zapojeno dokrátka. Na Obr. 3. 1 je znázorněn příčný (funkční) řez pece.

Obr. 3. 1 Indukční kanálková pec [5]

Induktor, umístěný na magnetickém jádru složeného z elektrotechnických plechů, představuje primární vinutí, přičemž roztavený kov nacházející se v kanálku vytváří sekundární vinutí. Pro zahájení činnosti pece je nezbytné vytvořit na sekundární straně závit nakrátko. To se provádí tak, že se z předešlé tavby ve vaně ponechává určité minimální množství roztaveného kovu, nebo je-li prováděna první nová tavba, zaplní se kanálek roztaveným kovem z jiné tavby.

Na konci 19. století byl postaven první typ **kanálkové pece, pece s odkrytým kanálkem**, který se používal pro tavení barevných kovů, zejména mědi, niklu, hliníku a jejich slitin. Vlivem intenzivního víření v peci docházelo k dokonalé homogenitě složení a teploty roztaveného kovu. Pro zlepšení účiníku bylo napájení prováděno jednofázovým generátorem o kmitočtu 5 - 10 Hz. Jelikož v provozu se vyznačovaly řadou nevýhod, kterými byly značné tepelné ztráty z horkého kovu do okolí nebo nedostačující topný výkon, byly od dvacátých let 20. století postupně nahrazovány indukčními kanálkovými pecemi se zakrytým kanálkem a radiálním vyléváním taveniny z otevřeného kanálku. [1]

Indukční kanálková pec se zakrytým kanálkem (Obr. 3. 1) je napájena síťovým kmitočtem. Elektromagnetické pole, vybuzené proudem naindukovaným do kanálku, způsobuje elektrodynamické síly, které vytlačují kov do osy kanálku. Vlivem hydrostatického tlaku ve vaně je po stěnách kanálku tlačen nový chladnější kov a ze středu kanálku vytéká teplejší kov do vany. Tímto dochází k intenzivnímu víření roztaveného kovu, což ve výsledku vytváří dobrou teplotní a materiálovou homogenitu a vysoce kvalitní kovy.

Výhodou indukční kanálkové pece je jejich větší energetická účinnost (blízká účinnosti transformátoru) v porovnání s kelímkovou pecí, dále se vyznačují lepším účiníkem, malou ztrátou propalem, snadnou regulací topného výkonu (přepínáním odboček na

primárním vinutí pecního transformátoru), napájením síťovým kmitočtem, relativně nízkou cenou a nízkými provozními náklady, výrobou vysoce kvalitních kovů. U velkých kanálkových pecí je možno dosáhnout rovnoměrného zatížení trojfázové sítě tím, že vana těchto velkých pecí je napojena na 2

nebo 3 kanálkové induktory. U případu se *Obr. 3. 2 Scottovo zapojení [6]* dvěma kanálkovými induktory se používá tzv. Scottovo zapojení, kdy jeden induktor má *N* závitů a druhý $N \cdot \frac{\sqrt{3}}{2}$ závitů (viz Obr. 3. 2) [6, str. 230].

nežádoucí vychladnutí taveniny (často je nutné udržovat na provozní teplotě) nebo nutnost provádět tavbu pouze jednoho kovu.

V průmyslu se používají zejména pro tavení barevných neželezných kovů (měď, hliník, zinek, olova) a jejich slitin, zušlechťování šedé litiny, k výrobě olovnatých mosazí a pro přihřívání již roztavené litiny.

V současné době jsou však nejvíce využívány indukční kelímkové pece, které popisuji v následující kapitole.

3.2 Indukční kelímková pec

Indukční kelímkové pece jsou v současné době nejvíce využívanými indukčními pecemi používané v metalurgickém, slévárenském a elektrotechnickém průmyslu pro tavení elektricky vodivých materiálů. S výhodou se využívají jejich dobré vlastnosti (silné víření) ve slévárnách pro tavení nejrůznějších druhů ocelí, v hutnictví zejména při výrobě vysoce kvalitní oceli a speciálních litin. Na Obr. 3. 3 je zobrazena základní konstrukce indukční kelímkové pece.

Ohřívací cívka 1 patří mezi nejdůležitější části pece, bývá navinuta z měděných trubek obdélníkového nejčastěji průřezu, kdy v dutině trubky chladící proudí voda. Nejčastěji bývá navinuta jako jednovrstvá. Nevodivý kelímek některých 2 (v případech vodivý) se nachází v dutině cívky, s ní souosý. Keramický nevodivý kelímek bývá nejčastěji z křemičitého písku (SiO2). Na vnitřní

Obr. 3. 3 Indukční kelímková pec s nevodivým kelímkem [6]

straně **pláště** <u>5</u> je umístěno stínění v tomto případě **svazky transformátorových plechů** <u>3</u>, které svádějí magnetický tok vně cívky, aby nebyla negativně narušena okolní konstrukce. Dále na Obr. 3. 3 je znázorněn **žárocementový trámec** <u>4</u>, **cihlová keramická vyzdívka** na dně pece <u>6</u>, **stínící měděný plech** <u>7</u>, který chrání **mřížové dno pece** <u>8</u> před magnetickým tokem cívky. Pro samotné odlévání je využívána **hubice pece** <u>9</u> a pomocí hydraulického pohonu je pec natáčena kolem **osy** <u>10</u>. [5, 6, 3]

Pecní cívka je napájena ze zdroje střídavým proudem v řádu několika kiloampér při kmitočtu 50 Hz - 10 kHz, přiváděným pomocí měděných ohebných lan. Tento proud, procházející cívkou, vytváří kolem cívky elektromagnetické pole, které ve vsázce indukuje vířivé proudy způsobující ohřev dané vsázky (vytvářejí se Jouleovy ztráty). Teplo, procházející skrz kelímek, včetně vznikajících elektrických ztrát v cívce mají negativní účinek

na životnost dané cívky. Je proto nezbytné zajistit efektivní chlazení. Velký chladící výkon zajišťuje turbulentní proudění chladící vody v dutině cívky. [9, 6, 8]

Dalším problémem, který se musí řešit při provozu indukčních pecí, je uzavírání magnetického pole vně cívky. Ten působí na okolní konstrukci a dochází k nežádoucímu ohřátí. Pro eliminování vlivu magnetického pole vně cívky se provádí stínění pece, které lze provést dvěma způsoby, pomocí dobře vodivého stínícího pláště nebo svazky transformátorových plechů. Tato problematika je více probrána v kapitole 1.5.

Nespornou výhodou indukčních kelímkových pecí je silné víření taveniny. Víření taveniny je způsobeno elektrodynamickými silami, které vznikají jako důsledek vzájemného působení indukovaných proudů ve vsázce a magnetického pole vytvořeného cívkou (induktorem).

$$\boldsymbol{F} = \boldsymbol{J}_2 \cdot \boldsymbol{B}_1, \tag{3-1}$$

kde J_2 proudová hustota indukovaných proudů ve vsázce B_1 magnetická indukce magnetického pole cívky

V důsledku silného víření taveniny dochází k velmi žádané téměř dokonalé materiálové i teplotní homogenitě slitiny, které se stěží dosahuje u jiných typů pecí. Víření je patrné na Obr. 3. 3. Krom víření je na Obr. 3. 3. patrný i jiný efekt - vzdutí taveniny. Vzdutí vzniká vlivem tlaku magnetických sil na vsázku. Dochází k tomu, že u stěny kelímku vzniká podtlak, naopak v ose kelímku přetlak. Vlivem hydrostatických sil vtéká tavenina ke stěnám kelímku a uprostřed kelímku dochází ke vzdutí h. [6, 8, 3]

$$h = K \frac{P_1}{\rho} \sqrt{\frac{\mu_r \gamma}{f}}, \qquad (3-2)$$

kde P_1 j

příkon na jednotkovou plochu vsázky (Poyntingův vektor) [W/m2]

- ρ měrná hmotnost vsázky [kg/m2]
- *K* konstanta [-]
- μ_r relativní permeabilita vsázky ($\mu_r = 1$) [-]
- γ konduktivita vsázky [S/m]
- f kmitočet napájecího proudu [Hz]

Z výrazu (3 - 2) je patrná závislost velikosti vzdutí na P_1 , γ , f. Zejména u pecí na síťový kmitočet je nutné omezit maximální příkon přibližně na hodnotu 300 kW na tunu taveniny, aby nedocházelo k nadměrnému vzdutí. V některých případech se postupuje i tak, že se zkracuje cívka, aby hladina lázně byla výše než horní okraj cívky. Tím se vytvoří na hladině lázně tzv. tlumící polštář, který zabraňuje obnažování povrchu lázně. U pecí napájených kmitočtem do 1000 Hz se může pracovat s měrným výkonem až 1000 kW na tunu taveniny a dochází ke zkrácení doby tavby. [3, 6, 15]

3.2.1 Účinnost indukčních kelímkových pecí [3]

Elektrická účinnost kelímkové indukční pece se určí jako podíl výkonu P_u , zužitkovaného na ohřev vsázky, a celkového příkonu dodaného zdrojem. Celkový příkon P_g je v peci spotřebován jednak na ohřev dané vsázky, ale také na krytí ztrát, které vznikají ve vlastní cívce, v kondenzátoru a v přívodní pasovině.

Výsledná elektrická účinnost:

$$\eta_{v} = \frac{P_{u}}{P_{g}} = \frac{P_{u}}{P_{1} + P_{u} + P_{c}},$$
(3-3)
kde P_{u} užitečný výkon pece
 P_{1} vlastní ztráty cívky
 P_{c} ztráty v kondenzátoru a v přívodní pasovině

Ve vztahu nebyly uvažovány ztráty ve stínícím plášti, jejichž hodnota je malá a bývá řádově menší než 1% z příkonu. Běžně se výsledná elektrická účinnost kelímkových pecí pohybuje v rozmezí 0,7 až 0,75 (s vyšším měrným odporem vsázky se dosahuje vyšší účinnosti).

Účinnost induktoru je dána vztahem:

$$\eta_i = \frac{P_u}{P_1 + P_u} \tag{3-4}$$

 $\eta_i > \eta_v$

Obr. 3. 4 Tepelné ztráty indukčních pecí v závislosti na hmotnosti tavby [17] 1 - Kanálková pec s jedním kanálkem 2 - Kanálková pec se dvěma kanálky 3 - Kelímková pec

Každý materiál má jiný měrný odpor ovlivňující účinnost pece, jak lze vidět na obrázku Obr. 3. 5. Z úvah uvedených v literatuře [3, str. 76] se dochází k závěru, že materiály s velkým měrným odporem se budou nejlépe tavit v indukčních kelímkových pecích s elektricky nevodivým kelímkem. Naopak, materiály s malým měrným odporem se budou dobře tavit v indukčních kanálkových pecí a v indukčních kelímkových pecí s elektricky vodivým kelímkem.

3.2.2 Typy indukčních kelímkových pecí

Indukční kelímkovou pec je možné rozdělit podle 3 hledisek:

• dle frekvence napájecího proudu:

síťová frekvence středofrekvenční

vysokofrekvenční

- dle druhu kelímku:
 - s elektricky **nevodivým kelímkem** (keramický) s elektricky **vodivým kelímkem** (kovový, grafitový)

dle druhu konstrukce stínění:

se svazky transformátorových plechů se stínícím pláštěm

3.2.2.1 Indukční pec se studeným kelímkem

Vysokofrekvenční pece jsou napájeny proudem o kmitočtu vyšším než 2 kHz a jsou používány v laboratorním a průmyslovém provedení pro tavení technických kovů o hmotnosti několika gramů až několika kilogramů. Využívají se také zvláštní druh tavicích indukčních pecí používaných k vysokoteplotnímu tavení metodou studeného kelímku jinak označovanou jako "skull melting technology". V praxi se lze setkat se dvěma způsoby provedení, kdy náhradu keramického kelímku, známého z klasických kelímkových indukčních pecí, tvoří intenzivně vodou chlazené měděné segmenty vzájemně odizolované vzduchovými mezerami, nebo vodou chlazený jednozávitový induktor, který představuje přímo stěnu kelímku. Princip této metody spočívá ve vytvoření tenké ztuhlé vrstvy na povrchu taveniny, vyznačující se nižší teplotou než tavenina a ochraňuje samotný "kelímek". Ztuhlá vrstva je vytvářena v důsledku rozdílu teplot kelímku a vsázky, jejichž teplota přesahuje 3000 °C. Metoda studeného kelímku se využívá zejména pro výrobu oxido-keramických materiálů na bázi titanu a hliníku, dále pro výrobu monokrystalických křemíkových výkonových polovodičů a pro tavení neželezných kovů (jsou získávány velmi chemicky čisté materiály a slitiny). [15, 11, 14]

Obr. 3. 6 Studený kelímek tvořený měděnými segmenty [12]

Obr. 3. 7 Princip indukční kelímkové pece se studeným kelímkem se segmenty [14]

Obr. 3. 8 Studený kelímek v jednozávitovém provedení [14]

Obr. 3. 9 Studený kelímek v jednozávitovém provedení v reálu [14]

3.2.2.2 Indukční pece napájené síťovým kmitočtem, udržovací

Zvláštním provedením kelímkových pecí jsou pece napájené síťovým kmitočtem. Vzhledem k tomu, že uvnitř kelímku nastává intenzivní víření, mohou být používány pro výrobu legovaných ocelí. Větší část taveniny je ponechávána v kelímku pro následující tavbu. Proto nejsou vhodné pro tavbu, kde se často mění materiál tavby. Ve slévárnách oceli se dnes téměř nepoužívají. V posledním desetiletí jsou indukční kelímkové pece napájené síťovým kmitočtem používány jako pece udržovací, kdy udržují roztavený kov na požadované teplotě. [3, 17]

3.2.2.3 Indukční pec s nevodivým kelímkem

Jedná se o nejpoužívanější typ indukční kelímkové pece. V cívce je umístěn kelímek, který se pěchuje z keramické hmoty. Jak už bylo výše uvedeno, indukční pece s nevodivým kelímkem jsou vhodné pro tavení materiálů s velkým měrným odporem a používají se pro výrobu vysoce kvalitních ocelí. Princip tavení je popsán na začátku kapitoly 3.2.

3.2.2.4 Indukční pec s vodivým kelímkem

Tyto pece vykazují velkou elektrickou účinnost při tavení materiálů s malým měrným odporem (jako např. hliník, měď a jejich slitiny). Zavede-li se proud do cívky,

elektromagnetické pole vyzářené z cívky dopadá na stěnu kelímku a energie elektromagnetického pole se přeměňuje na energii tepelnou ve stěně kelímku. Zahřátý kelímek předává teplo vsázce. Mezi cívku a rozžhavený kelímek se vkládají žáruvzdorné vložky (keramické) pro vzájemné odizolování a pro zmenšení tepelných ztrát ze žhavého kelímku do vodou chlazené cívky.

Větší část elektromagnetického vlnění se utlumí v samotném kelímku, jen malá část přechází přímo do vsázky, kterou ohřívá. Míru elektromagnetického vlnění, procházejícího přímo do vsázky, vyjadřuje vzájemný poměr tloušťky kelímku a hloubky vniku. Obecně platí, že elektromagnetické vlnění se přemění v teplo ve stěně o tloušťce přibližně trojnásobku hloubky vniku.

Pro vyšší teploty vsázky se používá grafitový kelímek, pro nižší kovový. Tyto pece jsou používány pro výrobu slitin hliníku, mědi, bronzu, zinku či zlata. [3, 2]

3.2.3 Elektrické schéma indukční kelímkové pece [3, 17]

Na Obr. 3. 10 je uvedeno základní elektrické schéma indukční kelímkové pece. Schéma bychom mohli rozdělit do tří hlavních částí: samotná pec (tvořená pecní cívkou a kelímkem), dále na zdroj proudu a kondenzátorovou baterii.

<u>Napájení pece:</u> Zdrojem napájení pece je síť vysokého napětí (VN rozvaděč). Za napájecím transformátorem je následně proud usměrněn na diodovém usměrňovači, čímž se získá tzv. tepavý proud, který je na tlumivce vyhlazen. Tento proud je dále na tyristorech přeměněn na střídavý proud o kmitočtu daným zátěží pece. Výsledný proud už stačí jen přivést na cívku, toto se provádí pomocí měděné pasoviny.

<u>Vlastní pec</u>: Je tvořena cívkou, vinutou měděnou trubkou obdélníkového profilu, intenzivně chlazenou vodou a kelímkem, nejčastěji elektricky nevodivým. Zařízení zpravidla mají dvě identické pece, kdy v jedné je prováděna vlastní tavba a v druhé se provádí příprava či obnova vyzdívky.

<u>Kondenzátorová baterie:</u> V praxi se k cívce paralelně připojuje kondenzátorová baterie, která je rovněž chlazena vodou. Tato kondenzátorová baterie slouží ke kompenzaci účiníku a společně s pecní cívkou tvoří vyladěný obvod.

40

Obr. 3. 10 Elektrické schéma indukční kelímkové pece [17]

3.3 Indukční vakuová pec [16]

Proces tavení ve vakuové indukční peci se v současnosti stává základní technologií pro výrobu vysoce kvalitních materiálů. Dnes se tímto způsobem vyrábějí nerezové slitiny pro jaderný průmysl, dále slitiny niklu pro vysokoteplotní aplikace nebo slitiny mědi velmi vysoké čistoty.

Celý proces je založen na tavení dané vsázky ve vakuu, kdy je kompletní sestava pece uzavřena ve svařované ocelové komoře (chlazené vodou), ve které se vytváří vakuum. Tento proces umožňuje tavit slitiny libovolného chemického složení, kdy může být přesně nastaven proces tak, aby výsledný produkt byl homogenní a čistý (vysoká úroveň vakua zajišťuje nízký obsah uhlíku).

Ve světě se indukčními vakuovými pecemi zabývá skotská firma Consarc, která je již řadu let navrhuje a konstruuje. Od roku 2011 je ve firmě Kovohutě Rokycany, a.s. provozována indukční 2,5t vakuová pec vyrobená právě firmou Consarc.

Obr. 3. 11 Laboratorní vakuová indukční pec

Obr. 3. 12 Indukční vakuová pec pro přesné lití [16]

3.4 Zdroje napájení indukčních pecí

Dnes, kdy v průmyslu jsou v provozu indukční pece se širokým rozmezí kmitočtů, je vyžadována volba vhodného napájecího zařízení. Obecně lze rozdělit napájecí zařízení do 3 skupin podle kmitočtu napájení.

- napájení zařízení na síťový kmitočet
- napájení středofrekvenčních zařízení
- napájení vysokofrekvenčních zařízení

3.4.1 Napájení zařízení na síťový kmitočet

Obr. 3. 13 Zapojení indukční pece na síťový kmitočet [6]

Jak uvádím v kapitole 3.2.2.2 některé indukční kelímkové pece, ale i indukční prohřívačky, jsou napájené ze sítě a představují pro 3f síť nesymetrickou zátěž. Často se jedná o zařízení značných výkonů. Pro zajištění symetrického zatížení sítě je zapotřebí indukční zařízení připojit pomocí symetrizačního zařízení (např. Steinmetzovo zapojení). [3]

Na Obr. 3. 13 vidíme zapojení zařízení na 50 Hz. 1 výkonový spínač, 2 regulační transformátor, 3 symetrizační obvod, 4 regulační kondenzátorová baterie kompenzující jalový výkon, 5 indukční pec. [6]

3.4.2 Napájení středofrekvenčních zařízení

Z historického hlediska byla středofrekvenční zařízení zprvu napájena rotačními generátory. Pro své prostorové nároky a nástupem novějších technologií byly nahrazovány zpočátku uvažovanými iontovými měniči, ale nakonec jako nejlepší se ukázaly tyristorové měniče, později měniče s výkonovými tranzistory.

3.4.2.1 Rotační měniče

Rotační měniče umožňují vyrábět proudy o kmitočtu 500 Hz až 10 000 Hz. Na statoru měniče jsou umístěna dvě vinutí. Ve větších drážkách je uloženo budící vinutí a je napájeno stejnosměrným napětím. Druhým vinutím je pracovní vinutí, do kterého se indukuje proud s požadovaným vyšším kmitočtem. Rotor má jen zuby a mezery, a obvykle bývá poháněn asynchronním motorem s kotvou nakrátko nebo kotvou kroužkovou. Otáčí-li se rotor, mění se magnetický tok v zubu statoru. Svého maxima dosahuje, je-li zub statoru proti zubu rotoru. Naopak minima dosahuje, je-li proti zubu rotoru drážka statoru. Takto se měnící magnetický tok indukuje do pracovního vinutí napětí a proudy vždy takového směru, že působí proti změně magnetického toku. Kmitočet proudů, indukujících se do pracovního vinutí je přímo úměrný úhlové rychlosti rotoru a nepřímo úměrný pólové rozteči drážek pracovního vinutí na statoru. [6, 3]

Pro mnohé nevýhody (hlučnost, klesající účinnost s vyšší frekvencí, účinnost atd.) jsou dnes nahrazovány polovodičovými statickými měniči.

Obr. 3. 14 Zapojení s rotačním měničem [3]

Na obrázku Obr. 3. 14 je zobrazeno zapojení indukční pece s rotačním měničem. Měnič je poháněn asynchronním motorem s kotvou nakrátko. Vinutí 4 přestavuje budicí vinutí, 3 pracovní. Pecní vyladěný obvod je dán R_I, L_I a C.

3.4.2.2 Iontový měnič

Na obrázku Obr. 3. 15 jsou uvedeny, dnes již nepoužívané, iontového měniče s pecním obvodem. Energie je do iontového měniče přiváděna ze sítě přes transformátor v

zapojení trojúhelník - lomená hvězda, kdy fáze na sekundární straně jsou připojeny na středy

Obr. 3. 15 Zapojení s iontovým měničem [3]

cívek. Na každou cívku jsou dále připojeny 2 tyratrony, z nichž vždy jeden tyratron propouští (kladné napětí na mřížce) a druhý je uzavřen. Po změně polarity na mřížce propouští druhý tyratron a nikoliv první. Toto se opakuje. Vznikající proudové rázy od středu cívky na otevřený tyratron vyvolávají na uzavřeném železném jádru střídavý magnetický tok. Jelikož uzavřené železné jádro je společné i pro pracovní vinutí pecního obvodu, vybudí střídavý magnetický tok naindukované napětí, které napájí pecní obvod složený z pecní cívky a paralelní

kondenzátorové baterie. Po uplynutí jedné třetiny periody napájecího proudu se stejný děj projevuje na fázi Y, resp. na fázi Z. Výhodou iontových měničů bylo trvalé vyladění pecního obvodu, což bylo umožněno zpětnou vazbou 5, která měnila kmitočet impulsů na tyratrony v závislosti na změny L_I, R_I pecního obvodu. Mezi další výhody bych zmínil menší prostorové nároky, vyšší elektrickou účinnost dosahující až 95 % a bezhlučnost. Avšak v praxi se projevila řada nevýhod, např. opětné zapalování tyratronů, které zhoršovalo spolehlivost provozu měniče a zapříčinily rychlý ústup iontových měničů. [3]

3.4.2.3 Tyristorový měnič

Rozvoj polovodičové techniky přinesl řadu výhod oproti rotačním měničům. Nejen, že byla snížena hlučnost a náklady vynaložené na betonové základy, ale zejména byla zvýšena elektrická účinnost až na 95 % a díky zpětné vazbě bylo docíleno trvalého vyladění pecního obvodu na pracovní kmitočet.

Na obrázku Obr. 3. 16 je základní uspořádání tyristorového měniče, kde na vstupu obvodu je trojfázový, tyristory řízený usměrňovač 1, dále meziobvodové tlumivky 2 a na

Obr. 3. 16 Zapojení s tyristorovým měničem [6]

výstupu střídač s tyristory. Meziobvodové tlumivky zde omezují nárůst proudu při zkratu ve střídači, dále zabraňují, aby oscilační napětí vznikající v pecním obvodě (7, 8, 9) nepřešlo do usměrňovače a v neposlední řadě slouží k vyhlazení proudu z usměrňovače. Střídač se sestává

z tyristorů 3 až 6. Střídavým spínáním dvojic tyristorů (jednu dvojici tvoří tyristory 3 a 5, druhou tyristory 4 a 6) se propouští k ohřívací cívce proud obdélníkového průběhu (při otevření tyristorů 3, 5 jedním směrem, při otevření tyristorů 4, 6 směrem druhým) v závislosti na pecním obvodu. [6, 3]

3.4.3 Napájení vysokofrekvenčních zařízení

Zapojení vysokofrekvenčního zařízení s elektronkovým generátorem je na Obr.

 3. 17. Je používáno za účelem napájet zařízení určená vysokofrekvenčnímu indukčnímu ohřevu, např. povrchové kalení,

letování, pájení, svařování nebo pro *Obr. 3. 17 Zapojení s elektronkovým generátorem [6]* vysokofrekvenční tavicí pece. Diodový usměrňovač 2 je napájený ze sítě přes regulační transformátor 1. Kondenzátor 3 slouží k vyhlazování napětí a oddělovací tlumivka 4 pro střídavou vysokofrekvenční složku na anodě výkonové triody 5. Vysokofrekvenční složky proudu katody jsou zkratovány kondenzátory 6. Transformátor 7 pro žhavení triody. Střídavé vf složky propouští pouze kondenzátor 8. Oddělující kondenzátor 9 umožňuje průtok střídavých vf proudů zpětné vazby na mřížku ze vstupu vf transformátoru 13. Tlumivka 10 zabraňuje zkratování mřížkového napětí kondenzátorem 12. Na výstupní vinutí vf transformátoru je paralelně připojen kompenzační kondenzátor 12 pro ohřívací cívku 16. Oscilační obvod tvořený vinutím 13, 14, 16 a kompenzačním kondenzátorem pracují na daném kmitočtu. Odbočkou na vinutí 13 a zavedením na mřížku triody je provedena zpětná vazba generátoru. [6]

4 Měření na fyzikálním laboratorním modelu

Cílem měření je dále určit působení stínění v závislosti na volbě kmitočtu, kdy porovnávám stínění vysokofrekvenčního a nízkofrekvenčního pole měřených na laboratorním modelu indukční kelímkové pece. V mém konkrétním případě jsem měření prováděl pro tři hodnoty kmitočtu, tj. pro 50 Hz, 4 100 Hz a 10 000 Hz, měřené pro dvě proudové úrovně 15 A a 31 A.

Měření jsem prováděl v laboratoři EL 113 na laboratorním modelu skládajícího se z induktoru se závity navinutými na válec z izolačního tvrzeného papíru. Základní popis laboratorního modelu uvádím v tabulce Tab. 4. 1 a v přílohách III/IV přikládám fotografie modelu, respektive jeho geometrii.

Tab. 4. 1 Základní popis laborato	rního modeli
Výška induktoru	317 mm
Vnitřní průměr induktoru	220 mm
Vnější průměr induktoru	225 mm
Počet závitů	42

Pro měření vysokofrekvenčního pole jsem použil vysokofrekvenční pulzní zdroj typ FRQET5 o jmenovitém výkonu $P_n = 0,1 - 10$ kW a rozsahu pracovního kmitočtu f = 4 - 25kHz (viz foto Příloha III). Celé zapojení měření vysokofrekvenčního pole se kromě zdroje skládalo z induktoru, osciloskopu EZ DS-1080C včetně proudových kleští, multimetru FINEST 703 a měřicí cívky, se kterou se provádělo měření pole kolem induktoru. V průběhu měření pole při pracovním kmitočtu 10 000 Hz se projevila nevhodnost měřicí cívky dle Obr. 9 pro tuto úroveň kmitočtu a byla zvolena křížová cívka dle Obr. 10 (oba viz Příloha III), jejíchž impedance je pro takto zvolený kmitočet frekvenčně stabilní.

T	ab. 4. 2 Rozměry mě	řicí cívky
	Vnější průměr	20 mm
	Vnitřní průměr	9 mm
	Výška	17 mm
	Počet závitů	21 000

Tab. 4	3 Ro:	změry	křížové	měřicí	cívk	'n
--------	-------	-------	---------	--------	------	----

Vnější průměr	38 mm
Vnitřní průměr	20 mm
Výška	9,5 mm
Počet závitů	310

V případě měření nízkofrekvenčního pole bylo schéma zapojení podle Obr. 4. 1, kdy zdrojem napájení byl 3f rozvod 400/230, který byl laboratorním transformátorem snížen na hodnotu 127 V v jedné fázi. Pro docílení proudu 15 A/31 A na sekundární straně

transformátoru byl použit velký proměnný rezistor, který musel být v průběhu měření intenzivně chlazen jak je patrné z Přílohy III, kde je zobrazena celá laboratorní úloha.

Obr. 4. 1 Schéma zapojení

Postup měření

Po sestavení obvodu jsem postupoval tak, že jsem na induktor nasadil měřicí desku s pravidelně rozmístěnými otvory pro umístění měřicí cívky. V každém bodě desky jsem po správném natočení měřicí cívky odečetl z multimetru FINEST 703, ve kterém byla měřicí cívka zapojena (jak lze vidět na Obr. 9), hodnotu indukovaného napětí v axiálním (a) a radiálním (r) směru. Měřicí cívka pracuje na principu elektromagnetické indukce, kdy napětí naindukované v cívce je úměrné velikosti magnetické intenzity *H* pole vytvořeného kolem induktoru. Tímto způsobem jsem proměřil všechny body měřicí desky a získané hodnoty jsem zanesl do tabulky. Stejným způsobem jsem postupoval při měření ostatních konfigurací, kdy jsem měnil proud, kmitočet nebo když jsem k induktoru upevnil stínící svazky transformátorových plechů (kolem induktoru jsem vždy umístil celkem 10 svazků, geometrie je zobrazena v Příloze IV).

Ze získaných hodnot napětí v axiálním U_a a radiálním U_r směru jsem ze vztahů (4 - 1), (4 - 2) a Pythagorovy věty (4 - 3) určil hodnotu magnetické indukce v daném bodě. Na základě této hodnoty magnetické indukce *B* jsem vypočetl ze známého vztahu (4 - 4) hodnotu magnetické intenzity *H*.

$$B_{r} = k \cdot \frac{U_{r}}{4,44 \cdot f} [T] \qquad (4-1) \qquad B_{a} = k \cdot \frac{U_{a}}{4,44 \cdot f} [T] \qquad (4-2)$$
$$B^{2} = B_{a}^{2} + B_{r}^{2} [T] \qquad (4-3) \qquad H = \frac{B}{\mu_{0} \cdot \mu_{r}} [A/m] \qquad (4-4)$$

Ve vztazích (4 - 1), (4 - 2) je uvedena konstanta měřící cívky k, která se určí ze znalosti rozměrů a počtu závitů cívky.

- poznámka: Obě měřící cívky byly ocejchovány na katedře KET.

$$k = \frac{1}{N \cdot A} [m^{-2}], \quad \text{kde}$$
 (4-5)

N počet závitů cívky

A střední účinná plocha závitu [m2]

$$A = \frac{\pi}{12} \cdot \frac{d_2^3 - d_1^3}{d_2 - d_1} \tag{4-6}^3$$

 d_2 vnější průměr měřící cívky

 d_1 vnitřní průměr měřící cívky

V následujících kapitolách uvádím naměřené a vypočtené hodnoty pro kmitočty 50 Hz, 4 100 Hz, 10 000 Hz a pro úrovně proudu 15 A a 31 A.

-poznámka k tabulkám: červeně označené hodnoty představují maximální hodnotu dané konfigurace tučně označené hodnoty jsou hodnoty použité u vzorového výpočtu nebo výsledné hodnoty vzorového výpočtu pro danou konfiguraci

³ Dle literatury [13]

4.1 Měření na laboratorním modelu při kmitočtu 50 Hz

4.1.1 Velikost proudu 15 A

Pomocí proměnného rezistoru jsem nastavil proud 15 A napájecího laboratorní induktor.

Induktor bez stínění - naměřené a vypočítané hodnoty

[V]	Α	В	С	D	Е	F	G	Н	I	J	К	L	М	Ν	
1	0,004	0,008	0,008	0,011	0,015	0,02	0,023	0,026	0,027	0,03	0,033	0,033	0,032	0,032	а
	0,006	0,008	0,009	0,011	0,012	0,013	0,014	0,012	0,013	0,012	0,012	0,011	0,008	0,008	r
2	0,006	0,007	0,009	0,012	0,015	0,018	0,021	0,027	0,032	0,035	0,042	0,041	0,039	0,038	а
	0,008	0,01	0,012	0,013	0,015	0,016	0,017	0,017	0,015	0,012	0,014	0,012	0,009	0,01	r
3	0,006	0,007	0,01	0,013	0,017	0,021	0,03	0,036	0,041	0,047	0,052	0,054	0,053	0,047	а
	0,01	0,012	0,015	0,017	0,019	0,021	0,021	0,021	0,02	0,015	0,014	0,011	0,009	0,014	r
4	0,005	0,007	0,01	0,015	0,02	0,025	0,034	0,044	0,054	0,063	0,068	0,072	0,069	0,064	а
	0,012	0,015	0,017	0,021	0,024	0,027	0,026	0,026	0,025	0,018	0,015	0,01	0,01	0,014	r
5	0,005	0,007	0,01	0,015	0,022	0,03	0,043	0,054	0,069	0,064	0,091	0,096	0,093	0,085	а
	0,015	0,019	0,022	0,027	0,031	0,036	0,037	0,037	0,034	0,027	0,014	0,01	0,01	0,022	r
6	0,004	0,006	0,009	0,015	0,023	0,033	0,049	0,071	0,089	0,11	0,126	0,132	0,127	0,114	а
	0,018	0,021	0,027	0,035	0,042	0,046	0,051	0,054	0,05	0,041	0,025	0,012	0,018	0,031	r
7	0,003	0,006	0,009	0,013	0,023	0,037	0,057	0,092	0,123	0,158	0,185	0,193	0,187	0,165	а
	0,019	0,025	0,033	0,042	0,053	0,064	0,072	0,08	0,079	0,062	0,031	0,011	0,026	0,051	r
8	0,003	0,005	0,006	0,009	0,018	0,038	0,07	0,107	0,171	0,226	0,272	0,291	0,277	0,233	а
	0,021	0,029	0,039	0,052	0,066	0,086	0,104	0,124	0,129	0,104	0,061	0,011	0,044	0,088	r
9	0,005	0,005	0,005	0,006	0,014	0,035	0,06	0,129	0,222	0,334	0,427	0,459	0,426	0,346	а
	0,022	0,032	0,043	0,06	0,081	0,111	0,147	0,187	0,202	0,195	0,105	0,011	0,098	0,165	r
10	0,008	0,008	0,011	0,009	0,008	0,018	0,047	0,132		0,517	0,695	0,734	0,702	0,528	а
	0,022	0,032	0,045	0,065	0,092	0,134	0,193	0,289		0,342	0,27	0,012	0,15	0,314	r
11	0,012	0,014	0,017	0,022	0,021	0,017	0,015	0,061		0,925	1,174	1,223	1,183	0,987	а
	0,021	0,032	0,046	0,066	0,099	0,151	0,241	0,405		0,728	0,355	0,061	0,245	0,53	r
12	0,017	0,021	0,029	0,036	0,044	0,06	0,082	0,129							а
	0,017	0,028	0,041	0,058	0,091	0,149	0,243	0,424							r
13	0,022	0,028	0,04	0,053	0,072	0,102	0,16	0,264							а
	0,015	0,02	0,032	0,046	0,071	0,121	0,181	0,304							r
14	0,026	0,034	0,047	0,064	0,09	0,136	0,194	0,295							а
	0,01	0,013	0,019	0,033	0,048	0,072	0,125	0,154							r

Tab. 4. 4 Naměřené hodnoty naindukovaného napětí kolem induktoru

Na základě těchto hodnot napětí a použití výše uvedených vztahů (4 - 1) až (4 - 5) získám rozložení magnetické intenzity kolem laboratorního induktoru. Vypočtené hodnoty uvádím v tabulce Tab. 4. 5

Konstanta měřící cívky
$$k = \frac{1}{N \cdot A} = \frac{1}{21000 \cdot 1,730 \cdot 10^{-4}} = 0,275 \text{ m}^{-2}$$

 $\pi \cdot d^3 = d^3 - \pi \cdot 0.02^3 = 0.000^3$

$$A = \frac{\pi}{12} \cdot \frac{d_2^3 - d_1^3}{d_2 - d_1} = \frac{\pi}{12} \cdot \frac{0.02^3 - 0.009^3}{0.02 - 0.009} = 1,730 \cdot 10^{-4} \text{ m}^2$$

Příklad výpočtu *H* pro bod L8:

$$B_r = k \cdot \frac{U_r}{4,44 \cdot f} = 0,275 \cdot \frac{0,011}{4,44 \cdot 50} = 1,363 \cdot 10^{-5} \text{ T} \qquad B_a = k \cdot \frac{U_a}{4,44 \cdot f} = 0,275 \cdot \frac{0,291}{4,44 \cdot 50} = 3,605 \cdot 10^{-4} \text{ T}$$

$$B = \sqrt{(1,363 \cdot 10^{-5})^2 + (3,605 \cdot 10^{-4})^2} = 3,609 \cdot 10^{-4} \text{ T}$$
$$H = \frac{B}{\mu_0 \cdot \mu_r} = \frac{3,609 \cdot 10^{-4}}{1,257 \cdot 10^{-6} \cdot 1} = 287,244 \text{ A/m}$$

1 ab. 1. 5 magneticka intenzita magnetickeno pote maukion	Tab.	4.5	M	agnetická	intenzita	magnetického	pole	induktoru
---	------	-----	---	-----------	-----------	--------------	------	-----------

H [A/m]	Α	В	С	D	Е	F	G	н	I	J	к	L	М	Ν
1	7,113	11,160	11,878	15,345	18,948	23,529	26,559	28,246	29,559	31,871	34,636	34,312	32,536	32,536
2	9,864	12,040	14,796	17,451	20,924	23,755	26,651	31,472	34,860	36,496	43,669	42,139	39,480	38,759
3	11,503	13,703	17,782	21,110	25,148	29,294	36,121	41,110	44,997	48,664	53,119	54,359	53,027	48,373
4	12,823	16,328	19,455	25,456	30,816	36,296	42,219	50,412	58,696	64,629	68,687	71,702	68,772	64,622
5	15,596	19,973	23,837	30,466	37,496	46,224	55,955	64,569	75,875	68,517	90,817	95,206	92,263	86,606
6	18,188	21,543	28,073	37,561	47,233	55,842	69,762	87,988	100,694	115,795	126,708	130,740	126,523	116,532
7	18,974	25,360	33,740	43,367	56,989	72,919	90,581	120,258	144,195	167,419	185,026	190,682	186,229	170,351
8	20,924	29,027	38,922	52,055	67,479	92,741	123,657	161,554	211,285	245,395	274,962	287,244	276,655	245,674
9	22,254	31,947	42,700	59,478	81,082	114,803	156,612	224,086	296,061	381,492	433,735	452,882	431,177	378,111
10	23,091	32,536	45,694	64,727	91,090	133,363	195,936	313,394	0,000	611,444	735,455	724,106	708,075	605,951
11	23,858	34,453	48,373	68,623	99,825	149,886	238,180	403,993	0,000	1161,096	1209,804	1207,852	1191,659	1105,049
12	23,714	34,524	49,536	67,335	99,703	158,440	252,972	437,157	0,000	0,000	0,000	0,000	0,000	0,000
13	26,265	33,941	50,528	69,223	99,742	156,102	238,292	397,151	0,000	0,000	0,000	0,000	0,000	0,000
14	27,478	35,905	50,005	71,027	100,612	151,788	227,642	328,248	0,000	0,000	0,000	0,000	0,000	0,000

Induktor bez stínění - grafické znázornění rozložení H kolem induktoru

Obr. 4. 2 Rozložení intenzity magnetického pole

а

r

а

r

а

r

а

r

а

r

а

r

а

r

а

r

а

r

а r а r а r а r а r

Obr. 4. 3 Rozložení intenzity magnetického pole

Induktor se svazky transformátorových plechů - naměřené a vypočítané hodnoty

ab. 4.	. 4. 6 Naměřené hodnoty naindukovaného napětí kolem induktoru													
[V]	Α	В	С	D	Ε	F	G	н	I	J	К	L	Μ	Ν
1	0,001	0,002	0,002	0,002	0,003	0,003	0,005	0,006	0,007	0,01	0,013	0,013	0,012	0,007
	0,001	0,002	0,003	0,003	0,003	0,003	0,005	0,004	0,006	0,006	0,006	0,007	0,007	0,006
2	0,001	0,002	0,003	0,003	0,003	0,004	0,006	0,005	0,006	0,007	0,007	0,007	0,008	0,008
	0,001	0,003	0,003	0,003	0,004	0,004	0,006	0,004	0,006	0,006	0,006	0,006	0,007	0,007
3	0,001	0,002	0,003	0,003	0,004	0,005	0,006	0,006	0,007	0,009	0,01	0,01	0,011	0,009
	0,002	0,003	0,003	0,003	0,004	0,005	0,007	0,006	0,007	0,008	0,008	0,009	0,009	0,009
4	0,002	0,003	0,003	0,004	0,004	0,006	0,007	0,008	0,009	0,012	0,015	0,015	0,015	0,013
	0,002	0,003	0,003	0,004	0,005	0,006	0,008	0,007	0,006	0,01	0,009	0,011	0,009	0,013
5	0,002	0,003	0,003	0,004	0,005	0,006	0,008	0,01	0,014	0,018	0,022	0,024	0,022	0,02
	0,002	0,003	0,004	0,005	0,006	0,007	0,01	0,008	0,009	0,015	0,011	0,013	0,014	0,017
6	0,002	0,002	0,003	0,004	0,005	0,006	0,009	0,011	0,021	0,029	0,038	0,042	0,037	0,028
	0,002	0,003	0,004	0,005	0,006	0,009	0,012	0,011	0,015	0,021	0,017	0,01	0,021	0,024
7	0,002	0,002	0,003	0,004	0,005	0,006	0,011	0,014	0,029	0,051	0,068	0,076	0,066	0,047
	0,002	0,003	0,004	0,005	0,007	0,011	0,015	0,018	0,024	0,033	0,023	0,014	0,032	0,04
8	0,002	0,002	0,003	0,003	0,005	0,006	0,012	0,014	0,038	0,084	0,122	0,138	0,118	0,077
	0,002	0,002	0,003	0,005	0,007	0,013	0,022	0,03	0,049	0,06	0,041	0,014	0,051	0,076
9	0,002	0,002	0,003	0,003	0,005	0,008	0,009	0,012	0,043	0,141	0,239	0,276	0,232	0,132
	0,002	0,003	0,003	0,004	0,006	0,014	0,025	0,056	0,112	0,136	0,086	0,02	0,114	0,162
10	0,002	0,002	0,002	0,003	0,004	0,007	0,014	0,039		0,285	0,497	0,548	0,486	0,255
	0,002	0,002	0,003	0,004	0,005	0,009	0,021	0,051		0,344	0,224	0,018	0,232	0,332
11	0,001	0,002	0,002	0,003	0,003	0,007	0,013			0,686	1,042	1,109	1,048	0,73
	0,001	0,002	0,002	0,003	0,004	0,006	0,009			0,803	0,304	0,034	0,39	0,784
12	0,001	0,001	0,002	0,003	0,003	0,005	0,007							
	0,001	0,001	0,002	0,003	0,003	0,004	0,005							
13	0,001	0,001	0,002	0,002	0,003	0,003	0,004							
	0,001	0,001	0,001	0,002	0,003	0,003	0,003							
14	0,001	0,001	0,001	0,002	0,002	0,003	0,003							
	0,001	0,001	0,001	0,001	0,002	0,002	0,003							

Tab.	4.	6	Nam	ěřene	é h	odnotv	nain	duke	ovaného	nanět	í ko	olem	ind	uktoru
100.	••	0	1 100110			ounory	1000010	contraction	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	naper	1100	veniv	11100	united i ti

Na základě těchto hodnot napětí a použití výše uvedených vztahů (4 - 1) až (4 - 5) získám rozložení magnetické intenzity kolem laboratorního induktoru. Vypočtené hodnoty uvádím v tabulce Tab. 4. 7

$$B_r = k \cdot \frac{U_r}{4,44 \cdot f} = 0,275 \cdot \frac{0,014}{4,44 \cdot 50} = 1,734 \cdot 10^{-5} \text{ T} \qquad B_a = k \cdot \frac{U_a}{4,44 \cdot f} = 0,275 \cdot \frac{0,138}{4,44 \cdot 50} = 1,709 \cdot 10^{-4} \text{ T}$$

$$B = \sqrt{(1,734 \cdot 10^{-5})^2 + (1,709 \cdot 10^{-4})^2} = 1,719 \cdot 10^{-4} \text{ T}$$
$$H = \frac{B}{\mu_0 \cdot \mu_r} = \frac{1,719 \cdot 10^{-4}}{1,257 \cdot 10^{-6} \cdot 1} = 136,820 \text{ A/m}$$

Tab. 4. 7 Magnetická intenzita magnetického pole induktoru

H [A/m]	Α	В	С	D	E	F	G	н	I	J	к	L	М	Ν
1	1,395	2,790	3,556	3,556	4,185	4,185	6,975	7,113	9,094	11,503	14,123	14,564	13,703	9,094
2	1,395	3,556	4,185	4,185	4,932	5,580	8,370	6,316	8,370	9,094	9,094	9,094	10,485	10,485
3	2,206	3,556	4,185	4,185	5,580	6,975	9,094	8,370	9,765	11,878	12,632	13,270	14,019	12,555
4	2,790	4,185	4,185	5,580	6,316	8,370	10,485	10,485	10,669	15,408	17,255	18,348	17,255	18,135
5	2,790	4,185	4,932	6,316	7,704	9,094	12,632	12,632	16,417	23,112	24,262	26,923	25,722	25,892
6	2,790	3,556	4,932	6,316	7,704	10,669	14,796	15,345	25,456	35,318	41,063	42,586	41,965	36,376
7	2,790	3,556	4,932	6,316	8,485	12,359	18,348	22,493	37,131	59,919	70,807	76,227	72,350	60,877
8	2,790	2,790	4,185	5,752	8,485	14,123	24,719	32,655	61,164	101,823	126,953	136,820	126,800	106,717
9	2,790	3,556	4,185	4,932	7,704	15,905	26,209	56,492	118,338	193,234	250,544	272,957	254,977	206,124
10	2,790	2,790	3,556	4,932	6,316	11,247	24,895	63,329	0,000	440,642	537,726	540,832	531,205	412,929
11	1,395	2,790	2,790	4,185	4,932	9,094	15,596	0,000	0,000	1041,751	1070,665	1094,418	1102,994	1056,659
12	1,395	1,395	2,790	4,185	4,185	6,316	8,485	0,000	0,000	0,000	0,000	0,000	0,000	0,000
13	1,395	1,395	2,206	2,790	4,185	4,185	4,932	0,000	0,000	0,000	0,000	0,000	0,000	0,000
14	1,395	1,395	1,395	2,206	2,790	3,556	4,185	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Induktor se svazky transformátorových plechů - grafické rozložení *H* kolem induktoru

Obr. 4. 4 Grafické rozložení magnetického pole

Obr. 4. 5 Grafické rozložení magnetického pole

V obrázcích Obr. 4.2 až 4.5 vidíme názorně vliv stínění na velikost intenzity magnetického pole vně induktoru. Stínění se nachází na úrovni sloupce H a vidíme, že pole nalevo od tohoto sloupce je odstíněné. Maximální hodnota *H* u nestíněného induktoru činí 1209,804 A/m, u stíněného 1102,994 A/m. Obě tyto hodnoty byly naměřeny v ose induktoru (přesněji v bodech K11/M11). Vně induktoru v bodě D11 byly naměřeny tyto hodnoty *H*:

 nestíněný induktor: 	68,623 A/m
 stíněný induktor: 	4,185 A/m

4.1.2 Velikost proudu 31 A

Pomocí proměnného rezistoru jsem nastavil napájecí proud 31 A modelu indukční kelímkové pece (laboratorní induktor)

Induktor bez stínění - naměřené a vypočítané hodnoty

[V]	Α	В	C	D	E	F	G	Н	I	J	К	L	М	Ν	
1	0,011	0,013	0,018	0,023	0,029	0,036	0,042	0,048	0,052	0,058	0,061	0,062	0,062	0,058	а
	0,015	0,018	0,02	0,022	0,023	0,023	0,023	0,018	0,018	0,013	0,009	0,008	0,008	0,012	r
2	0,011	0,015	0,019	0,024	0,032	0,04	0,047	0,058	0,066	0,072	0,077	0,079	0,079	0,073	а
	0,02	0,022	0,024	0,027	0,029	0,031	0,03	0,026	0,02	0,015	0,011	0,01	0,009	0,016	r
3	0,012	0,015	0,021	0,028	0,035	0,048	0,058	0,071	0,082	0,092	0,099	0,102	0,1	0,094	а
	0,022	0,027	0,032	0,035	0,037	0,04	0,041	0,035	0,03	0,018	0,012	0,011	0,008	0,024	r
4	0,008	0,014	0,021	0,03	0,042	0,055	0,071	0,09	0,105	0,121	0,13	0,134	0,13	0,12	а
	0,027	0,034	0,039	0,043	0,048	0,053	0,054	0,051	0,042	0,032	0,016	0,011	0,014	0,031	r
5	0,009	0,013	0,02	0,03	0,045	0,062	0,086	0,111	0,134	0,158	0,173	0,179	0,175	0,159	а
	0,032	0,04	0,047	0,055	0,062	0,069	0,075	0,078	0,06	0,042	0,02	0,015	0,022	0,053	r
6	0,006	0,012	0,018	0,031	0,045	0,07	0,101	0,139	0,18	0,212	0,238	0,248	0,238	0,208	а
	0,037	0,047	0,057	0,069	0,081	0,094	0,103	0,1	0,093	0,063	0,038	0,012	0,023	0,084	r
7	0,006	0,007	0,014	0,024	0,046	0,079	0,119	0,172	0,237	0,3	0,347	0,359	0,347	0,302	а
	0,041	0,053	0,068	0,084	0,104	0,124	0,142	0,159	0,146	0,107	0,06	0,014	0,058	0,122	r
8	0,005	0,004	0,006	0,018	0,04	0,082	0,129	0,213	0,32	0,428	0,507	0,538	0,517	0,429	а
	0,045	0,06	0,078	0,101	0,129	0,161	0,194	0,224	0,227	0,191	0,117	0,012	0,106	0,199	r
9	0,009	0,006	0,004	0,008	0,025	0,061	0,129	0,161	0,415	0,636	0,791	0,849	0,802	0,642	а
	0,048	0,065	0,087	0,116	0,157	0,212	0,276	0,347	0,393	0,347	0,164	0,037	0,229	0,366	r
10	0,017	0,015	0,015	0,012	0,005	0,029	0,1	0,261		0,987	1,256	1,36	1,276	0,962	а
	0,047	0,066	0,09	0,126	0,179	0,254	0,367	0,538		0,611	0,448	0,025	0,35	0,677	r
11	0,026	0,031	0,033	0,036	0,033	0,018	0,012	0,123		1,711	2,122	2,225	2,135	1,772	а
	0,044	0,064	0,09	0,13	0,187	0,285	0,452	0,76		1,227	0,589	0,021	0,605	1,033	r
12	0,035	0,044	0,054	0,072	0,085	0,098	0,139	0,243							а
	0,037	0,056	0,081	0,118	0,18	0,281	0,457	0,823							r
13	0,045	0,058	0,075	0,095	0,134	0,183	0,274	0,495							а
	0,03	0,043	0,064	0,095	0,145	0,22	0,343	0,563							r
14	0,052	0,067	0,092	0,122	0,175	0,245	0,362	0,565							а
	0,017	0,028	0,044	0,063	0,09	0,14	0,216	0,302							r

Tab. 4. 8 Naměřené hodnoty naindukovaného napětí kolem induktoru

Na základě těchto hodnot napětí a použití výše uvedených vztahů (4 - 1) až (4 - 5) získám rozložení magnetické intenzity kolem laboratorního induktoru. Vypočtené hodnoty uvádím v tabulce Tab. 4. 9

Konstanta měřící cívky je stejná jako v případě napájecího proudu 15 A.

$$k = \frac{1}{N \cdot A} = \frac{1}{21000 \cdot 1,730 \cdot 10^{-4}} = 0,275 \text{ m}^{-2}$$

$$B_r = k \cdot \frac{U_r}{4,44 \cdot f} = 0,275 \cdot \frac{0,012}{4,44 \cdot 50} = 1,487 \cdot 10^{-5} \text{ T} \qquad B_a = k \cdot \frac{U_a}{4,44 \cdot f} = 0,275 \cdot \frac{0,538}{4,44 \cdot 50} = 6,669 \cdot 10^{-4} \text{ T}$$

$$B = \sqrt{(1,487 \cdot 10^{-5})^2 + (6,669 \cdot 10^{-4})^2} = 6,670 \cdot 10^{-4} \text{ T}$$
$$H = \frac{B}{\mu_0 \cdot \mu_r} = \frac{6,670 \cdot 10^{-4}}{1,257 \cdot 10^{-6} \cdot 1} = 530,809 \text{ A/m}$$

|--|

H [A/m]	А	В	С	D	E	F	G	н	I	J	К	L	м	N
1	18,348	21,901	26,541	31,394	36,510	42,139	47,233	50,566	54,278	58,630	60,821	61,663	61,663	58,422
2	22,515	26,265	30,194	35,633	42,598	49,917	54,999	62,696	68,025	72,545	76,723	78,546	78,429	73,716
3	24,719	30,466	37,754	44,212	50,238	61,631	70,061	78,081	86,127	92,468	98,367	101,195	98,954	95,695
4	27,777	36,269	43,692	51,717	62,913	75,341	87,988	102,038	111,549	123,456	129,198	132,621	128,972	122,252
5	32,789	41,487	50,383	61,797	75,567	91,500	112,556	133,818	144,821	161,262	171,782	177,182	173,977	165,319
6	36,973	47,847	58,961	74,614	91,399	115,605	142,293	168,903	199,848	218,152	237,734	244,910	235,854	221,268
7	40,873	52,733	68,481	86,172	112,171	145,026	182,748	231,044	274,572	314,175	347,356	354,382	347,025	321,278
8	44,661	59,315	77,166	101,195	133,221	178,220	229,803	304,896	386,997	462,305	513,242	530,809	520,571	466,471
9	48,172	64,388	85,906	114,693	156,814	217,599	300,512	377,324	563,774	714,641	796,826	838,238	822,700	728,940
10	49,300	66,762	89,999	124,847	176,632	252,170	375,202	589,828	0,000	1145,013	1315,355	1341,714	1305,121	1160,326
11	50,412	70,145	94,554	133,056	187,305	281,681	446,004	759,409	0,000	2076,821	2172,251	2194,811	2188,859	2023,195
12	50,238	70,249	96,025	136,350	196,351	293,548	471,169	846,444	0,000	0,000	0,000	0,000	0,000	0,000
13	53,347	71,218	97,253	132,522	194,749	282,267	433,029	739,458	0,000	0,000	0,000	0,000	0,000	0,000
14	53,964	71,627	100,592	135,437	194,108	278,338	415,807	631,927	0,000	0,000	0,000	0,000	0,000	0,000

Induktor bez stínění - grafické znázornění rozložení H kolem induktoru

Obr. 4. 6 Grafické rozložení intenzity magnetického pole

Obr. 4. 7 Grafické rozložení intenzity magnetického pole

Induktor se svazky transformátorových plechů - naměřené a vypočítané hodnoty

[V]	Α	В	С	D	Е	F	G	н	I	J	К	L	Μ	N	
1	0,005	0,002	0,002	0,003	0,003	0,004	0,004	0,006	0,01	0,011	0,012	0,012	0,012	0,012	а
	0,002	0,001	0,001	0,002	0,003	0,003	0,003	0,005	0,005	0,005	0,003	0,005	0,004	0,004	r
2	0,001	0,001	0,001	0,002	0,003	0,003	0,005	0,006	0,01	0,012	0,012	0,014	0,014	0,013	а
	0,001	0,001	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,005	0,006	0,005	0,004	0,005	r
3	0,001	0,001	0,001	0,002	0,003	0,005	0,007	0,01	0,014	0,018	0,021	0,021	0,02	0,018	а
	0,001	0,001	0,001	0,003	0,004	0,006	0,007	0,009	0,009	0,008	0,007	0,006	0,005	0,008	r
4	0,001	0	0,001	0,002	0,004	0,006	0,008	0,014	0,021	0,026	0,032	0,033	0,031	0,027	а
	0,001	0,001	0,002	0,003	0,006	0,008	0,01	0,013	0,014	0,009	0,007	0,006	0,006	0,01	r
5	0,001	0,001	0,002	0,002	0,003	0,006	0,011	0,017	0,028	0,038	0,047	0,051	0,048	0,039	а
	0,001	0,001	0,002	0,003	0,007	0,009	0,015	0,019	0,021	0,015	0,011	0,009	0,008	0,017	r
6	0,001	0,001	0,002	0,003	0,004	0,006	0,012	0,023	0,039	0,059	0,078	0,081	0,076	0,059	а
	0,002	0,002	0,003	0,004	0,01	0,014	0,021	0,03	0,036	0,03	0,024	0,009	0,012	0,03	r
7	0,003	0,002	0,003	0,003	0,003	0,005	0,012	0,025	0,057	0,096	0,136	0,145	0,131	0,098	а
	0,001	0,002	0,003	0,005	0,012	0,022	0,032	0,048	0,062	0,058	0,036	0,009	0,03	0,062	r
8	0,002	0,002	0,003	0,004	0,004	0,005	0,009	0,021	0,069	0,156	0,242	0,27	0,239	0,154	а
	0,001	0,002	0,003	0,006	0,013	0,024	0,042	0,077	0,114	0,123	0,088	0,01	0,081	0,133	r
9	0,002	0,003	0,004	0,006	0,007	0,011	0,015	0,012	0,061	0,266	0,459	0,54	0,465	0,275	а
	0,002	0,003	0,004	0,005	0,011	0,023	0,045	0,105	0,217	0,283	0,191	0,012	0,167	0,283	r
10	0,002	0,003	0,004	0,006	0,01	0,016	0,037	0,114		0,513	0,986	1,094	0,973	0,493	а
	0,002	0,002	0,003	0,005	0,009	0,014	0,025	0,07		0,731	0,516	0,018	0,396	0,683	r
11	0,002	0,003	0,005	0,006	0,01	0,016	0,031			1,354	2,084	2,211	2,089	1,554	а
	0,001	0,003	0,003	0,004	0,007	0,006	0,009			1,685	0,691	0,011	0,632	1,546	r
12	0,003	0,003	0,004	0,006	0,009	0,011	0,014								а
	0,002	0,002	0,003	0,004	0,005	0,004	0,009								r
13	0,003	0,003	0,004	0,004	0,007	0,007	0,01								а
	0,002	0,003	0,003	0,003	0,004	0,005	0,008								r
14	0,003	0,003	0,004	0,005	0,006	0,006	0,008								а
	0,002	0,003	0,004	0,004	0,005	0,005	0,007								r

Tab. 4. 10 Naměřené hodnoty naindukovaného napětí kolem induktoru

Vypočtené hodnoty intenzity magnetického pole kolem induktoru uvádím v tabulce Tab. 4. 11

$$B_r = k \cdot \frac{U_r}{4,44 \cdot f} = 0,275 \cdot \frac{0,01}{4,44 \cdot 50} = 1,239 \cdot 10^{-5} \text{ T} \qquad B_a = k \cdot \frac{U_a}{4,44 \cdot f} = 0,275 \cdot \frac{0,27}{4,44 \cdot 50} = 3,347 \cdot 10^{-4} \text{ T}$$

$$B = \sqrt{(1,239 \cdot 10^{-5})^2 + (3,347 \cdot 10^{-4})^2} = 3,349 \cdot 10^{-4} \text{ T}$$
$$H = \frac{B}{\mu_0 \cdot \mu_r} = \frac{3,349 \cdot 10^{-4}}{1,257 \cdot 10^{-6} \cdot 1} = 266,507 \text{ A/m}$$

Tab. 4. 11 Magnetická intenzita magnetického pole induktoru

H [A/m]	А	В	С	D	E	F	G	н	I	J	к	L	М	Ν
1	5,312	2,206	2,206	3,556	4,185	4,932	4,932	7,704	11,028	11,919	12,201	12,823	12,477	12,477
2	1,395	1,395	1,395	2,790	4,185	4,932	6,975	8,370	12,040	12,823	13,234	14,664	14,362	13,739
3	1,395	1,395	1,395	3,556	4,932	7,704	9,765	13,270	16,417	19,430	21,835	21,543	20,335	19,430
4	1,395	0,986	2,206	3,556	7,113	9,864	12,632	18,845	24,895	27,139	32,311	33,084	31,146	28,400
5	1,395	1,395	2,790	3,556	7,512	10,669	18,348	25,148	34,524	40,297	47,613	51,083	48,000	41,965
6	2,206	2,206	3,556	4,932	10,624	15,024	23,858	37,288	52,353	65,288	80,498	80,389	75,894	65,288
7	3,119	2,790	4,185	5,752	12,201	22,254	33,711	53,384	83,074	110,634	138,769	143,302	132,562	114,387
8	2,206	2,790	4,185	7,113	13,416	24,182	42,369	78,726	131,442	195,954	253,998	266,507	248,918	200,712
9	2,790	4,185	5,580	7,704	12,861	25,148	46,788	104,245	222,342	383,101	490,387	532,781	487,354	389,235
10	2,790	3,556	4,932	7,704	13,270	20,971	44,046	131,955	0,000	880,889	1097,709	1079,255	1036,198	830,875
11	2,206	4,185	5,752	7,113	12,040	16,855	31,841	0,000	0,000	2132,182	2165,686	2180,931	2152,801	2162,200
12	3,556	3,556	4,932	7,113	10,155	11,545	16,417	0,000	0,000	0,000	0,000	0,000	0,000	0,000
13	3,556	4,185	4,932	4,932	7,953	8,485	12,632	0,000	0,000	0,000	0,000	0,000	0,000	0,000
14	3,556	4,185	5,580	6,316	7,704	7,704	10,485	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Induktor se svazky transformátorových plechů - grafické rozložení *H* kolem induktoru

Obr. 4. 8 Grafické rozložení intenzity magnetického pole

Obr. 4. 9 Grafické rozložení intenzity magnetického pole

V obrázcích Obr. 4.6 až 4.9 vidíme názorně vliv stínění na velikost intenzity magnetického pole vně induktoru. Stínění se nachází na úrovni sloupce H a vidíme, že pole nalevo od tohoto sloupce je odstíněné. Maximální hodnota *H* u nestíněného induktoru činí 2194,811 A/m, u stíněného 2180,931 A/m. Obě tyto hodnoty byly naměřeny v ose induktoru (přesněji v bodech L11/L11). Vně induktoru v bodě D11 byly naměřeny tyto hodnoty *H*:

 nestíněný induktor: 	133,056 A/m
 stíněný induktor: 	7,113 A/m

4.2 Měření na laboratorním modelu při kmitočtu 4 100 Hz

4.2.1 Velikost proudu 15 A

Na napájecím zdroji jsem nastavil velikost proudu na hodnotu 15 A.

Induktor bez stínění - naměřené a vypočítané hodnoty

						A									
[V]	Α	В	С	D	E	F	G	Н	I	J	К	L	Μ	Ν	
1	1,830	2,115	2,809	3,431	4,11	4,91	5,57	6,63	7,10	7,82	8,12	8,21	8,09	7,81	а
	2,681	2,948	3,338	3,557	3,652	3,476	3,486	2,995	2,488	1,964	1,119	0,253	0,629	1,557	r
2	1,901	2,241	2,952	3,656	4,52	5,53	6,55	7,73	8,76	9,49	10,14	10,38	10,20	9,66	а
	3,163	3,671	4,02	4,04	4,40	4,71	4,28	4,09	3,171	2,553	1,552	0,769	0,728	2,113	r
3	1,485	2,257	3,002	3,96	5,05	6,38	7,81	9,27	10,88	12,04	12,91	13,19	12,84	12,15	а
	3,710	4,19	4,68	5,19	5,23	5,62	5,81	5,67	5,24	3,574	2,405	1,007	0,771	3,058	r
4	1,300	2,103	2,953	4,18	5,60	7,43	9,09	11,63	13,55	15,31	16,59	17,17	16,8	15,69	а
	4,330	5	5,62	6,41	6,83	7,46	7,28	7,32	6,47	4,81	3,529	0,275	1,748	4,34	r
5	1,022	1,865	2,872	3,976	5,75	8,36	11,22	14,02	17,04	19,63	21,78	22,73	22,19	20,64	a
	4,94	5,77	6,68	7,59	8,71	9,35	10,34	10,44	9,05	6,42	2,941	0,695	1,781	5,78	r
6	0,575	1,367	2,455	3,94	6,42	9,22	12,83	17,54	22,31	26,22	30,73	31,29	29,99	27,12	а
	5,5	6,66	7,88	9,52	11,17	12,46	13,49	13,63	13,47	9,58	4,83	1,90	4,75	8,46	r
7	0,210	0,781	2	3,499	5,98	9,81	14,90	22,26	29,36	37,06	42,7	44,1	41,8	38,12	а
	6,01	7,52	9,20	11,43	14,06	17,02	19,56	20,76	20,86	16,53	9,88	1,90	6,29	13,33	r
8	0,186	0,162	0,968	1,674	5,29	9,66	16,16	27,55	38,7	52,0	62,9	66,8	62,9	53,1	а
	6,47	8,18	10,39	13,53	16,79	21,39	26,31	31,09	31,06	29,33	13,51	3,99	12,5	24,91	r
9	1,760	1,456	0,753	0,724	3,498	7,68	15,45	31,94	51,2	75,9	97,8	105,0	98,4	77,5	а
	6,61	8,80	11,5	15,18	20,15	26,76	36,24	44,2	48,4	46,2	31,35	1,663	18,66	40,0	r
10	2,386	3,005	2,708	2,171	1,059	2,292	9,64	29,98		118,6	156,5	169,1	159,9	123,0	а
	6,58	8,89	11,79	16,22	22,65	32,12	45,0	67,1		89,2	60,5	15,35	39,5	73,4	r
11	3,747	4,50	5,01	6,05	6,04	4,23	0,664	14,89		223,8	266,3	278,6	279,9	229,7	a
	6,28	8,39	11,62	15,99	23,41	34,89	54,1	92,3		156,9	86,4	46,0	25,09	122,7	r
12	4,98	6,16	8,04	9,77	11,66	14,84	22,27	36,09							а
	5,22	7,35	9,83	14,35	21,79	33,62	53,5	93,3							r
13	6,24	7,86	10,05	12,64	16,71	25,16	35,96	62,8							а
	4,12	4,99	8,12	11,15	16,40	26,36	39,5	58,6							r
14	7,21	9,22	12,39	16,14	21,27	31,74	44,4	66,5							а
	2,101	3,342	5,21	7,26	10,14	17,93	23,40	36,32							r

Tab. 4. 12 Naměřené hodnoty naindukovaného napětí kolem induktoru

Na základě těchto hodnot napětí a použití výše uvedených vztahů (4 - 1) až (4 - 5) získám rozložení magnetické intenzity kolem laboratorního induktoru. Vypočtené hodnoty uvádím v tabulce Tab. 4. 13

Konstanta měřící cívky
$$k = \frac{1}{N \cdot A} = \frac{1}{21000 \cdot 1,730 \cdot 10^{-4}} = 0,275 \text{ m}^{-2}$$

$$A = \frac{\pi}{12} \cdot \frac{d_2^3 - d_1^3}{d_2 - d_1} = \frac{\pi}{12} \cdot \frac{0,02^3 - 0,009^3}{0,02 - 0,009} = 1,730 \cdot 10^{-4} \text{ m}^2$$

$$B_r = k \cdot \frac{U_r}{4,44 \cdot f} = 0,275 \cdot \frac{3,99}{4,44 \cdot 4100} = 6,031 \cdot 10^{-5} \text{ T} \qquad B_a = k \cdot \frac{U_a}{4,44 \cdot f} = 0,275 \cdot \frac{66,8}{4,44 \cdot 4100} = 1,009 \cdot 10^{-3} \text{ T}$$

$$B = \sqrt{(6,031 \cdot 10^{-5})^2 + (1,009 \cdot 10^{-3})^2} = 1,012 \cdot 10^{-3} \text{ T}$$
$$H = \frac{B}{\mu_0 \cdot \mu_r} = \frac{1,012 \cdot 10^{-3}}{1,257 \cdot 10^{-6} \cdot 1} = 804,977 \text{ A/m}$$

Tab. 4. 13 Magnetická intenzita magnetického pole induktoru

H [A/m]	Α	В	С	D	Е	F	G	н	I.	J	К	L	М	Ν
1	39,047	43,644	52,479	59,449	66,137	72,366	79,042	87,513	90,499	96,989	98,600	98,806	97,609	95,796
2	44,391	51,737	59,995	65,543	75,879	87,379	94,120	105,199	112,067	118,215	123,396	125,204	123,009	118,949
3	48,070	57,249	66,883	78,529	87,454	102,275	117,092	130,715	145,265	151,077	157,968	159,126	154,732	150,712
4	54,383	65,249	76,368	92,053	106,244	126,653	140,090	165,303	180,623	193,041	204,028	206,567	203,180	195,824
5	60,682	72,944	87,467	103,070	125,545	150,874	183,539	210,270	232,092	248,439	264,372	273,550	267,785	257,833
6	66,521	81,784	99,283	123,937	154,978	186,455	223,945	267,206	313,491	335,797	374,193	377,085	365,250	341,734
7	72,339	90,946	113,253	143,791	183,791	236,309	295,780	366,145	433,240	488,134	527,214	530,976	508,478	485,777
8	77,861	98,418	125,524	163,995	211,756	282,325	371,418	499,692	596,918	718,155	773,888	804,977	771,428	705,538
9	82,283	107,295	138,631	182,810	246,012	334,894	473,899	655,979	847,520	1068,850	1235,413	1263,216	1204,761	1049,106
10	84,195	112,883	145,516	196,852	272,757	387,358	553,592	884,055	0,000	1785,123	2018,331	2042,488	1981,276	1723,004
11	87,968	114,525	152,217	205,653	290,824	422,769	650,825	1124,643	0,000	3287,805	3367,738	3396,688	3380,451	3132,596
12	86,784	115,359	152,761	208,828	297,282	442,065	697,088	1203,356	0,000	0,000	0,000	0,000	0,000	0,000
13	89,947	111,993	155,421	202,751	281,642	438,341	642,559	1033,231	0,000	0,000	0,000	0,000	0,000	0,000
14	90,337	117,970	161,682	212,887	283,447	438,513	603,728	911,470	0,000	0,000	0,000	0,000	0,000	0,000

Induktor bez stínění - grafické znázornění rozložení H kolem induktoru

Obr. 4. 10 Rozložení intenzity magnetického pole

Obr. 4. 11 Rozložení intenzity magnetického pole

Induktor se svazky transformátorových plechů - naměřené a vypočítané hodnoty

Tab. 4. 14 Naměřené hodnoty najndukovaného napětí kolem ind

[V]	Α	В	C	D	Ε	F	G	Н	I	J	К	L	Μ	Ν	
1	0,221	0,266	0,405	0,541	0,665	0,859	1,123	1,342	1,586	1,790	1,918	1,971	1,956	1,844	а
	0,535	0,603	0,667	0,734	0,807	0,861	0,917	0,909	0,677	0,639	0,431	0,317	0,151	0,291	r
2	0,181	0,243	0,371	0,508	0,719	0,988	1,273	1,636	1,986	2,232	2,485	2,598	2,570	2,399	а
	0,594	0,692	0,792	0,910	0,997	1,107	1,164	1,206	1,121	0,777	0,547	0,269	0,181	0,474	r
3	0,141	0,224	0,330	0,517	0,777	1,094	1,407	1,952	2,536	3,0	3,365	3,504	3,440	3,182	а
	0,674	0,797	0,938	1,103	1,244	1,516	1,585	1,643	1,569	1,195	0,891	0,368	0,280	0,598	r
4	0,095	0,161	0,242	0,473	0,753	1,147	1,761	2,515	3,212	4,02	4,62	4,89	4,78	4,26	а
	0,744	0,9	1,118	1,330	1,573	1,866	2,092	2,252	2,296	1,681	1,2	0,421	0,667	1,315	r
5	0,077	0,080	0,147	0,331	0,664	1,154	1,956	2,941	4,21	5,53	6,65	7,15	6,90	6,04	а
	0,813	1,009	1,236	1,560	1,910	2,371	2,896	3,154	3,371	2,861	2,04	0,589	0,736	2,067	r
6	0,72	0,126	0,135	0,216	0,504	0,970	1,750	3,461	5,63	8,21	10,47	11,06	10,34	8,67	а
	0,858	1,087	1,378	1,789	2,327	3,042	3,84	4,62	5,32	4,74	3,73	1,049	1,420	3,458	r
7	0,261	0,258	0,308	0,264	0,255	0,627	1,751	4,06	7,65	12,72	17,41	19,04	17,44	13,63	а
	0,868	1,106	1,477	1,955	2,695	3,736	5,23	7,16	8,91	8,77	7,12	1,588	2,826	6,06	r
8	0,381	0,405	0,494	0,578	2,565	0,489	0,805	4,02	9,88	20,05	30,45	34,28	30,71	22,49	а
	0,836	1,121	1,448	2,043	2,871	4,17	6,65	10,62	15,59	17,38	13,73	3,266	6,12	12,51	r
9	0,565	0,763	0,877	1,012	1,266	1,566	1,789	1,140	9,58	32,75	56,5	65,5	55,7	35,51	а
	0,802	1,023	1,364	1,902	2,801	4,28	7,21	14,23	27,72	36,1	28,23	4,58	15,05	29,87	r
10	0,676	0,786	1,061	1,317	1,759	2,638	4,80	11,01		62,3	114,4	131,0	119,1	67,2	а
	0,666	0,906	1,165	1,668	2,305	3,341	5,43	10,68		87,4	60,1	8,02	33,47	73,0	r
11	0,791	1,007	1,221	1,626	2,151	2,920	4,31		-	178,1	238,6	260,3	248,9	173,8	а
	0,562	0,712	0,972	1,264	1,902	2,398	3,206			196,8	87,8	46,1	59,3	169,1	r
12	0,851	1,054	1,375	1,712	2,294	2,848	3,640								а
	0,371	0,477	0,658	0,861	1,289	1,760	2,830								r
13	0,917	1,141	1,432	1,815	2,365	3,022	3,907								а
	0,211	0,289	0,415	0,612	0,897	1,185	1,783								r
14	0,953	1,172	1,452	1,865	2,388	3,059	3,920								а
	0,180	0,228	0,335	0,404	0,588	0,841	1,165								r

Na základě těchto hodnot napětí a použití výše uvedených vztahů (4 - 1) až (4 - 5) získám rozložení magnetické intenzity kolem laboratorního induktoru. Vypočtené hodnoty uvádím v tabulce Tab. 4. 15

$$B_{r} = k \cdot \frac{U_{r}}{4,44 \cdot f} = 0,275 \cdot \frac{3,266}{4,44 \cdot 4100} = 4,937 \cdot 10^{-5} \text{ T} \qquad B_{a} = k \cdot \frac{U_{a}}{4,44 \cdot f} = 0,275 \cdot \frac{34,28}{4,44 \cdot 4100} = 5,182 \cdot 10^{-4} \text{ T}$$
$$B = \sqrt{(4,937 \cdot 10^{-5})^{2} + (5,182 \cdot 10^{-4})^{2}} = 5,205 \cdot 10^{-4} \text{ T}$$
$$H = \frac{B}{\mu_{0} \cdot \mu_{r}} = \frac{5,205 \cdot 10^{-4}}{1,257 \cdot 10^{-6} \cdot 1} = 414,226 \text{ A/m}$$

	Tab. 4.	15	Magnetická	intenzita	magnetického	pole	induktoru
--	---------	----	------------	-----------	--------------	------	-----------

H [A/m]	Α	В	С	D	Е	F	G	н	I	J	К	L	М	Ν
1	6,963	7,928	9,387	10,969	12,579	14,630	17,440	19,498	20,744	22,863	23,647	24,014	23,599	22,456
2	7,470	8,822	10,521	12,537	14,786	17,849	20,750	24,449	27,433	28,429	30,608	31,419	30,991	29,416
3	8,283	9,959	11,961	14,653	17,643	22,489	25,495	30,691	35,872	38,845	41,873	42,382	41,517	38,947
4	9,022	10,998	13,760	16,980	20,978	26,348	32,894	40,609	47,494	52,415	57,419	59,040	58,056	53,630
5	9,823	12,175	14,973	19,183	24,324	31,720	42,038	51,875	64,877	74,896	83,673	86,300	83,472	76,793
6	13,473	13,163	16,655	21,676	28,641	38,408	50,762	69,439	93,177	114,037	133,699	133,639	125,549	112,282
7	10,903	13,661	18,149	23,730	32,563	45,569	66,345	99,012	141,264	185,853	226,263	229,830	212,524	179,432
8	11,051	14,338	18,404	25,540	46,311	50,505	80,578	136,595	222,022	319,184	401,801	414,226	376,678	309,572
9	11,801	15,352	19,507	25,916	36,975	54,823	89,360	171,723	352,799	586,322	759,759	789,831	694,049	558,179
10	11,415	14,428	18,955	25,565	34,878	51,207	87,180	184,514	0,000	1291,104	1554,476	1578,765	1488,166	1193,544
11	11,672	14,835	18,773	24,774	34,539	45,452	64,616	0,000	0,000	3192,817	3058,303	3179,907	3077,850	2916,938
12	11,167	13,917	18,336	23,052	31,653	40,273	55,463	0,000	0,000	0,000	0,000	0,000	0,000	0,000
13	11,319	14,159	17,934	23,041	30,426	39,047	51,660	0,000	0,000	0,000	0,000	0,000	0,000	0,000
14	11,666	14,362	17,925	22,955	29,584	38,162	49,193	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Induktor se svazky transformátorových plechů - grafické rozložení *H* kolem induktoru

Obr. 4. 12 Grafické rozložení magnetického pole

Obr. 4. 13 Grafické rozložení magnetického pole

V obrázcích Obr. 4.10 až 4.13 vidíme názorně vliv stínění na velikost intenzity magnetického pole vně induktoru. Stínění se nachází na úrovni sloupce H a vidíme, že pole nalevo od tohoto sloupce je odstíněné. Maximální hodnota *H* u nestíněného induktoru činí 3396,688 A/m, u stíněného 3192,817 A/m. Obě tyto hodnoty byly naměřeny v ose induktoru (přesněji v bodech L11/J11). Vně induktoru v bodě D11 byly naměřeny tyto hodnoty *H*:

 nestíněný induktor: 	205,653 A/m
 stíněný induktor: 	24,774 A/m

4.2.2 Velikost proudu 31 A

Na napájecím zdroji jsem nastavil napájecí proud 31 A modelu indukční kelímkové pece (laboratorní induktor)

Induktor bez stínění - naměřené a vypočítané hodnoty

[V]	А	В	С	D	Е	F	G	Н	I	J	К	L	М	N	
1	0,108	0,145	0,205	0,226	0,281	0,288	0,381	0,392	0,426	0,517	0,465	0,483	0,475	0,486	а
	0,212	0,215	0,237	0,241	0,252	0,252	0,213	0,387	0,239	0,282	0,138	0,104	0,116	0,17	r
2	0,114	0,145	0,201	0,236	0,305	0,366	0,422	0,471	0,518	0,597	0,592	0,602	0,651	0,592	а
	0,244	0,162	0,282	0,282	0,318	0,305	0,275	0,422	0,494	0,333	0,154	0,132	0,104	0,214	r
3	0,125	0,151	0,205	0,244	0,362	0,411	0,497	0,556	0,622	0,722	0,773	0,761	0,798	0,731	а
	0,246	0,311	0,328	0,352	0,422	0,408	0,384	0,457	0,337	0,347	0,153	0,123	0,119	0,236	r
4	0,083	0,143	0,217	0,282	0,376	0,486	0,569	0,694	0,807	0,892	1,046	1,037	1,024	0,907	а
	0,285	0,357	0,393	0,426	0,502	0,502	0,492	0,515	0,441	0,722	0,208	0,142	0,152	0,332	r
5	0,078	0,138	0,225	0,269	0,379	0,513	0,685	0,869	1,062	1,222	1,376	1,389	1,386	1,202	а
	0,311	0,401	0,459	0,502	0,589	0,637	0,688	0,705	0,717	0,547	0,306	0,171	1,254	0,429	r
6	0,049	0,105	0,231	0,283	0,371	0,585	0,809	1,092	1,366	1,545	1,829	1,922	1,912	1,646	а
	0,355	0,456	0,551	0,618	0,744	0,864	0,912	0,912	0,828	0,743	0,388	0,202	0,354	0,607	r
7	0,04	0,046	0,194	0,206	0,399	0,624	0,942	1,371	1,804	2,125	2,664	2,804	2,626	2,335	а
	0,402	0,511	0,625	0,749	0,929	1,052	1,251	1,269	1,212	1,052	0,702	0,199	0,502	0,709	r
8	0,051	0,049	0,177	0,122	0,359	0,576	1,022	1,556	2,357	3,071	3,892	4,19	3,934	3,292	а
	0,424	0,574	0,705	0,874	1,112	1,397	1,699	1,911	1,893	1,691	0,854	0,191	0,755	1,43	r
9	0,106	0,062	0,183	0,042	0,176	0,478	0,942	1,714	3,097	4,46	6,01	6,85	6,01	5,19	а
	0,441	0,609	0,77	0,97	1,313	1,717	2,246	2,814	2,924	2,851	1,822	0,176	1,14	2,692	r
10	0,195	0,172	0,259	0,151	0,109	0,187	0,692	1,514		7,2	9,37	10,77	9,72	7,7	а
	0,438	0,621	0,81	1,026	1,448	2,062	2,866	4,04		5,89	2,913	0,403	1,822	4,84	r
11	0,285	0,301	0,373	0,387	0,402	0,357	0,222	0,211		14,27	15,47	17,47	15,88	14,39	а
	0,41	0,561	0,804	1,072	1,512	2,288	3,507	5,74		9,03	5,14	0,214	3,236	8,15	r
12	0,335	0,42	0,532	0,616	0,809	1,03	1,696	2,577							а
	0,347	0,491	0,729	0,989	1,431	2,181	3,437	6,19							r
13	0,424	0,544	0,652	0,847	1,131	1,529	2,551	3,75							а
	0,28	0,381	0,626	0,776	1,221	1,809	2,691	4,07							r
14	0,483	0,601	0,74	1,027	1,371	1,954	2,915	3,96							а
	0,181	0,247	0,475	0,526	0,765	1,051	1,546	2,565							r

Tab. 4. 16 Naměřené hodnoty naindukovaného napětí kolem induktoru

Na základě těchto hodnot napětí a použití výše uvedených vztahů (4 - 1) až (4 - 5) získám rozložení magnetické intenzity kolem laboratorního induktoru. Vypočtené hodnoty uvádím v tabulce Tab. 4. 17

Konstanta křížové cívky je stejná jako v případě napájecího proudu 15 A.

$$k = \frac{1}{N \cdot A} = \frac{1}{310 \cdot 6,817 \cdot 10^{-4}} = 4,732 \text{ m}^{-2}$$

$$B_r = k \cdot \frac{U_r}{4,44 \cdot f} = 4,732 \cdot \frac{0,191}{4,44 \cdot 4100} = 4,965 \cdot 10^{-5} \text{ T} \qquad B_a = k \cdot \frac{U_a}{4,44 \cdot f} = 4,732 \cdot \frac{4,19}{4,44 \cdot 4100} = 1,089 \cdot 10^{-3} \text{ T}$$

$$B = \sqrt{(4,965 \cdot 10^{-5})^2 + (1,089 \cdot 10^{-3})^2} = 1,090 \cdot 10^{-3} \text{ T}$$
$$H = \frac{B}{\mu_0 \cdot \mu_r} = \frac{1,090 \cdot 10^{-3}}{1,257 \cdot 10^{-6} \cdot 1} = 867,594 \text{ A/m}$$

H [A/m]	Α	В	С	D	Ε	F	G	н	I	J	К	L	М	Ν
1	49,214	53,641	64,818	68,340	78,074	79,158	90,289	113,942	101,038	121,815	100,331	102,198	101,140	106,501
2	55,708	44,972	71,632	76,063	91,142	98,548	104,189	130,810	148,061	141,400	126,530	127,481	136,366	130,209
3	57,077	71,512	80,008	88,593	115,006	119,791	129,914	148,871	146,330	165,697	162,996	159,454	166,890	158,891
4	61,401	79,549	92,860	105,675	129,735	144,528	155,594	178,761	190,225	237,376	220,600	216,503	214,133	199,785
5	66,322	87,721	105,737	117,806	144,877	169,178	200,821	231,466	265,051	276,937	291,576	289,481	386,619	263,993
6	74,127	96,791	123,584	140,598	171,968	215,829	252,171	294,293	330,410	354,615	386,745	399,752	402,215	362,886
7	83,564	106,127	135,365	160,682	209,136	253,005	323,925	386,425	449,550	490,467	569,855	581,462	553,020	504,765
8	88,336	119,163	150,354	182,538	241,705	312,566	410,117	509,748	625,315	725,166	824,206	867,594	828,592	742,414
9	93,818	126,622	163,710	200,831	274,021	368,665	503,788	681,545	881,018	1094,925	1299,030	1417,379	1265,325	1209,364
10	99,173	133,289	175,904	214,512	300,364	428,272	609,863	892,420	0,000	1924,158	2029,671	2229,316	2045,583	1881,247
11	103,284	131,690	183,332	235,748	323,620	478,995	726,869	1188,111	0,000	3493,066	3371,948	3613,911	3352,258	3420,790
12	99,767	133,650	186,676	241,010	340,028	498,915	792,782	1386,918	0,000	0,000	0,000	0,000	0,000	0,000
13	105,102	137,379	186,964	237,613	344,264	489,943	766,989	1144,741	0,000	0,000	0,000	0,000	0,000	0,000
14	106,692	134,405	181,888	238,675	324,750	458,938	682,516	975,939	0,000	0,000	0,000	0,000	0,000	0,000

Induktor bez stínění - grafické znázornění rozložení H kolem induktoru

Obr. 4. 14 Grafické rozložení intenzity magnetického pole

Obr. 4. 15 Grafické rozložení intenzity magnetického pole

Induktor se svazky transformátorových plechů - naměřené a vypočítané hodnoty

Tab.	4.	18	Nam	ěřeně	i ho	dnotv	naina	lukov	aného	navětí	kolem	induktoru
r wo.		101			1100	ALCCU Y	1000000	venuo v	circirc	napen	noveni	11101111101111

[V]	Α	В	С	D	E	F	G	Н		J	K	L	Μ	Ν	
1	0,023	0,018	0,032	0,098	0,079	0,142	0,067	0,114	0,134	0,128	0,156	0,371	0,55	0,099	а
	0,026	0,026	0,03	0,107	0,094	0,114	0,052	0,052	0,047	0,081	0,069	0,281	0,401	0,047	r
2	0,022	0,022	0,029	0,112	0,116	0,137	0,088	0,118	0,146	0,183	0,185	0,367	0,484	0,142	а
	0,029	0,035	0,044	0,126	0,124	0,139	0,062	0,088	0,082	0,104	0,084	0,297	0,421	0,081	r
3	0,024	0,016	0,023	0,138	0,128	0,168	0,117	0,159	0,177	0,228	0,238	0,422	0,502	0,212	а
	0,042	0,037	0,049	0,139	0,134	0,165	0,096	0,112	0,102	0,102	0,087	0,311	0,416	0,104	r
4	0,041	0,027	0,031	0,139	0,136	0,183	0,115	0,194	0,228	0,276	0,305	0,498	0,538	0,299	а
	0,051	0,048	0,058	0,154	0,148	0,172	0,126	0,159	0,141	0,131	0,095	0,255	0,403	0,232	r
5	0,048	0,033	0,044	0,139	0,127	0,184	0,133	0,227	0,293	0,377	0,445	0,556	0,577	0,387	а
	0,057	0,059	0,077	0,159	0,172	0,205	0,187	0,184	0,211	0,197	0,176	0,306	0,346	0,202	r
6	0,051	0,036	0,046	0,131	0,119	0,177	0,149	0,244	0,377	0,538	0,666	0,729	0,722	0,535	а
	0,061	0,069	0,092	0,181	0,199	0,242	0,245	0,299	0,329	0,306	0,275	0,452	0,467	0,288	r
7	0,054	0,038	0,048	0,13	0,109	0,174	0,129	0,244	0,482	0,774	1,04	1,11	1,022	0,795	а
	0,059	0,077	0,108	0,188	0,225	0,291	0,338	0,435	0,541	0,527	0,379	0,402	0,517	0,485	r
8	0,062	0,044	0,021	0,129	0,107	0,164	0,117	0,221	0,524	1,08	1,729	2,115	1,857	1,171	а
	0,073	0,082	0,105	0,2	0,247	0,329	0,428	0,654	0,919	1,029	0,777	0,431	0,679	0,955	r
9	0,061	0,051	0,038	0,129	0,114	0,141	0,154	0,224	0,446	1,731	3,219	3,827	3,436	2,109	а
	0,069	0,084	0,108	0,208	0,251	0,341	0,483	0,862	1,672	2,033	1,547	0,287	1,342	2,164	r
10	0,064	0,056	0,052	0,144	0,143	0,144	0,264	0,853		4,15	6,79	7,74	6,67	4,62	а
	0,068	0,077	0,102	0,196	0,248	0,318	0,427	0,587		4,65	2,958	0,452	2,649	4,71	r
11	0,048	0,059	0,066	0,15	0,171	0,174	0,243			10,62	13,6	15,57	14,47	11,5	а
	0,034	0,069	0,093	0,178	0,22	0,308	0,371			10,12	7,29	0,717	4,66	10,81	r
12	0,052	0,064	0,077	0,154	0,192	0,242	0,251								а
	0,03	0,055	0,078	0,141	0,204	0,284	0,35								r
13	0,062	0,067	0,095	0,172	0,211	0,281	0,305								а
	0,017	0,044	0,071	0,122	0,172	0,237	0,297								r
14	0,065	0,072	0,105	0,171	0,218	0,295	0,346								а
	0,022	0,031	0,051	0,084	0,12	0,155	0,195								r

Vypočtené hodnoty intenzity magnetického pole kolem induktoru uvádím v tabulce Tab. 4. 19

$$B_r = k \cdot \frac{U_r}{4,44 \cdot f} = 4,732 \cdot \frac{0,431}{4,44 \cdot 4100} = 1,120 \cdot 10^{-4} \text{ T} \qquad B_a = k \cdot \frac{U_a}{4,44 \cdot f} = 4,732 \cdot \frac{2,115}{4,44 \cdot 4100} = 5,498 \cdot 10^{-4} \text{ T}$$

$$B = \sqrt{(1,120 \cdot 10^{-4})^2 + (5,498 \cdot 10^{-4})^2} = 5,611 \cdot 10^{-4} \text{ T}$$

B 5,611 \cdot 10^{-4}

$$H = \frac{B}{\mu_0 \cdot \mu_r} = \frac{3,01110}{1,257 \cdot 10^{-6} \cdot 1} = 446,476 \text{ A/m}$$

Tab. 4. 19 Magnetická intenzita magnetického pole induktoru

H [A/m]	Α	В	С	D	E	F	G	н		J	к	L	М	Ν
1	7,180	6,541	9,073	30,013	25,399	37,667	17,543	25,918	29,373	31,333	35,284	96,268	140,794	22,669
2	7,529	8,551	10,900	34,871	35,123	40,370	22,267	30,448	34,637	43,539	42,027	97,657	132,689	33,815
3	10,006	8,338	11,197	40,515	38,331	48,708	31,305	40,229	42,256	51,666	52,416	108,434	134,858	48,844
4	13,536	11,392	13,603	42,911	41,576	51,949	35,286	51,884	55,451	63,194	66,078	115,730	139,043	78,282
5	15,414	13,983	18,344	43,685	44,225	56,979	47,466	60,443	74,686	87,987	98,985	131,275	139,165	90,299
6	16,447	16,098	21,276	46,217	47,961	62,018	59,314	79,828	103,501	128,026	149,043	177,425	177,862	125,680
7	16,544	17,761	24,447	47,279	51,715	70,133	74,834	103,168	149,877	193,688	228,962	244,195	236,909	192,630
8	19,811	19,249	22,149	49,229	55,679	76,039	91,779	142,794	218,823	308,561	392,095	446,476	408,989	312,558
9	19,050	20,327	23,682	50,627	57,023	76,327	104,863	184,225	357,943	552,306	738,746	793,831	763,017	625,037
10	19,316	19,694	23,682	50,308	59,215	72,208	103,842	214,183	0,000	1289,198	1531,989	1603,734	1484,504	1364,705
11	12,167	18,779	23,589	48,149	57,636	73,173	91,737	0,000	0,000	3034,394	3191,798	3224,041	3144,479	3264,707
12	12,418	17,455	22,671	43,190	57,947	77,180	89,089	0,000	0,000	0,000	0,000	0,000	0,000	0,000
13	13,298	16,580	24,532	43,619	56,309	76,038	88,059	0,000	0,000	0,000	0,000	0,000	0,000	0,000
14	14,194	16,215	24,145	39,408	51,473	68,930	82,153	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Induktor se svazky transformátorových plechů - grafické rozložení *H* kolem induktoru

Obr. 4. 16 Grafické rozložení intenzity magnetického pole

Obr. 4. 17 Grafické rozložení intenzity magnetického pole

V obrázcích Obr. 4.14 až 4.17 vidíme názorně vliv stínění na velikost intenzity magnetického pole vně induktoru. Stínění se nachází na úrovni sloupce H a vidíme, že pole nalevo od tohoto sloupce je odstíněné. Maximální hodnota *H* u nestíněného induktoru činí 3613,911 A/m, u stíněného 3264,707 A/m. Obě tyto hodnoty byly naměřeny v ose induktoru (přesněji v bodech L11/N11). Vně induktoru v bodě D11 byly naměřeny tyto hodnoty *H*:

 nestíněný induktor: 	235,748 A/m
- stíněný induktor:	48,149 A/m

4.3 Měření na laboratorním modelu při kmitočtu 10 000 Hz

4.3.1 Velikost proudu 15 A

Na napájecím zdroji jsem nastavil velikost proudu na hodnotu 15 A.

Induktor bez stínění - naměřené a vypočítané hodnoty

Tab. 4. 20 Naměřené hodnoty naindukovaného napětí kolem induktoru

[V]	Α	В	C	D	E	F	G	н	I	J	К	L	М	Ν	
1	0,041	0,457	0,242	0,081	0,102	0,145	0,197	0,256	0,328	0,349	0,369	0,386	0,542	0,51	а
	0,384	0,318	0,239	0,524	0,517	0,525	0,529	0,529	0,486	0,42	0,412	0,337	0,229	0,081	r
2	0,045	0,385	0,329	0,09	0,144	0,206	0,276	0,338	0,585	0,488	0,499	0,523	0,689	0,674	а
	0,124	0,305	0,442	0,562	0,598	0,622	0,296	0,586	0,494	0,471	0,465	0,387	0,238	0,133	r
3	0,044	0,344	0,336	0,096	0,174	0,276	0,366	0,459	0,616	0,662	0,697	0,697	0,867	0,82	а
	0,169	0,338	0,481	0,631	0,671	0,687	0,686	0,667	0,622	0,546	0,494	0,402	0,242	0,194	r
4	0,051	0,339	0,302	0,108	0,216	0,357	0,469	0,637	0,796	0,965	1,015	1,031	1,121	1,102	а
	0,224	0,374	0,559	0,711	0,78	0,792	0,842	0,818	0,729	0,627	0,552	0,414	0,304	0,311	r
5	0,063	0,338	0,272	0,117	0,246	0,441	0,598	0,828	1,097	1,381	1,429	1,514	1,551	1,461	а
	0,271	0,449	0,629	0,833	0,907	0,976	1,015	1,018	0,972	0,806	0,594	0,394	0,308	0,508	r
6	0,091	0,122	0,248	0,106	0,299	0,483	0,692	1,031	1,517	1,851	2,097	2,142	2,124	1,925	а
	0,319	0,522	0,715	0,961	1,069	1,194	1,299	1,34	1,312	1,011	0,802	0,452	0,381	0,671	r
7	0,147	0,081	0,196	0,065	0,256	0,513	0,878	1,324	1,911	2,663	3,116	3,301	3,224	2,785	а
	0,365	0,579	0,812	1,099	1,278	1,482	1,728	1,793	1,869	1,356	1,056	0,424	0,519	1,061	r
8	0,213	0,103	0,129	0,091	0,167	0,461	0,961	1,705	2,75	3,72	4,41	4,77	5,16	3,748	а
	0,402	0,616	0,906	1,257	1,556	1,827	2,239	2,485	2,685	2,195	1,316	0,436	0,887	1,867	r
9	0,276	0,106	0,117	0,229	0,114	0,271	0,959	1,944	3,69	5,56	6,84	8,02	7,94	6,28	а
	0,672	0,625	0,981	1,398	1,791	2,292	3,043	3,577	4,47	3,732	2,037	0,323	1,646	3,108	r
10	0,369	0,236	0,213	0,477	0,328	0,203	0,428	1,958		8,51	11,24	12,51	12,51	9,96	а
	0,708	0,641	1,064	1,462	2,024	2,696	3,834	5 <i>,</i> 54		7,32	3,237	0,297	2,552	5,46	r
11	0,505	0,361	0,406	0,777	0,761	0,907	0,603	0,299		16,81	19,06	19,64	20,72	16,37	а
	0,693	0,617	1,072	1,476	2,074	2,856	5,31	7,94		12,36	7,81	2,129	3,331	10,46	r
12	0,594	0,456	0,608	1,037	1,205	1,653	2,137	3,384							а
	0,629	0,784	0,945	1,336	1,971	2,805	5,22	8,09							r
13	0,677	0,589	0,784	1,271	1,588	2,216	3,185	5,51							а
	0,544	0,626	0,77	1,125	1,687	2,351	3,567	5,57							r
14	0,737	0,675	0,915	1,465	1,881	2,599	4,05	5,92							а
	0,356	0,455	0,526	0,769	1,182	1,541	2,266	3,289							r

Na základě těchto hodnot napětí a použití výše uvedených vztahů (4 - 1) až (4 - 5) získám rozložení magnetické intenzity kolem laboratorního induktoru. Vypočtené hodnoty uvádím v tabulce Tab. 4. 21

Konstanta křížové měřící cívky $k = \frac{1}{N \cdot A} = \frac{1}{310 \cdot 6,817 \cdot 10^{-4}} = 4,732 \text{ m}^{-2}$ $A = \frac{\pi}{12} \cdot \frac{d_2^3 - d_1^3}{d_2 - d_1} = \frac{\pi}{12} \cdot \frac{0,038^3 - 0,02^3}{0,038 - 0,02} = 6,817 \cdot 10^{-4} \text{ m}^2$ Příklad výpočtu *H* pro bod L8:

$$B_r = k \cdot \frac{U_r}{4,44 \cdot f} = 4,732 \cdot \frac{0,436}{4,44 \cdot 10000} = 4,647 \cdot 10^{-5} \text{ T} \quad B_a = k \cdot \frac{U_a}{4,44 \cdot f} = 4,732 \cdot \frac{4,77}{4,44 \cdot 4100} = 5,084 \cdot 10^{-4} \text{ T}$$

$$B = \sqrt{(4,647 \cdot 10^{-5})^2 + (5,084 \cdot 10^{-4})^2} = 5,105 \cdot 10^{-4} \text{ T}$$
$$H = \frac{B}{\mu_0 \cdot \mu_r} = \frac{5,105 \cdot 10^{-4}}{1,257 \cdot 10^{-6} \cdot 1} = 406,22 \text{ A/m}$$

	Tab. 4. 21	Magnetická	intenzita	magnetického	pole	induktoru
--	------------	------------	-----------	--------------	------	-----------

H [A/m]	А	В	С	D	E	F	G	н	I	J	К	L	М	N
1	32,751	47,217	28,845	44,967	44,691	46,191	47,873	49,841	49,725	46,312	46,906	43,456	49,900	43,794
2	11,187	41,655	46,729	48,269	52,165	55,568	34,323	57,372	64,935	57,519	57,845	55,177	61,820	58,263
3	14,810	40,900	49,760	54,130	58,788	62,789	65,941	68,667	74,241	72,775	72,452	68,238	76,339	71,462
4	19,483	42,809	53,884	60,990	68,640	73,676	81,738	87,926	91,540	97,597	97,986	94,223	98,503	97,109
5	23,596	47,662	58,118	71,338	79,700	90,830	99,909	111,286	124,300	135,608	131,243	132,676	134,105	131,181
6	28,133	45,463	64,182	81,995	94,139	109,232	124,822	143,387	170,095	178,869	190,405	185,659	183,007	172,889
7	33,371	49,582	70,842	93,367	110,537	133,002	164,380	189,025	226,694	253,436	279,024	282,251	276,941	252,749
8	38,583	52,967	77,611	106,882	132,719	159,800	206,636	255,583	325,950	366,311	390,300	406,220	444,027	355,113
9	61,610	53,762	83,786	120,141	152,198	195,734	270,583	345,263	491,571	567,905	605,263	680,710	687,691	594,248
10	67,710	57,929	92,026	130,421	173,890	229,289	327,173	498,316	0,000	951,975	991,982	1061,245	1082,796	963,281
11	72,721	60,625	97,216	141,461	187,358	254,132	453,224	673,851	0,000	1769,510	1746,876	1675,383	1779,780	1647,518
12	73,371	76,918	95,298	143,430	195,920	276,120	478,358	743,700	0,000	0,000	0,000	0,000	0,000	0,000
13	73,654	72,895	93,194	143,950	196,486	273,994	405,553	664,457	0,000	0,000	0,000	0,000	0,000	0,000
14	69,413	69,036	89,507	140,320	188,405	256,247	393,578	574,343	0,000	0,000	0,000	0,000	0,000	0,000

Induktor bez stínění - grafické znázornění rozložení H kolem induktoru

Obr. 4. 18 Rozložení intenzity magnetického pole

Obr. 4. 19 Rozložení intenzity magnetického pole

Induktor se svazky transformátorových plechů - naměřené a vypočítané hodnoty

	Tab. 4. 22	Naměřené	hodnoty	naindukované	napětí	kolem	induktoru
--	------------	----------	---------	--------------	--------	-------	-----------

[V]	Α	В	С	D	Е	F	G	Н		J	К	L	М	N	
1	0,177	0,229	0,222	0,215	0,202	0,201	0,119	0,111	0,342	0,298	0,262	0,159	0,196	0,145	а
	0,209	0,228	0,174	0,228	0,177	0,205	0,075	0,054	0,219	0,152	0,142	0,036	0,166	0,055	r
2	0,252	0,217	0,204	0,214	0,2	0,189	0,118	0,141	0,418	0,372	0,317	0,209	0,206	0,194	а
	0,21	0,194	0,17	0,216	0,201	0,214	0,085	0,068	0,285	0,236	0,16	0,054	0,237	0,064	r
3	0,234	0,203	0,192	0,199	0,179	0,202	0,135	0,181	0,483	0,405	0,381	0,29	0,367	0,263	а
	0,198	0,187	0,181	0,179	0,227	0,163	0,11	0,106	0,357	0,302	0,179	0,027	0,315	0,108	r
4	0,218	0,221	0,194	0,191	0,195	0,102	0,165	0,221	0,547	0,459	0,544	0,391	0,373	0,347	а
	0,199	0,187	0,228	0,227	0,233	0,205	0,165	0,151	0,402	0,387	0,351	0,052	0,142	0,164	r
5	0,229	0,208	0,172	0,085	0,095	0,176	0,19	0,286	0,575	0,597	0,662	0,572	0,591	0,472	а
	0,186	0,189	0,246	0,241	0,244	0,281	0,247	0,246	0,455	0,455	0,432	0,072	0,229	0,235	r
6	0,229	0,213	0,148	0,081	0,075	0,111	0,204	0,339	0,646	0,73	0,882	0,864	0,876	0,667	а
	0,2	0,202	0,26	0,259	0,276	0,331	0,318	0,377	0,532	0,526	0,537	0,108	0,294	0,381	r
7	0,197	0,216	0,194	0,069	0,053	0,088	0,192	0,356	0,746	0,998	1,294	1,445	1,305	0,936	а
	0,196	0,206	0,266	0,296	0,312	0,381	0,45	0,565 0,831 0,794 0,664 0,437 0,384 0,616							r
8	0,226	0,205	0,184	0,081	0,051	0,06	0,142	0,464	0,812	1,348	2,081	2,517	2,367	1,457	а
	0,204	0,209	0,272	0,311	0,339	0,416	0,545	0,886	1,203	1,355	0,917	0,465	0,617	1,236	r
9	0,226	0,208	0,196	0,208	0,062	0,126	0,22	0,572	0,611	2,121	4,26	5,21	4,47	2,455	а
	0,208	0,199	0,282	0,318	0,361	0,455	0,616	1,131	2,074	2,498	1,919	0,481	1,59	2,609	r
10	0,229	0,214	0,206	0,224	0,189	0,205	0,356	0,806		4,37	8,25	10,37	9,49	5,98	а
	0,211	0,198	0,288	0,321	0,366	0,449	0,594	0,978		6,22	3,352	0,523	2,707	6,13	r
11	0,236	0,202	0,218	0,225	0,228	0,25	0,311			13,59	15,31	19,15	18,16	13,29	а
	0,203	0,206	0,303	0,309	0,372	0,426	0,549			14,64	7,04	1,548	5,14	12,04	r
12	0,224	0,18	0,233	0,244	0,298	0,313	0,354								а
	0,206	0,216	0,214	0,315	0,291	0,384	0,526								r
13	0,242	0,224	0,224	0,281	0,296	0,36	0,431								а
	0,246	0,233	0,165	0,209	0,232	0,304	0,399								r
14	0,285	0,243	0,254	0,276	0,355	0,4	0,45								а
	0,233	0,231	0,144	0,143	0,284	0,202	0,222								r

Na základě těchto hodnot napětí a použití výše uvedených vztahů (4 - 1) až (4 - 5) získám rozložení magnetické intenzity kolem laboratorního induktoru. Vypočtené hodnoty uvádím v tabulce Tab. 4. 23

$$B_r = k \cdot \frac{U_r}{4,44 \cdot f} = 4,732 \cdot \frac{0,465}{4,44 \cdot 10000} = 4,956 \cdot 10^{-5} \text{ T} \quad B_a = k \cdot \frac{U_a}{4,44 \cdot f} = 4,732 \cdot \frac{2,517}{4,44 \cdot 10000} = 2,682 \cdot 10^{-4} \text{ T}$$

$$B = \sqrt{(4,956 \cdot 10^{-5})^2 + (2,682 \cdot 10^{-4})^2} = 2,728 \cdot 10^{-4} \text{ T}$$
$$H = \frac{B}{\mu_0 \cdot \mu_r} = \frac{2,728 \cdot 10^{-4}}{1,257 \cdot 10^{-6} \cdot 1} = 217,073 \text{ A/m}$$

Tab. 4. 23 Magnetická intenzita magnetického pole induktoru

H [A/m]	А	В	С	D	Е	F	G	н	I	J	к	L	м	Ν
1	23,227	27,406	23,921	26,577	22,777	24,348	11,929	10,469	34,441	28,370	25,273	13,826	21,783	13,152
2	27,820	24,685	22,521	25,787	24,047	24,214	12,333	13,276	42,905	37,362	30,114	18,307	26,631	17,325
3	25,996	23,407	22,378	22,700	24,517	22,013	14,768	17,789	50,937	42,845	35,700	24,701	41,017	24,112
4	25,033	24,552	25,389	25,159	25,767	19,419	19,789	22,700	57,570	50,916	54,905	33,452	33,848	32,550
5	25,020	23,835	25,456	21,673	22,206	28,120	26,428	31,993	62,185	63,659	67,039	48,893	53,753	44,716
6	25,785	24,896	25,372	23,014	24,256	29,608	32,041	42,998	70,973	76,307	87,574	73,844	78,364	65,145
7	23,568	25,314	27,921	25,776	26,839	33,162	41,492	56,635	94,707	108,157	123,346	128,029	115,366	95,028
8	25,820	24,828	27,850	27,255	29,073	35,645	47,763	84,820	123,090	162,095	192,860	217,073	207,448	162,037
9	26,049	24,413	29,125	32,226	31,064	40,040	55,473	107,487	183,365	277,914	396,245	443,728	402,359	303,819
10	26,408	24,726	30,030	33,196	34,934	41,860	58,730	107,479	0,000	644,681	755,211	880,575	836,929	726,270
11	26,400	24,468	31,656	32,417	37,003	41,890	53,511	0,000	0,000	1694,072	1429,100	1629,367	1600,612	1520,842
12	25,809	23,845	26,830	33,792	35,324	42,014	53,771	0,000	0,000	0,000	0,000	0,000	0,000	0,000
13	29,265	27,411	23,594	29,700	31,895	39,960	49,811	0,000	0,000	0,000	0,000	0,000	0,000	0,000
14	31,220	28,434	24,762	26,362	38,555	38,003	42,555	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Induktor se svazky transformátorových plechů - grafické rozložení *H* kolem induktoru

Obr. 4. 20 Grafické rozložení magnetického pole

Obr. 4. 21 Grafické rozložení magnetického pole

V obrázcích Obr. 4.18 až 4.21 vidíme názorně vliv stínění na velikost intenzity magnetického pole vně induktoru. Stínění se nachází na úrovni sloupce H a vidíme, že pole nalevo od tohoto sloupce je odstíněné. Maximální hodnota *H* u nestíněného induktoru činí 1779,780 A/m, u stíněného 1694,072 A/m. Obě tyto hodnoty byly naměřeny v ose induktoru (přesněji v bodech M11/J11). Vně induktoru v bodě D11 byly naměřeny tyto hodnoty *H*:

 nestíněný induktor: 	141,461 A/m
 stíněný induktor: 	32,417 A/m

4.3.2 Velikost proudu 31 A

Na napájecím zdroji jsem nastavil napájecí proud 31 A modelu indukční kelímkové pece (laboratorní induktor)

Induktor bez stínění - naměřené a vypočítané hodnoty

[V]	А	В	C	D	E	F	G	Н	I	J	К	L	М	N	
1	0,315	0,208	0,223	0,32	0,386	0,432	0,44	0,685	0,928	1,017	0,606	0,633	0,642	0,775	а
	0,458	0,335	0,376	0,361	0,414	0,465	0,536	0,298	0,46	0,139	0,271	0,173	0,062	0,142	r
2	0,305	0,21	0,281	0,352	0,432	0,507	0,512	0,793	1,097	1,056	0,902	0,916	0,991	0,927	а
	0,484	0,384	0,442	0,436	0,53	0,541	0,628	0,449	0,527	0,148	0,259	0,149	0,094	0,214	r
3	0,289	0,203	0,324	0,381	0,496	0,601	0,657	0,869	1,314	1,242	1,165	1,197	1,263	1,183	а
	0,523	0,452	0,523	0,554	0,595	0,682	0,459	0,559	0,559	0,279	0,417	0,291	0,129	0,286	r
4	0,284	0,188	0,292	0,388	0,554	0,675	0,626	1,064	1,414	1,342	1,526	1,625	1,64	1,467	а
	0,588	0,55	0,622	0,695	0,755	0,861	0,926	0,762	0,756	0,645	0,551	0,323	0,201	0,421	r
5	0,182	0,163	0,296	0,453	0,618	0,785	0,935	1,294	1,824	1,839	2,088	2,13	2,212	1,992	а
	0,599	0,614	0,738	0,828	0,901	1,026	1,257	1,042	0,718	0,848	0,638	0,361	0,251	0,725	r
6	0,121	0,141	0,244	0,408	0,614	0,817	1,155	1,594	2,499	2,632	2,946	3,102	2,996	2,581	а
	0,656	0,698	0,846	1,012	1,133	1,278	1,494	1,348	1,532	1,218	0,814	0,396	0,463	1,019	r
7	0,121	0,105	0,216	0,386	0,594	0,902	1,887	1,941	2,899	3,528	4,46	4,79	4,58	3,698	а
	0,68	0,789	0,967	1,209	1,421	1,632	1,961	1,959	1,806	1,756	1,15	0,396	0,731	1,483	r
8	0,055	0,041	0,161	0,226	0,529	0,878	1,464	2,476	3,767	5,46	6,41	7,01	6,69	5,28	а
	0,689	0,848	1,102	1,321	1,692	2,106	2,655	2,872	2,928	2,515	1,342	0,288	1,267	2,638	r
9	0,144	0,149	0,089	0,031	0,362	0,622	1,666	2,707	5,61	8,07	9,66	10,59	10,26	7,87	а
	0,717	0,867	1,134	1,461	1,977	2,654	3,502	5,52	6,03	4,23	2,845	0,357	2,124	4,95	r
10	0,286	0,297	0,33	0,208	0,251	0,235	0,919	2,137		12,04	14,84	17,33	15,97	12,52	а
	0,702	0,905	1,216	1,616	2,284	3,278	4,86	7,87		7,84	4,56	1,073	3,051	7,63	r
11	0,386	0,493	0,558	0,615	0,719	0,676	0,372	1,072		19,09	26,2	26,84	25,42	22,28	а
	0,656	0,865	1,19	1,648	2,356	3,581	5,94	10,65		15,88	8,47	0,452	5,16	13,95	r
12	0,511	0,662	0,799	1,006	1,297	1,544	2,252	3,912							а
	0,586	0,604	1,042	1,547	2,181	3,479	6,01	10,82							r
13	0,651	0,829	1,019	1,33	1,795	2,382	3,751	6,98							а
	0,486	0,812	0,844	1,261	1,937	2,697	4,88	8,16							r
14	0,735	0,933	1,199	1,553	2,11	3,074	4,59	7,69							а
	0,332	0,372	0,577	0,706	1,239	1,557	2,751	4,95							r

Tab. 4. 24 Naměřené hodnoty naindukovaného napětí kolem induktoru

Na základě těchto hodnot napětí a použití výše uvedených vztahů (4 - 1) až (4 - 5) získám rozložení magnetické intenzity kolem laboratorního induktoru. Vypočtené hodnoty uvádím v tabulce Tab. 4. 25

Konstanta křížové měřící cívky je stejná jako v případě napájecího proudu 15 A.

$$k = \frac{1}{N \cdot A} = \frac{1}{310 \cdot 6,817 \cdot 10^{-4}} = 4,732 \text{ m}^{-2}$$

Příklad výpočtu *H* pro bod L8:

$$B_r = k \cdot \frac{U_r}{4,44 \cdot f} = 4,732 \cdot \frac{0,288}{4,44 \cdot 10000} = 3,069 \cdot 10^{-5} \text{ T} \quad B_a = k \cdot \frac{U_a}{4,44 \cdot f} = 4,732 \cdot \frac{7,01}{4,44 \cdot 10000} = 7,471 \cdot 10^{-4} \text{ T}$$

$$B = \sqrt{(3,069 \cdot 10^{-5})^2 + (7,471 \cdot 10^{-4})^2} = 7,477 \cdot 10^{-4} \text{ T}$$
$$H = \frac{B}{\mu_0 \cdot \mu_r} = \frac{7,477 \cdot 10^{-4}}{1,257 \cdot 10^{-6} \cdot 1} = 595,004 \text{ A/m}$$

	Tab. 4. 2	25 Ma	ignetická	intenzita	magnetického	pole	induktoru
--	-----------	-------	-----------	-----------	--------------	------	-----------

H [A/m]	Α	В	С	D	E	F	G	н	I	J	К	L	м	Ν
1	47,142	33,441	37,074	40,912	48,004	53,828	58,811	63,353	87,840	87,051	56,298	55,652	54,700	66,820
2	48,517	37,118	44,419	47,523	57,988	62,880	68,717	77,285	103,213	90,432	79,588	78,705	84,422	80,685
3	50,676	42,022	52,176	57,022	65,694	77,092	67,970	87,629	121,102	107,956	104,940	104,472	107,670	103,218
4	55,379	49,294	58,274	67,505	79,418	92,784	94,793	110,989	135,982	126,275	137,595	140,509	140,126	129,435
5	53,093	53,876	67,435	80,043	92,659	109,560	132,861	140,898	166,243	171,744	185,161	183,217	188,799	179,778
6	56,572	60,392	74,672	92,538	109,290	128,639	160,151	177,042	248,590	245,957	259,206	265,209	257,100	235,331
7	58,575	67,503	84,030	107,632	130,617	158,139	230,800	233,878	289,664	334,215	390,614	407,615	393,336	337,898
8	58,618	72,001	94,450	113,659	150,345	193,505	257,127	321,588	404,627	509,813	555,404	595,004	577,450	500,563
9	62,021	74,606	96,468	123,932	170,453	231,179	328,892	521,401	698,484	772,719	854,035	898,625	888,578	788,482
10	64,286	80,778	106,856	138,180	194,867	278,713	419,470	691,606	0,000	1218,483	1316,624	1472,534	1378,876	1243,432
11	64,551	84,437	111,465	149,178	208,905	309,061	504,745	907,767	0,000	2105,904	2335,190	2276,564	2199,781	2229,334
12	65,939	75,999	111,359	156,498	215,201	322,798	544,302	975,755	0,000	0,000	0,000	0,000	0,000	0,000
13	68,898	98,413	112,213	155,433	223,963	305,164	521,995	910,672	0,000	0,000	0,000	0,000	0,000	0,000
14	68,398	85,183	112,846	144,677	207,515	292,233	453,830	775,603	0,000	0,000	0,000	0,000	0,000	0,000

Induktor bez stínění - grafické znázornění rozložení H kolem induktoru

Obr. 4. 22 Grafické rozložení intenzity magnetického pole

2013

Obr. 4. 23 Grafické rozložení intenzity magnetického pole

Induktor se svazky transformátorových plechů - naměřené a vypočítané hodnoty

Tab. 4. 26 Namérené hodnoty naindukovaného napéti kolem indukti

[V]	Α	В	С	D	E	F	G	н	I	J	К	L	Μ	Ν	
1	0,062	0,079	0,112	0,161	0,104	0,212	0,25	0,155	0,216	0,161	0,182	0,187	0,216	0,345	а
	0,071	0,081	0,105	0,133	0,11	0,187	0,205	0,115	0,109	0,055	0,024	0,031	0,089	0,212	r
2	0,064	0,081	0,127	0,172	0,117	0,208	0,269	0,136	0,244	0,231	0,255	0,256	0,298	0,459	а
	0,075	0,086	0,131	0,223	0,133	0,196	0,222	0,151	0,143	0,069	0,067	0,052	0,154	0,221	r
3	0,052	0,087	0,142	0,223	0,142	0,232	0,274	0,277	0,295	0,292	0,334	0,357	0,342	0,402	а
	0,081	0,104	0,154	0,251	0,157	0,218	0,248	0,196	0,175	0,108	0,069	0,068	0,447	0,182	r
4	0,066	0,086	0,156	0,111	0,148	0,247	0,278	0,308	0,369	0,405	0,468	0,48	0,488	0,506	а
	0,084	0,114	0,166	0,163	0,198	0,233	0,275	0,256	0,248	0,171	0,121	0,049	0,178	0,354	r
5	0,064	0,078	0,145	0,093	0,144	0,182	0,284	0,365	0,477	0,583	0,657	0,707	0,746	0,583	а
	0,088	0,128	0,187	0,185	0,245	0,259	0,329	0,375	0,348	0,273	0,171	0,123	0,341	0,367	r
6	0,062	0,082	0,144	0,073	0,129	0,161	0,264	0,426	0,603	0,804	0,992	1,071	1,035	0,828	а
	0,095	0,13	0,201	0,208	0,282	0,366	0,409	0,502	0,539	0,461	0,323	0,103	0,35	0,532	r
7	0,057	0,079	0,139	0,066	0,076	0,139	0,244	0,404	0,764	1,175	1,608	1,721	1,617	1,257	а
	0,096	0,13	0,211	0,235	0,326	0,432	0,546	0,701	0,808	0,818	0,529	0,116	0,569	0,804	r
8	0,071	0,094	0,142	0,055	0,084	0,106	0,233	0,336	1,075	1,822	2,588	3,166	2,945	1,886	а
	0,094	0,136	0,217	0,259	0,351	0,504	0,686	1,052	1,435	1,452	1,035	0,177	1,044	1,565	r
9	0,077	0,099	0,151	0,103	0,128	0,177	0,269	0,421	0,692	2,691	5,17	6,25	5,97	3,126	а
	0,091	0,134	0,206	0,262	0,365	0,523	0,78	1,452	2,485	3,187	2,077	0,228	2,415	3,257	r
10	0,083	0,102	0,184	0,125	0,188	0,235	0,399	1,077		4,74	10,08	12,28	11,76	7,35	а
	0,082	0,121	0,194	0,258	0,356	0,501	0,714	1,151		7,02	4,26	0,221	3,94	7,89	r
11	0,084	0,125	0,207	0,131	0,227	0,286	0,406			15,92	20,09	22,58	22,08	18,15	а
	0,072	0,106	0,198	0,233	0,316	0,451	0,639			16,95	9,01	2,105	7,54	14,68	r
12	0,089	0,128	0,206	0,188	0,276	0,361	0,459								а
	0,052	0,079	0,159	0,185	0,273	0,381	0,616								r
13	0,099	0,141	0,217	0,234	0,298	0,407	0,541								а
	0,053	0,054	0,127	0,129	0,196	0,282	0,489								r
14	0,106	0,144	0,231	0,245	0,324	0,424	0,572								а
	0,042	0,063	0,108	0,069	0,121	0,195	0,294								r

Vypočtené hodnoty intenzity magnetického pole kolem induktoru uvádím v tabulce Tab. 4. 27

Příklad výpočtu *H* pro bod L8:

$$B_r = k \cdot \frac{U_r}{4,44 \cdot f} = 4,732 \cdot \frac{0,177}{4,44 \cdot 10000} = 1,886 \cdot 10^{-5} \text{ T} \quad B_a = k \cdot \frac{U_a}{4,44 \cdot f} = 4,732 \cdot \frac{3,166}{4,44 \cdot 10000} = 3,374 \cdot 10^{-4} \text{ T}$$

$$B = \sqrt{(1,886 \cdot 10^{-5})^2 + (3,374 \cdot 10^{-4})^2} = 3,379 \cdot 10^{-4} \text{ T}$$

$$H = \frac{B}{\mu_0 \cdot \mu_r} = \frac{3,379410}{1,257 \cdot 10^{-6} \cdot 1} = 268,921 \text{ A/m}$$

Tab. 4. 27 Magnetická intenzita magnetického pole induktoru

H [A/m]	Α	В	С	D	E	F	G	н	I	J	к	L	м	Ν
1	7,994	9,596	13,020	17,710	12,838	23,974	27,419	16,368	20,519	14,429	15,569	16,075	19,813	34,341
2	8,362	10,019	15,474	23,884	15,023	24,238	29,579	17,234	23,985	20,446	22,360	22,154	28,448	43,204
3	8,163	11,499	17,765	28,474	17,953	26,999	31,342	28,778	29,089	26,403	28,924	30,821	47,732	37,424
4	9,060	12,111	19,319	16,725	20,965	28,797	33,163	33,966	37,705	37,283	40,995	40,919	44,053	52,372
5	9,228	12,712	20,068	17,560	24,101	26,846	36,859	44,381	50,075	54,595	57,575	60,860	69 <i>,</i> 563	58,424
6	9,621	13,035	20,969	18,695	26,299	33,910	41,285	55,837	68,591	78,599	88,477	91,248	92,659	83,466
7	9,469	12,901	21,428	20,701	28,389	38,487	50,718	68,617	94,307	121,419	143,561	146,285	145,377	126,545
8	9,990	14,021	21,993	22,455	30,608	43,678	61,442	93,658	152,060	197,586	236,384	268,921	264,988	207,844
9	10,110	14,129	21,661	23,875	32,803	46,826	69,973	128,213	218,766	353,746	472,516	530,401	546,159	382,857
10	9,895	13,421	22,676	24,313	34,143	46,931	69,366	133,683	0,000	718,358	928,070	1041,609	1051,826	914,489
11	9,383	13,899	24,293	22,669	32,997	45,291	64,206	0,000	0,000	1972,122	1867,290	1923,264	1978,728	1979,722
12	8,742	12,756	22,069	22,369	32,923	44,513	65,150	0,000	0,000	0,000	0,000	0,000	0,000	0,000
13	9,523	12,805	21,323	22,661	30,249	41,993	61,846	0,000	0,000	0,000	0,000	0,000	0,000	0,000
14	9,670	13,330	21,626	21,586	29,331	39,579	54,543	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Induktor se svazky transformátorových plechů - grafické rozložení *H* kolem induktoru

Obr. 4. 24 Grafické rozložení intenzity magnetického pole

Obr. 4. 25 Grafické rozložení intenzity magnetického pole

V obrázcích Obr. 4.22 až 4.25 vidíme názorně vliv stínění na velikost intenzity magnetického pole vně induktoru. Stínění se nachází na úrovni sloupce H a vidíme, že pole nalevo od tohoto sloupce je odstíněné. Maximální hodnota *H* u nestíněného induktoru činí 2335,190 A/m, u stíněného 1979,722 A/m. Obě tyto hodnoty byly naměřeny v ose induktoru (přesněji v bodech K11N11). Vně induktoru v bodě D11 byly naměřeny tyto hodnoty *H*:

 nestíněný induktor: 	149,178 A/m
- stíněný induktor:	22,669 A/m

4.4 Chyby měření [19]

Žádným měřením není možné změřit správnou (skutečnou) hodnotu měřené veličiny, při každém měření dochází k chybám. Je proto dobré mít na mysli, že výsledky měření jsou přibližné hodnoty ke skutečným hodnotám a také je tak interpretovat. Chyba měření, tj. odchylka měřené hodnoty veličiny od správné hodnoty, nám charakterizuje přesnost měření a je vyjádřena absolutní nebo relativní chybou.

Příčiny vzniku chyb měření je několik:

- Chyby použité metody: jde o systematickou chybu, vznikající vzájemným působením měřicího přístroje a měřeného obvodu (provedení zapojení). Jsou většinou korigovatelné.
- **Chyby měřicích přístrojů:** jsou dány vlastnostmi použitého přístroje (nedokonalost přístroje) a vlivu okolí na daný přístroj (vliv elmag. pole)
- Chyby způsobené rušivými vlivy
- Chyby čtení údajů pozorovatelem

Výsledky měření jsou získávány buď přímo, tj. čtením z měřicího přístroje, nebo nepřímo z matematických vzorců, do kterých jsou zadávány naměřené hodnoty veličiny zjištěné přímým měřením a jsou již zatíženy chybou.

Chyby přímých měření

Výsledky měření jsou získávány čtením údaje z měřicího přístroje a největší možná absolutní chyba je dána absolutní chybou údaje měřicího přístroje a absolutní chybou metody.

absolutní chyba:
$$\Delta_{PM} = \Delta_u + \Delta_m$$
 relativní chyba: $\delta_{PM} = \frac{\Delta_{PM}}{N} \cdot 100 \ [\%]$

- poznámka: absolutní chyba $\Delta = N - S$, kde N - naměřená hodnota, S - skutečná hodnota

relativní chyba
$$\delta = \frac{\Delta}{N} \cdot 100 \ [\%]$$

Chyby nepřímých měření

Výsledek měření je získán matematickou funkcí nezávisle proměnných, jejíž hodnoty jsou určeny měřením. Tyto hodnoty jsou zatíženy určitou chybou. Je-li měřená veličina Y dána funkcí $Y = f(X_1, ..., X_n)$, lze určit absolutní chybu "totálním diferenciálem".

$$\left|\Delta_{Y}\right| = \sum_{i=1}^{n} \left|\frac{\delta f}{\delta X_{i}} \cdot \Delta_{X_{i}}\right|$$

Pro základní matematické operace se nemusí pracovat s totálním diferenciálem. Výsledná chyba se určí na základě těchto pravidel: $Y = X_1 \pm X_2 \rightarrow |\Delta_Y| = |\Delta_{X_1}| + |\Delta_{X_2}|;$ $Y = X_1 \cdot X_2 \rightarrow |\delta_Y| = |\delta_{X_1}| + |\delta_{X_2}|;$ $Y = X_1 / X_2 \rightarrow |\delta_Y| = |\delta_{X_1}| + |\delta_{X_2}|$

Chyby údajů analogových a číslicových přístrojů

U analogových a číslicových přístrojů se určují tzv. základní chyby (dány vlastnostmi měřicího přístroje a nedokonalostí výroby) a přídavné chyby v případě použití přístroje v podmínkách nestanovených výrobcem (jiná teplota, tlak, vliv elmag. pole).

• analogové přístroje: Základní chyby jsou zahrnuty v třídě přesnosti (TP). Třída přesnosti udává mezní dovolenou relativní chybu přístroje, pokud je používán dle pokynů výrobce. Není-li tak používán, vznikají přídavné chyby δ_z : $\delta_u = \delta_p + \delta_z$.

Při zachování vztažných podmínek platí: $|\Delta_u| \le \frac{\text{TP}}{100} \cdot \text{M}$ $|\delta_u| \le \left|\frac{\text{M}}{X} \cdot \text{TP}\right| \%$,

kde X je naměřená hodnota, M je největší hodnota měřicího rozsahu

- číslicové přístroje: Základní chyba se obvykle vyjadřuje dvěma způsoby:
 - Chyba v procentech měřené hodnoty δ_1 a chyba v procentech rozsahu δ_2 :

$$\left|\Delta_{u}\right| = \left|\frac{\delta_{1}}{100} \cdot U_{x}\right| + \left|\frac{\delta_{2}}{100} \cdot U_{r}\right|$$
 Ux naměřený údaj, Ur hodnota měřicího rozsahu

• Chyba v procentech měřené hodnoty δ_1 a počet kvantizačních kroků:

 $\Delta_{u} = \pm \left(\frac{\delta_{1}}{100} \cdot \mathbf{U}_{x} + \Delta_{3} \cdot k \right) \qquad \Delta_{3} \text{ absolutní chyba udaná v počtu posledního}$

místa číslicového zobrazovače, tj. počet kvantovacích kroků

Jsem si vědom, že naměřené hodnoty v kapitolách 4.1 až 4.3 jsou zatíženy chybou. Chyby jsou způsobeny několika faktory.

- 1) Čtení hodnot z multimetru:
- Umístění měřicí cívky: Je velmi obtížné správně nasměrovat měřicí cívku do axiálního a radiálního směru ve všech bodech měření (a vždy stejně).
- Chyba měřicího přístroje: byl použit multimeter FINEST 703, měřicí cívky , elektromechanický voltmetr, ampérmetr
- Chyba měřicího obvodu: Chyba způsobena měřicí cívkou, kontakty přívodu induktoru (přechodový odpor), vliv okolí

5 Simulace laboratorního modelu

Pro praxi jsou simulační programy velice vítaným pomocníkem při řešení různorodých fyzikálních problémů a poskytují poměrně rychle a přehledně informace o fyzikálních dějích ve zkoumaném problému. V případě správného nastavení dané simulace přináší poměrně přesné výsledky v porovnání s analytickým výpočtem, pro který by určité složitější geometrie byly až příliš složité, či neřešitelné. Pro praxi přinášejí alternativní možnost pro získání představy, někdy mnohem rychlejší, o řešeném problému. Jistým problémem pro rozšíření simulačních programů (v praxi se nejvíce vyskytujících programů ANSYS, Quickfield, FEMM, COMSOL, RillFEM) je vysoká pořizovací cena a poměrně vysoké nároky na výpočetní techniku. I přes tato negativa jsou velmi výhodné nejen pro úsporu času, ale prakticky i z finančního pohledu, kdy umožní zlevnit vývoj zařízení, snížit náklady nebo ověřit jeho správnou funkci před uvedením na trh.

Ve většině výše uvedených programů se pro řešení fyzikálních problémů souvisejících s teorií polí využívá metoda konečných prvků (zkratka MKP, angl. FEM). K velkým přednostem této metody patří zejména: řešení úloh obecných geometrických tvarů, obecného zatížení a uložení, dále snadné řešení materiálově nehomogenních problémů. Principem této metody je diskretizace řešeného spojitého modelu do konečného počtu prvků (trojúhelníková, čtyřúhelníková diskretizace), kdy jednotlivé parametry jsou určovány v jednotlivých uzlech. Díky diskretizaci se místo integrálních a diferenciálních rovnic řeší algebraické rovnice. Hustota a topologie prvků sítě má značný vliv na přesnost výsledků a nároky kladené na výpočetní techniku. Pro jednoznačnost MKP je zapotřebí určit okrajové podmínky ([7, str. 45]).

Ve své práci jsem pro simulaci laboratorní úlohy zvolil program RillFEM 2D, který mi byl poskytnut na katedře KEE.

5.1 Stručný popis programu RillFEM 2D [7],[18]

Program RillFEM 2D je multifyzikálním programem pro numerické simulace (řešení) fyzikálních problémů založených na metodě konečných prvků. Byl vyvinut zejména pro řešení elektromagnetických polí, ale dále byl doplněn o řešení dalších polí - teplotní (ohřev vsázky), deformační (mechanická namáhání). Jeho nespornou výhodou je řešení nejen

jednoduchých polí, ale řešení i vzájemně sdružených polí, kdy se vzájemně řeší problém jak elektromagnetického pole, tak i pole teplotního. Toto je s výhodou využíváno zejména při řešení problematiky indukčních ohřevů. Další neméně důležitou výhodou programu je poměrně intuitivní ovládání, což je pro většinu techniků přínosné pro získání rychlého přehledu bez hlubších teoretických znalostí ani MKP výpočtů.

Program RillFEM se skládá ze 3 částí:

- Preprocesor: S touto částí se setkáme jako první při tvorbě nového projektu (řešeného fyzikálního problému). V preprocesoru provádíme počáteční nadefinování řešeného problému, kdy máme volbu až ze 40 možných problémů (např. elektrostatické pole, elektromagnetické pole, teplotní, deformační či různé sdružené úlohy). Další součástí preprocesoru je zadávání geometrie problému, kdy vkládáním bodů dle geometrie a jejich spojováním docílíme nadefinování geometrie daného problému (mimo jiné je umožněn import a export .dxf souborů). Současně s vytvářením hran geometrie je nezbytné zadat podmínky na rozhraní, okrajové a počáteční podmínky. Dále v preprocesoru je prováděno zadávání materiálových hodnot a určení materiálu pro danou oblast problému (RillFEM disponuje databází normalizovaných materiálů). V neposlední řadě se v preprocesoru provádí definice oblasti a provedení diskretizace problému.
- Solver: Provádí vlastní numerické řešení v uzlech diskretizační oblasti daného problému nadefinovaného v preprocesoru.
- Postprocesor: V postprocesoru je prováděno zobrazení výsledků. Umožňuje vytvářet plné barevné vyobrazení výsledků, tvorbu isolinií nejen celého problému, ale i dílčích částí problému (např. pouze samotného induktoru apod.). Dále umožňuje vytvářet 2D grafy, zobrazit výsledky časově tranzientních výpočtů a dopočítávání dalších veličin (ztráty, energie elektrického a magnetického pole). Všechny získané výsledky lze exportovat do různých grafických formátů (.bmp, .jpg, .tif) pro další editaci či tisk nebo vytvářet datové soubory pro zpracování v jiných programech.

5.2 Postup řešení v programu RillFEM

- Vytvoření projektu 1 Harmonic RZ, zvolen daný kmitočet
- Nadefinování bodů, sestrojení hran a definování oblasti včetně zadání podmínek na rozhraní a okrajových podmínek
- Nadefinování materiálu, nastavení materiálu pro dané oblasti včetně nastavení vhodné hodnoty mesh
- Provedení kontroly geometrie, provedeno meshování
- Spuštění solveru
- Před každým vyobrazením výsledků prováděno refinement = zjemnění
- Vyobrazení výsledků pomocí postprocesoru

5.3 Simulace laboratorní úlohy - proud 15 A

V simulaci jsem postupoval přesně podle výše uvedeného postupu a v této podkapitole uvedu k některým bodům doplňující informace.

Základní geometrie - samotný induktor

Tab. 5. 1 Geometrie samotného induktoru

	1	2	3	4	5	6	7
r [m]	0,11	0,11	0,113	0,113	0	0	3
z [m]	0,1585	-0,1585	0,1585	-0,1585	3	-3	0

Základní geometrie - induktor a svazky transformátorových plechů

Tab. 5. 2 Geometrie induktoru a svazků transformátorových plechů

	1	2	3	4	5	6	7	8	9	10
r [m]	0,11	0,11	0,113	0,113	0,1225	0,1225	0,1399	0,1399	0	0
z [m]	0,1585	-0,1585	0,1585	-0,1585	0,2005	-0,2875	0,2005	-0,2875	3	-3

Rozměry svazků transformátorových plechů:

výška svazků 488 mm šířka svazků 41 mm

hloubka svazků 35 mm

Pecní induktor jsem nahradil ekvivalentní vrstvou o stejné výšce a tloušťce jako reálný induktor. Pro případ svazků transformátorových plechů jsem provedl totéž s tím rozdílem, že jsem svazky nahradil stínícím válcem o stejné výšce, ale o jiné tloušťce.

Tloušťku tohoto válce jsem určil z celkového objemu svazků transformátorových plechů. Určení jsem provedl takto:

$$V_{válec} = V_{svazky}$$

 $\pi \cdot v \cdot (r_2^2 - r_1^2) = 10 \cdot 35 \cdot 41 \cdot 488$
 $\pi \cdot 488 \cdot (r_2^2 - 122, 5^2) = 7002800$
 $r_2 = 139,907$

tloušťka náhradního válce je tedy $x = r_2 - r_1 = 139,907 - 122,5 = 17,407 mm$

Podle tabulek Tab. 5. 1 a Tab. 5. 2 jsem vkládal body geometrie. Vkládání bodů se provádí přes nabídku Preprocesoru, volbou Geometry Builder - Keypoint, kdy můžeme postupně zadat všechny body. Samozřejmě vkládání bodů lze provést též přes pravé tlačítko myši Add KP by click.

Propojení vytvořených bodů se provádí opět přes nabídku Preprocesoru, kdy volbou Geometry Builder - Straight Line se zobrazí nabídka pro zadávání hran geometrie. Po počátečním určení bodů, jenž budou propojeny, se nastaví okrajové podmínky pro danou hranu. V případě hran induktoru a svazků transformátorových plechů jsem nastavil v kolonce Harmonic Magnetic nulové okrajové podmínky. Jinak tomu je v případě osy symetrie a na hranici oblasti (tvořenou půlkružnicí), kde platí tzv. Dirichletova okrajová podmínka A = 0(Vectory Potencial). Půlkružnice na hranici oblasti je zadávána obdobně jako hrana volbou Geometry Builder - Circle Line, kde se nastaví okrajové body půlkružnice, úhel výseče a počet bodů, ze kterých se půlkružnice bude skládat (já jsem volil 20 bodů).

- poznámka: Stejně jako u vkládání bodů, lze též při sestavení hran a půlkružnice pracovat s pravým tlačítkem myši, kdy volbou Add Straight Line by click & click (resp. Add Circle Line by click & click) a kliknutím na okrajové body se zobrazí stejná nabídka, jak je výše popsáno.

Po sestavení geometrie je zapotřebí nadefinovat materiál daných oblastí. Nadefinování se provádí v Preprocesoru volbou Model Builder - Material Modeler, kdy se zobrazí dialogové okno, do kterého lze zadat hodnoty materiálových veličin oblasti a nebo využít databázi normalizovaných materiálů. Máme-li dialogové okno vyplněné, je nutné námi nadefinovaný materiál uložit do lokální knihovny. Samotné vkládání materiálu do oblasti se provádí opět přes Preprocesoru - Model Builder, volbou Attribute a kliknutím do dané oblasti. Zobrazí se dialogové okno, kde se musí uvést, jaký druh materiálu vkládáme (k dispozici je nabídka materiálů z lokální knihovny), dále zvolit úroveň meshování a v případě, že materiálem protéká proud, zadat zde velikost proudu.

Úroveň mesh se volí maximálně třetina hloubky vniku s přihlédnutím na verzi programu.

$$a = \sqrt{\frac{2}{\omega \cdot \gamma \cdot \mu_0 \cdot \mu_r}} = \sqrt{\frac{2}{2 \cdot \pi \cdot 4100 \cdot 5 \cdot 10^6 \cdot 4 \cdot \pi \cdot 10^{-7} \cdot 1}} = 0,003515 \text{ m}$$

z čehož vyplývá parametr $mesh = \frac{a}{3} = \frac{0,003515}{3} = 0,001172 \text{ m}$

 - Pro induktor jsem zvolil Cu_20grdC z globální knihovny a provedl úpravy. Tento materiál jsem uložil do lokální knihovny

- mesh: 0.002

- celkový proud: $V = I \cdot N \cdot \sqrt{2} = 15 \cdot 42 \cdot \sqrt{2} = 895.9545$ A
- Pro stínění jsem zvolil Steel 1.2343; 150°C s relativní permeabilitou 25 000 a vodivostí 0 S/m
 mesh: 0.002
- Pro okolí jsem zvolil vzduch a opět uložil do lokální knihovny

- mesh: 0.01

Nyní je daný řešený problém nadefinován a mohl jsem přistoupit k numerickému výpočtu. Před spuštěním Solver jsem provedl kontrolu spojení všech hran a meshování oblasti.

```
Volba check out of geometry , adaptiv mesh , show mesh , solve
```

Vykreslení výsledků

Před každým vykreslením jsem nastavil zjemnění (refinement): POSTPROCESSOR \rightarrow REFINEMENT \rightarrow 3 a OK \rightarrow volba veličiny v adresáři EMRz se soubory .resl01.

Pro vykreslení rozložení veličin *H*, *B*, *A* jsem postupoval tak, že jsem zvolil v postprocessoru **nodal results**. Zobrazí se dialogové okno, kde jsem si navolil, zda chci hladinové (**areas**) nebo vrstevnicové zobrazení (**lines**). Po kliknutí na **all areas** se zobrazí adresář EMRz, ve kterém jsou uloženy výsledky veličin *H*, *B*, *A* a jiné. Po volbě veličiny se zobrazí daná veličina v barevné škále. V postprocesoru je dále možné vykreslit 2D graf veličiny volbou **2D graph by Path** (volba veličiny je stejná jako při **nodal results**).

Pomocí záložky **PlotControls** jsem provedl export vykreslených výsledků do formátu .jpg.

Pro jednoduché konstrukce indukčních kelímkových pecí lze řešit problém jako osově symetrický. Na Obr. 5. 1 je viděn řešený problém v programu RillFEM 2D pro případ se svazky transformátorových plechů.

Obr. 5. 1 Celková geometrie včetně detailu na induktor a náhradní válec respektující svazky transformátorových plechů

Negativem simulace v RillFEMu 2D je frekvenční nezávislost, kdy ekvivalentní vrstvu za pecní induktor nelze jinak udělat než jako jeden celek (nelze vyjádřit závity) a nelze tudíž nastavit vodivost mědi (projevil by se do značné míry vliv skinefektu). V následujících průbězích z RillFEMu alespoň prokážu vliv stínění svazků transformátorových plechů na magnetické pole kolem induktoru.

Srovnání průběhu H bez stínění a se svazky transformátorových plechů

gretic Field Intensity H_t[A/m] Minute 0 Naviewm 2510.57210179047

Obr. 5. 2 Intenzita magnet. pole H, bez stínění

Obr. 5. 4 Intenzita magnet. pole H, bez stínění - isolinie

Obr. 5. 3 Intenzita magnet. pole H, se stíněním

Obr. 5. 5 Intenzita magnet. pole H, se stíněním - isolinie

Srovnání průběhu B bez stínění a se svazky transformátorových plechů

Obr. 5. 8 Magnetická indukce **B**, bez stínění - isolinie

Obr. 5. 9 Magnetická indukce **B**, se stíněním - isolinie

Srovnání průběhu A bez stínění a se svazky transformátorových plechů

Obr. 5. 10 Magnetický vektorový potenciál A, bez stínění

Obr. 5. 11 Magnetický vektorový potenciál A, se stíněním

Obr. 5. 12 Magnetický vektorový potenciál A, bez stínění - isolinie

Obr. 5. 13 Magnetický vektorový potenciál A, se stíněním - isolinie

5.4 Simulace laboratorní úlohy - proud 31 A

Postup simulace pro velikost proudu 31 A je naprosto stejný jako pro proud 15 A. Jen se změní celkový proud v nastavení induktoru (viz níže). Ve zkratce uvedu základní informace.

Základní geometrie - samotný induktor

Tab 5	3	Geometrie	samotného	induktoru
<i>ruv. s.</i>	2	Geometrie	sumoineno	таиктоги

	1	2	3	4	5	6	7
r [m]	0,11	0,11	0,113	0,113	0	0	3
z [m]	0,1585	-0,1585	0,1585	-0,1585	3	-3	0

Základní geometrie - induktor a svazky transformátorových plechů

Tab. 5. 4 Geometrie induktoru a svazků transformátorových plechů

	1	2	3	4	5	6	7	8	9	10
r [m]	0,11	0,11	0,113	0,113	0,1225	0,1225	0,1399	0,1399	0	0
z [m]	0,1585	-0,1585	0,1585	-0,1585	0,2005	-0,2875	0,2005	-0,2875	3	-3

Úroveň mesh se volí maximálně třetina hloubky vniku s přihlédnutím na verzi programu.

$$a = \sqrt{\frac{2}{\omega \cdot \gamma \cdot \mu_0 \cdot \mu_r}} = \sqrt{\frac{2}{2 \cdot \pi \cdot 4100 \cdot 5 \cdot 10^6 \cdot 4 \cdot \pi \cdot 10^{-7} \cdot 1}} = 0,003515 \text{ m}$$

z čehož vyplývá parametr $mesh = \frac{a}{3} = \frac{0,003515}{3} = 0,001172 \text{ m}$

- Pro induktor jsem zvolil Cu_20grdC z globální knihovny a provedl úpravy. Tento

materiál jsem uložil do lokální knihovny

- mesh: 0.002

- celkový proud: $V = I \cdot N \cdot \sqrt{2} = 31 \cdot 42 \cdot \sqrt{2} = 1841.3061 \text{ A}$

- Pro stínění jsem zvolil Steel 1.2343; 150°C s relativní permeabilitou 25 000 a vodivostí 0 S/m

- mesh: 0.002

- Pro okolí jsem zvolil vzduch a opět uložil do lokální knihovny

- mesh: 0.01

Na Obr. 5. 14 je viděn řešený problém v programu RillFEM 2D pro případ se svazky transformátorových plechů.

Obr. 5. 14 Celková geometrie včetně detailu na induktor a náhradní válec respektující svazky transformátorových plechů

Srovnání průběhu H bez stínění a se svazky transformátorových plechů Total Magnetic Field Intensity H_t[Alm] Total Magnetic Field Intensity H_t[Alm Mninun I inun il 730E+0 74E+I 450E+0 994E+0 315E+0 1990年10 180E+0 3246+0 Naximum: 5883.47234155751 Naximum: 5188.51605274628 Obr. 5.15 Intenzita magnet. pole H, bez stínění Obr.5.16 Intenzita magnet. pole H, se stíněním

Obr. 5.17 Intenzita magnet. pole **H**, bez stínění - isolinie

Obr.5.18 Intenzita magnet. pole **H**, se stíněním - isolinie

Srovnání průběhu B bez stínění a se svazky transformátorových plechů

Obr. 5. 21 Magnetická indukce **B**, bez stínění - isolinie

Obr. 5. 22 Magnetická indukce **B**, se stíněním - isolinie

Srovnání průběhu A bez stínění a se svazky transformátorových plechů

Obr. 5. 23 Magnetický vektorový potenciál A, bez stínění

Obr. 5. 24 Magnetický vektorový potenciál A, se stíněním

Obr. 5. 25 Magnetický vektorový potenciál A, bez stínění - isolinie

Obr. 5. 26 Magnetický vektorový potenciál A, se stíněním - isolinie

6 Zhodnocení výsledků a důsledky stínění pro provoz

Jelikož nemohu korektně zhodnotit a porovnat výsledky měření s hodnotami ze simulace, ani pomocí indukční sondy, která se porouchala v průběhu měření, rozhodl jsem se pro zhodnocení výsledků ve formě procentuálního vyjádření účinnosti stínění svazků dle vzorce $\frac{(H_{BezS} - H_{SeS})}{H_{BezS}} \cdot 100$. V níže uvedených tabulkách je vyjádřen vliv stínění. Čím je hodnota v procentech větší, tím je vlivem stínění intenzita magnetického pole v daném bodě

H [%]	Α	В	С	D	E	F	G	н	I	J	К	L	Μ	Ν
1	71,05	89,93	91,69	88,67	88,54	88,30	89,56	84,76	79,68	79,67	79,94	79,20	79,77	78,64
2	93 <i>,</i> 80	94,69	95,38	92,17	90,18	90,12	87,32	86,65	82,30	82,32	82,75	81,33	81,69	81,36
3	94,36	95,42	96,31	91,96	90,18	87,50	86,06	83,00	80,94	78,99	77,80	78,71	79,45	79,70
4	94,98	97,28	94,95	93,12	88,69	86,91	85,64	81,53	77,68	78,02	74,99	75,05	75,85	76,77
5	95,75	96,64	94,46	94,24	90,06	88,34	83,70	81,21	76,16	75,01	72,28	71,17	72,41	74,62
6	94,03	95,39	93,97	93,39	88,38	87,00	83,23	77,92	73,80	70,07	66,14	67,18	67,82	70,49
7	92,37	94,71	93,89	93,33	89,12	84,66	81,55	76,89	69,74	64,79	60,05	59,56	61,80	64,40
8	95 <i>,</i> 06	95,30	94,58	92,97	89,93	86,43	81,56	74,18	66,04	57,61	50,51	49,79	52,18	56,97
9	94,21	93,50	93,50	93,28	91,80	88,44	84,43	72,37	60,56	46,39	38,46	36,44	40,76	46,60
10	94,34	94,67	94,52	93,83	92,49	91,68	88,26	77,63		23,07	16,55	19,56	20,61	28,39
11	95 <i>,</i> 62	94,03	93,92	94,65	93,57	94,02	92,86			-2,67	0,30	0,63	1,65	-6,87
12	92,92	94,94	94,86	94,78	94,83	96,07	96,52							
13	93,33	94,12	94,93	96,28	95,92	96,99	97,08							
14	93,41	94,16	94,45	95,34	96,03	97,23	97,48							

Tab. 6. 1 Procentuální srovnání stínění při kmitočtu 50 Hz

menší.

Tab. 6. 2 Pr	rocentuální s	rovnání stír	nění při kn	itočtu 4100 Hz
--------------	---------------	--------------	-------------	----------------

Н [%]	Α	В	С	D	E	F	G	Н	I	J	Κ	L	Μ	Ν
1	85,41	87,81	86,00	56,08	67,47	52,42	80,57	77,25	70,93	74,28	64,83	5,80	-39,21	78,72
2	86,48	80,99	84,78	54,16	61,46	59 <i>,</i> 04	78 <i>,</i> 63	76,72	76,61	69,21	66,78	23,39	2,70	74,03
3	82,47	88,34	86,01	54,27	66,67	59,34	75,90	72,98	71,12	68,82	67,84	32,00	19,19	69,26
4	77,96	85,68	85,35	59,39	67,95	64,06	77,32	70,98	70,85	73,38	70,05	46,55	35,07	60,82
5	76,76	84,06	82,65	62,92	69,47	66,32	76,36	73 <i>,</i> 89	71,82	68,23	66,05	54,65	64,00	65,79
6	77,81	83,37	82,78	67,13	72,11	71,27	76,48	72,87	68,68	63,90	61,46	55,62	55,78	65,37
7	80,20	83,26	81,94	70,58	75,27	72,28	76,90	73,30	66,66	60,51	59,82	58,00	57,16	61,84
8	77,57	83,85	85,27	73,03	76,96	75,67	77,62	71,99	65,01	57,45	52,43	48,54	50,64	57,90
9	79,69	83,95	85,53	74,79	79,19	79,30	79,19	72,97	59,37	49,56	43,13	43,99	39,70	48,32
10	80,52	85,22	86,54	76,55	80,29	83,14	82,97	76,00		33,00	24,52	28,06	27,43	27,46
11	88,22	85,74	87,13	79,58	82,19	84,72	87,38			13,13	5,34	10,79	6,20	4,56
12	87,55	86,94	87,86	82,08	82,96	84,53	88,76							
13	87,35	87,93	86,88	81,64	83,64	84,48	88,52							
14	86,70	87,94	86,73	83,49	84,15	84,98	87,96							

H [%]	Α	В	С	D	E	F	G	н	I	J	К	L	Μ	Ν
1	83,04	71,31	64,88	56,71	73,26	55,46	53,38	74,16	76,64	83,42	72,35	71,11	63,78	48,61
2	82,77	73,01	65,16	49,74	74,09	61,45	56,96	77,70	76,76	77,39	71,91	71,85	66,30	46,45
3	83,89	72,64	65,95	50,06	72,67	64,98	53,89	67,16	75,98	75,54	72,44	70,50	55,67	63,74
4	83,64	75,43	66,85	75,22	73,60	68,96	65,02	69,40	72,27	70,47	70,21	70,88	68,56	59,54
5	82,62	76,40	70,24	78,06	73,99	75,50	72,26	68,50	69,88	68,21	68,91	66,78	63,15	67,50
6	82,99	78,42	71,92	79,80	75,94	73,64	74,22	68,46	72,41	68,04	65,87	65,59	63,96	64,53
7	83,84	80,89	74,50	80,77	78,27	75,66	78,02	70,66	67,44	63,67	63,25	64,11	63,04	62,55
8	82,96	80,53	76,71	80,24	79,64	77,43	76,10	70,88	62,42	61,24	57,44	54,80	54,11	58 <i>,</i> 48
9	83,70	81,06	77,55	80,74	80,76	79,74	78,72	75,41	68,68	54,22	44,67	40,98	38,54	51,44
10	84,61	83,38	78,78	82,40	82,48	83,16	83,46	80,67		41,04	29,51	29,26	23,72	26,45
11	85,46	83,54	78,21	84,80	84,20	85,35	87,28			6,35	20,04	15,52	10,05	11,20
12	86,74	83,22	80,18	85,71	84,70	86,21	88,03							
13	86,18	86,99	81,00	85,42	86,49	86,24	88,15							
14	85,86	84,35	80,84	85,08	85,87	86,46	87,98							

Tab. 6. 3 Procentuální srovnání stínění při kmitočtu 10000 Hz

Největší účinnost stínění dle naměřených hodnot jsem dosáhl při kmitočtu 50 Hz (hodnoty v tabulkách odpovídají hodnotám při proudu 31 A, při proudu 15 A jsem dospěl k obdobným výsledkům, proto je zde neuvádím). Průměrná hodnota procentuálního rozdílu činí pro 50 Hz 79,46 %; pro 4100 Hz 67,68 % a pro 10000 Hz 69,83 %. Úroveň stínění při použití vyššího kmitočtu je nižší, rozdíl ve stínění při kmitočtech 4 100 Hz a 10 000 Hz není až tak velký. V příloze VIII jsou přiložena srovnání procentuálních rozdílů stínění použitých kmitočtů ve vybraných sloupcích a řádcích. Zde musím poukázat na možné nepřesné hodnoty, které mohou být způsobené jednak samotným odečítáním na měřící desce, kdy velmi záleží na umístění a nasměrování měřící cívky (toto platí zejména v malé vzdálenosti od induktoru). Ale také jak se ukázalo, tím, že přívodní kabel ke křížové měřící cívce byl nešťastně zvolen pro tyto účely (krátká nezkroucená dvojlinka), která vnáší nepřesnost do měření.

Přesto lze z naměřených hodnot posoudit chování stínění svazky transformátorových plechů vně induktoru, kdy úroveň stínění se na kraji měřící desky pohybuje kolem 90 %. Dále z výše uvedených tabulek si lze všimnout klesající tendence procentuálního rozdílu H v ose induktoru (sloupec L, M). To je důsledek působení svazků transformátorových plechů. Jak uvádím v teoretické části, svazky způsobují zvýšení magnetického toku buzeného induktorem, čím se zvýší vlastní indukčnost induktoru a intenzita magnetického pole. V Tab. 6. 4 ⁴ uvádím hodnoty naměřené uvnitř induktoru k prokázání tohoto jevu.

⁴ měření bylo prováděno v rámci měření části diplomové práce Bc. Michala Tajera, hodnoty byly použity pouze pro toto zhodnocení

f [Hz]		Slou	pec L		Sloupec M					
1 [112]	řádek	induktor	stínění	srovnání	řádek	induktor	stínění	srovnání		
4 100 47	13	5293,065	5521,214	-4,31	13	5534,397	5692,519	-2,857		
4 100 HZ	14	5608,68	6350,835	-13,232	14	6023,146	6192,947	-2,819		
10 000 47	13	3089,219	3720,127	-20,423	13	3211,302	4010,867	-24,898		
10 000 HZ	14	3282,088	4298,182	-30,959	14	3200,933	4303,808	-34,455		

Tab. 6. 4 Srovnání H uvnitř induktoru

Zde je již výrazný rozdíl. S vyšším kmitočtem dosahuji vyššího procentuálního rozdílu *H* uvnitř induktoru.

Zvýšení magnetického toku vede zejména ke zvýšení účinnosti pece a tedy k efektivitě tavby, což je z energetického hlediska velmi vítavé. Z energetického hlediska se musí při indukčním tavení brát v úvahu, že indukční pece jsou nejčastěji jednofázové a vnáší do sítě nesymetrickou zátěž. Proto je nutné připojovat indukční pece přes symetrizační člen (viz Příloha V, Obr. 21). Z ekologického hlediska nejsou indukční pece v porovnání s ostatními typy pecí zvlášť nebezpečné. Vliv stínění na ekonomiku je také zjevný, kdy vyšší účinnost zlepšuje ekonomiku tavby. Z druhého pohledu stínění přináší nemalé pořizovací náklady (v Tab. 6. 5 uvádím ceny paketů, které mi byly poskytnuty firmou Elektroteplo Kolín, s.r.o.).

Rozměry	Výška [mm]	Šířka [mm]	Hloubka [mm]
Větší pakety	2 060	140	100
Menší pakety	1 530	140	100
Ekonomika	Počet paketů	Cena paketu [Kč] (bez DPH)	Celkové náklady [Kč] (bez DPH)
Ekonomika Větší pakety	Počet paketů 16	Cena paketu [Kč] (bez DPH) 96 000	Celkové náklady [Kč] (bez DPH) 1 536 000

Tab. 6. 5 Příklad ceny paketů pro 6t indukční pec SF

(poznámka: v případě NF pece jsou ceny cca o 15 % menší; ceny jsou z roku 2011, možný nárůst ceny o 12 %)

Závěr

Cílem této diplomové práce bylo provést měření vysokofrekvenčního pole kolem samotného induktoru a induktoru se svazky transformátorových plechů pro analyzování vlivu daného stínění. Pro konfrontaci výsledků jsem provedl simulaci v programu RillFEM 2D pro stejný model a v příloze jsem dále provedl analytický výpočet prázdného induktoru a měření na malém laboratorním modelu se svazky pro ověření vlivu svazků na hodnotu vlastní indukčnosti induktoru. Kromě měření vysokofrekvenčního pole jsem práci doplnil měřením pole síťového kmitočtu pro srovnání účinnosti stínění při použití nízkého a vysokého kmitočtu.

V úvodních kapitole uvádím odvození základních vztahů veličin E a H jak pro rovinné, tak zejména pro válcové harmonické elektromagnetické pole, kterým lze popsat elektromagnetické pole kolem laboratorního modelu induktoru. Ve dvou následujících kapitolách uvádím nejčastější průmyslové aplikace indukčního ohřevu a popis typů indukčních průmyslových pecí, kde se nejvíce věnuji popisu indukční kelímkové peci.

Na základě měření docházím k závěru, že největší účinnost stínění nastala při použití nízkého kmitočtu (v mém případě kmitočtu 50 Hz). V případě vyšších kmitočtů nejsou rozdíly tak výrazné (úroveň stínění je při 4 100 Hz mírně vyšší než při 10 000 Hz). Z naměřených hodnot jsou pozoruhodné vyšší maximální hodnoty *H* při kmitočtu 4 100 Hz. Toto zvýšení resp. závislost intenzity magnetického pole na kmitočtu u naměřených hodnot jsem nedokázal věrohodně zdůvodnit. Možným důvodem "určité" nelinearity je použití dvou rozdílných zdrojů, kdy při měření 50 Hz byl použit sinusový zdroj proudu a při měření vyšších kmitočtů byl použit pulzní zdroj obdélníkových pulzů. U kontrolního měření vyšších kmitočtů byl podobné jako u předchozího měření. Porovnám-li pouze kmitočty 4 100 Hz a 10 000 Hz, dochází k poklesu intenzity *H* se srůstajícím kmitočtem. Podle mého názoru toto souvisí se změnou impedance induktoru, kdy srůstajícím kmitočtem roste tato impedance a tím klesá proud. Klesne-li proud, sníží se též intenzita magnetického pole.

Je též nezbytné se zde zmínit, že se nelze vyvarovat chyb v průběhu měření. Již samotné umístění a nasměrování měřící cívky má značný vliv na hodnotu a to platí zejména v blízkosti induktoru, kdy sebemenší chybné natočení může způsobit naindukování několik mV, někdy jednotky V. Další nepřesnost výsledků vznikla při měření kmitočtu 10 000 Hz, kdy použitá měřicí křížová cívka byla opatřena nevhodným kabelem, který byl jednak krátký, ale zejména nebyl kroucený a byly viditelné změny naindukovaného napětí při přiblížení

multimetru (resp. kabelu) k induktoru (multimeter byl otestován v laboratoři EMC při katedře KEE, funkční kritérium A).

Výsledky z měření jsem chtěl konfrontovat s hodnotami ze simulace a měřením s indukční sondou. Ani jedno ze zamýšlených porovnání není zcela možné. Indukční sonda přestala fungovat v průběhu měření. V případě simulace je důvod zřejmý, frekvenční nezávislost, kdy ekvivalentní vrstvu za pecní induktor nelze jinak udělat než jako jeden celek (nelze vyjádřit závity) a nelze tudíž nastavit vodivost mědi (projevil by se do značné míry vliv skinefektu). V příloze V uvádím analytický výpočet, ve kterém jsem došel k těmto výsledkům:

 vyjdu-li z vlastní indukčnosti induktoru 	1512,406 A/m
- vyjdu-li z intenzity magnetického pole	1987,382 A/m

Dosahovaná maxima H [A/m]při měření

	Prou	d 15 A	Proud 31 A			
	Bez stínění	Se stíněním	Bez stínění	Se stíněním		
50 Hz	1209,804	1102,994	2194,811	2180,931		
4100 Hz	3396,688	3192,817	3613,911	3264,707		
10000Hz	1779,780	1694,072	2335,190	1979,722		

Procentuální srovnání stínění při proudu 15 A - řada 14

sloupec	Α	В	С	D	E	F	G
50 Hz	94,92	96,11	97,21	96,89	97,23	97,66	98,16
4100 Hz	87,09	87,83	88,91	89,22	89,56	91,29	91,85
10000Hz	55,02	58,81	72,34	81,21	79,54	85,17	89,19

sloupec	Α	В	С	D	Ε	F	G
50 Hz	93,41	94,16	94,45	95,34	96,03	97,23	97,48
4100 Hz	86,69	87,94	86,73	83,49	84,15	84,98	87,96
10000Hz	85,86	84,35	80,84	85,08	85,87	86,46	87,98

(poznámka: čím vyšší hodnota, tím vyšší vliv stínění)

Tato diplomová práce se věnovala stínění magnetického pole prázdného induktoru pomocí svazků transformátorových plechů. Možným rozšířením této práce bych viděl v porovnání tohoto typu stínění se stíněním vodivým pláštěm, včetně zahrnutí vlivu vsázky u obou uvedených způsobů. Dále si myslím, že by bylo velmi přínosné získat pro takováto měření zdroj harmonického proudu, schopný generovat stabilní vysokofrekvenční proud, místo současného pulzního generátoru proudu. Přínos bych viděl zejména ve snažší verifikaci výsledků, které by se daly vhodně kontrolovat s měřením pole síťového kmitočtu, tedy harmonického, ale též se simulací v níž se uvažuje harmonický zdroj proudu. V případě kontroly výsledků by bylo dobré provést měření indukční sondou, které jsem chtěl provést, ale z výše uvedených důvodu nebylo uskutečněno.

Na závěr bych chtěl říci, že je velmi důležité se věnovat problematice stínění z důvodu zachování dobré elektrické účinnosti indukčních zařízení.

Použitá literatura

- Baxant, P., Drápela, J., Lázničková, I.: *Elektrotepelná technika*, učební text, Fakulta elektrotechniky a komunikačních technologií, VUT Brno http://www.umel.feec.vutbr.cz/VIT/images/pdf/studijni_materialy/ing/Elektrotepelna_technika_S.pdf (23.2.2013)
- [2] Black, M., Cook, R., Loveless, D., Rudnev, V.: *Handbook of induction heating*, Marcel Dekker, New York 2003
- [3] Langer, E., Kožený, J.:: *Elektrotepelná zařízení indukční Základy teorie, výpočty a konstrukce*, VŠSE Plzeň, Plzeň 1982
- [4] Langer, E.: Teorie indukčního a dielektrického tepla, Academia, Praha 1979
- [5] Hradílek, Z.: *Elektrotepelná technika- Simulace-počítačové programy*, VŠB Technická univerzita Ostrava, Ostrava 2001
- [6] Rada, J., kolektiv: *Elektrotepelná technika*, SNTL Nakladatelství technické literatury, Praha 1985
- [7] KYNCL, Jan. *Návrh výkonové řady kanálkových pecí: The design of channel furnaces scale*. V Praze: České vysoké učení technické, 2003, 26 s. ISBN 80-01-02783-x.
- [8] Pavlíček, K.: *Stínění indukční kelímkové pece*, bakalářská práce, Plzeň 2011
- [9] Potůček, M.: Průmyslové využití indukčního ohřevů, bakalářská práce, Plzeň 2011
- [10] Milka, J.,: *Energetické problémy indukčních elektrotepelných zařízení*, bakalářská práce, VUT Brno 2011
- [11] Singer, M.: Skull-Melting jako metoda tavení materiálů, bakalářská práce, Plzeň 2012
- [12] Vaško, M.: *Odlévání turbínových kol ze slitin TiAl.*, bakalářská práce, VUT Brno 2008
- [13] Kroupa, O.: *Návrh a konstrukce zařízení pro měření parametrů elektromagnetického pole*, diplomová práce, Plzeň 2007
- [14] Zajacová, N.: Vysokoteplotní tavení materiálů ve studeném kelímku, diplomová práce, Plzeň 2012
- [15] http://www.odbornecasopisy.cz/index.php?id_document=25267 (6.10.2012)
- [16] http://www.aceso.cz/inductotherm-group/vakuove-indukcni-taveni-(vim).html (18.1.2013)
- [17] www.zam.fme.vutbr.cz/~senberger/doc/prednaska_8.doc (6.10.2012)
- [18] www.rillfem.com (26.3.2013)
- [19] Čtvrtník, V., Tůmová, O.: *Chyby měření a měřicích převodníků*, dílčí výzkumná zpráva pro "Diagnostika interaktivních dějů v elektrotechnice", Plzeň 2006
- [20] Přednášky z předmětu ZETP, Plzeň akademický rok 2010/2011

Přílohy

- Příloha I Besselovy rovnice
- Příloha II Nagaokovy součinitele
- Příloha III Laboratorní úloha, přístroje
- Příloha IV Nákres induktoru se svazky transformátorových plechů
- Příloha V Indukční kelímková pec pro odlévání litiny v provozu
- Příloha VI Vliv svazků transformátorových plechů na indukčnost induktoru
- Příloha VII Analytický výpočet intenzity magnetického pole prázdného induktoru
- Příloha VIII Srovnání procentuálního rozdílu stínění, 2D graf pro 4100 Hz

Příloha I Besselovy rovnice [4, str. 296] [6, str. 183]

Besselova diferenciální rovnice

$$\frac{d^2 y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + \left(1 - \frac{n^2}{x^2}\right)y = 0, \qquad \text{kde } n \text{ určuje } \check{r} \check{a} d \text{ rovnice.} \qquad (\text{ I - 1 })$$

Řešením je lineární kombinace dvou cylindrických funkcí

$$\mathbf{y} = \mathbf{C}_1 \mathbf{J}_n(x) + \mathbf{C}_2 \mathbf{N}_n(x), \qquad (\mathbf{I} - 2)$$

kde C_1 , C_2 jsou integrační konstanty určené na základě mezních podmínek $J_n(x)$, $N_n(x)$ jsou cylindrické funkce n-tého řádu prvního a druhého (Neumannova) druhu pro argument x.

Cylindrické funkce nultého řádu lze zapsat v řadě:

$$J_0(x) = 1 - \frac{x^2}{2^2} + \frac{x^4}{(2 \cdot 4)^2} - \frac{x^6}{(2 \cdot 4 \cdot 6)^2} + \dots$$
 (I-3)

$$N_0(x) = \frac{2}{\pi} \left(\gamma + \ln \frac{x}{2} \right) J_0(x) - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{(n!)^2} \left(\frac{x}{2} \right)^{2n} \sum_{k=1}^n \frac{1}{k}$$
(I-4)

$$J_{1}(x) = -\frac{d[J_{0}(x)]}{dx} \qquad N_{1}(x) = -\frac{d[N_{0}(x)]}{dx} \quad (I-5)(I-6)$$

51

γ ... Eulerova konstanta $\gamma = 0,57721566$

Obr. 1 Besselovy funkce nultého a prvního řádu [6]

Obr. 2 Neumannovy funkce nultého a prvního řádu [6]

Příloha II - Nagaokovy součinitele α [3, str 171 a 172]

$\frac{d}{l}$	α	$\frac{d}{l}$	α	$\frac{d}{l}$	α	$\frac{d}{l}$	α	$\frac{d}{l}$	α	$\frac{d}{l}$	α
0,00	1,000000	0,28	0,890871	0,56	0,800125	0,84	0,725239	1,30	0,6290	2,00	0,5255
0,02	0,991562	0,30	0,883803	0,58	0,794285	0,86	0,720418	1,35	0,6201	2,10	0,5137
0,04	0,983223	0,32	0,876829	0,60	0,788525	0,88	0,715662	1,40	0,6115	2,20	0,5025
0,06	0,974985	0,34	0,869948	0,62	0,782843	0,90	0,710969	1,45	0,6031	2,30	0,4918
0,08	0,966846	0,36	0,863159	0,64	0,777240	0,92	0,706339	1,50	0,5950	2,40	0,4816
0,10	0,958807	0,38	0,856461	0,66	0,771713	0,94	0,701770	1,55	0,5871	2,50	0,4719
0,12	0,950867	0,40	0,849853	0,68	0,766262	0,96	0,697262	1,60	0,5795	3,00	0,4292
0,14	0,943026	0,42	0,843335	0,70	0,760885	0,98	0,692813	1,65	0,5721	3,50	0,3944
0,16	0,935284	0,44	0,836905	0,72	0,755582	1,00	0,688423	1,70	0,5649	4,00	0,3654
0,18	0,927639	0,46	0,830563	0,74	0,750350	1,05	0,6777	1,75	0,5579	5,00	0,3198
0,20	0,920093	0,48	0,824307	0,76	0,745190	1,10	0,6673	1,80	0,5511	10,00	0,2033
0,22	0,912643	0,50	0,818136	0,78	0,740100	1,15	0,6573	1,85	0,5444		
0,24	0,905290	0,52	0,812049	0,80	0,735079	1,20	0,6475	1,90	0,5379		
0,26	0,898033	0,54	0,806046	0,82	0,730126	1,25	0,6381	1,95	0,5316		

Nagaokovy součinitele pro odvození vlastní indukčnosti

Nagaokovy	součinitele	F pro	odvození	vzáiemné	indukčnosti (
1 uguono , j	bouconneere .	- pro	outoren	, Lajonnia	maanonoon

$\underline{d_c}$	d_{v}	l_1/l_2								
l_1	l_2	0,8	0,9	1,0	1,1	1,2	1,4	1,6	1,8	2,0
	0,08	1,22007	1,09103	0,98551	0,89803	0,82451	0,70810	0,62027	0,55172	0,49677
0,1	0,10	1,22022	1,09112	0,98557	0,89807	0,82454	0,70812	0,62028	0,55172	0,49677
	0,12	1,22041	1,09123	0,98564	0,89811	0,82457	0,70813	0,62028	0,55173	0,49677
	0,16	1,14452	1,03935	0,94757	0,86862	0,80074	0,69110	0,60707	0,54091	0,48759
	0,18	1,14553	1,03994	0,94793	0,86886	0,80090	0,69119	0,60712	0,54094	0,48761
0,2	0,20	1,14666	1,04060	0,94834	0,86913	0,80108	0,69128	0,60717	0,54098	0,48763
	0,22	1,14790	1,04132	0,94879	0,86942	0,80128	0,69138	0,60723	0,54101	0,48766
	0,24	1,14926	1,04211	0,94928	0,86794	0,80150	0,69150	0,60730	0,54105	0,48769
0,3	0,26	1,05756	0,97680	0,89964	0,83013	0,76872	0,66720	0,58797	0,52496	0,47387
	0,28	1,06040	0,97846	0,90068	0,83081	0,76918	0,66744	0,58811	0,52505	0,47393
	0,30	1,06343	0,98023	0,90179	0,83154	0,76969	0,66770	0,58826	0,52515	0,47399
	0,32	1,06665	0,98212	0,90296	0,83232	0,77022	0,66798	0,58843	0,52525	0,47406
	0,34	1,07006	0,98411	0,90421	0,83314	0,77078	0,66828	0,58860	0,52536	0,47413
0.4	0,32	0,97837	0,91585	0,85042	0,78896	0,73335	0,63959	0,56527	0,50565	0,45702
0,4	0,36	0,98763	0,92131	0,85386	0,79124	0,73493	0,64043	0,56577	0,50596	0,45723
	0,40	0,99786	0,92735	0,85766	0,79377	0,73668	0,64136	0,56632	0,50631	0,45747
	0,44	1,00901	0,93394	0,86182	0,79653	0,73860	0,64238	0,56692	0,50670	0,45773
	0,48	1,02105	0,94105	0,86631	0,79952	0,74067	0,64349	0,56758	0,50712	0,45801

0,5	0,40	0,92510	0,86862	0,80854	0,75158	0,69971	0,61167	0,54146	0,48489	0,43863
	0,45	0,94053	0,87763	0,81442	0,75552	0,70247	0,61317	0,54236	0,48548	0,43902
	0,50	0,95747	0,88797	0,82088	0,75987	0,70552	0,61482	0,54335	0,48612	0,43946
	0,55	0,97581	0,89896	0,82791	0,76460	0,70884	0,61663	0,54444	0,48683	0,43995
	0,60	0,99546	0,91075	0,83546	0,76969	0,71242	0,61859	0,54562	0,484890,485480,485480,486120,486330,463340,463340,464040,464040,464040,465620,467470,442730,443570,443570,445430,445430,422880,423810,425860,425860,426970,426970,426970,426970,403020,403050,4049510,4049510,403950,403950,403950,403950,403950,403950,403950,385060,387070,388160,390500,391760,39307	0,44047
0,6	0,45	0,88143	0,82671	0,76961	0,71574	0,66674	0,58352	0,51702	0,46334	0,41936
	0,50	0,89782	0,83667	0,77605	0,72013	0,70552	0,58524	0,51808	0,46404	0,41984
	0,55	0,91561	0,84748	0,78306	0,72492	0,70884	0,58714	0,51924	0,46480	0,42037
	0,60	0,93469	0,85911	0,79061	0,73007	0,71242	0,58919	0,52049	0,46562	0,42095
	0,65	0,95497	0,87149	0,79866	0,73558	0,71624	0,59138	0,52018	0,46651	0,42156
	0,70	0,97631	0,88455	0,80718	0,74142	0,72029	0,59382	0,52328	0,46747	0,42223
	0,55	0,86387	0,80125	0,74159	0,68743	0,63913	0,55825	0,49422	0,44273	0,40064
	0,60	0,88091	0,81183	0,74857	0,69228	0,64263	0,56025	0,49546	0,44357	0,40122
0.7	0,65	0,89907	0,82313	0,75605	0,69747	0,64638	0,56239	0,49681	0,44446	0,40185
0,7	0,70	0,91825	0,83509	0,76398	0,70299	0,65038	0,56469	0,49824	0,44543	0,40253
	0,75	0,93835	0,84766	0,77234	0,70862	0,65460	0,56712	0,49977	0,44645	0,40325
	0,80	0,95926	0,86078	0,78108	0,71494	0,65905	0,56968	0,50139	0,44754	0,40402
	0,65	0,84910	0,77889	0,71641	0,66158	0,61360	0,53445	0,47245	0,42288	0,38247
	0,70	0,86542	0,78930	0,72345	0,66657	0,61726	0,53660	0,47383	0,42381	0,38313
0.0	0,75	0,88261	0,80030	0,73090	0,67185	0,62115	0,53889	0,47529	0,42480	0,38384
0,8	0,80	0,90059	0,81183	0,73874	0,67742	0,62525	0,54131	0,47684	0,42586	0,38459
	0,85	0,91927	0,82385	0,74693	0,68326	0,62956	0,54386	0,47847	0,42697	0,38538
	0,90	0,93857	0,83632	0,75545	0,68934	0,63406	0,54653	0,48019	0,484890,485480,486120,486330,487590,463340,464040,464040,465620,465110,467470,442730,443570,443570,444460,445430,442880,422880,422880,423810,424800,425860,426970,403020,403020,403050,4009510,4009510,400510,4009510,385060,387070,388160,39307	0,38622
	0,70	0,81812	0,74756	0,68600	0,63257	0,58611	0,50990	0,45045	0,40302	0,36441
0,8	0,75	0,83237	0,75690	0,69247	0,63724	0,58959	0,51199	0,45181	0,40395	0,36508
	0,80	0,84735	0,76675	0,69930	0,64217	0,59328	0,51422	0,45325	0,40495	0,36579
	0,85	0,86302	0,77709	0,70648	0,64738	0,59717	0,51657	0,45479	0,40600	0,36655
0,9	0,90	0,87934	0,78787	0,71400	0,65283	0,60126	0,51904	0,45640	0,40712	0,36735
	0,95	0,89623	0,79908	0,72183	0,65952	0,60554	0,52163	0,45809	0,40829	0,36819
	1,00	0,91365	0,81068	0,72995	0,66444	0,60999	0,52434	0,45987	0,40951	0,36908
	1,05	0,93153	0,82264	0,73836	0,67058	0,61461	0,52718	0,46172	0,41079	0,37000
	0,80	0,79991	0,72584	0,66305	0,60947	0,56342	0,48868	0,43090	0,38506	0,34787
	0,85	0,81289	0,73462	0,66927	0,61405	0,56689	0,49081	0,43231	0,38603	0,34857
10	0,90	0,82649	0,74384	0,67581	0,61887	0,57054	0,49306	0,43380	0,38707	0,34932
1,0	0,95	0,84070	0,75349	0,68267	0,62393	0,57439	0,49544	0,43536	0,38816	0,35011
	1,00	0,85548	0,76355	0,68984	0,62922	0,57841	0,49792	0,43701	0,38930	0,35094
	1,05	0,87080	0,77401	0,69731	0,63475	0,58261	0,50052	0,43873	0,39050	0,35181
	1,10	0,88663	0,78484	0,70506	0,64049	0,58699	0,50324	0,44053	0,39176	0,35272
	1,15	0,90293	0,79604	0,71309	0,64645	0,59153	0,50606	0,44241	0,39307	0,35367

Příloha III - Laboratorní úloha, přístroje

1) Měření 50 Hz - nízký kmitočet

Obr. 3 Napájecí transformátor

Obr. 4 Induktor se svazky a měřící deskou

Obr. 5 Celkový pohled na úlohu

Obr. 6 Rezistor, chlazení
2) Měření 4100 Hz - vyšší kmitočet

Obr. 8 Zdroj vysokofrekvenčních pulzů

Obr. 7 Induktor a deska

3) Měřící cívka

Obr. 9 Měřící cívka a měřící přístroj FINEST 703 TRUE RMS multimeter

Obr. 10 Křížová měřící cívka

[rozměry v mm]

Nákres vytvořen ve studentské verzi programu AutoCAD 2011

Příloha V - Indukční kelímková pec pro odlévání litiny v provozu

Obr. 13 Kontrola taveniny, odstruskování

Obr. 14 Celkový pohled na pec

Obr. 15 Odlévání taveniny

Obr. 16 Pohled do kelímku po tavení

Obr. 17 Horní pohled, hubice a víko pece

Obr. 18 Spodní pohled, uzemnění pece

Obr. 19 Čelní pohled, pecní cívka

Příklad tavby v 0,5t indukční kelímkové peci určené pro tavení ocelolitiny a šedé litiny.

Jmenovitý výkon:	350 kW
Tavený materiál:	Ocelolitina, šedá litina
Spotřeba el. proudu:	595 kWh/t oceli
	576 kWh/t litina
Vstupní / výstupní napětí:	3 x 380V střídavý proud / 1000V

Příklad tavby v 4t indukční kelímkové peci 50Hz určené pro tavení ocelolitiny a šedé litiny.

Jmenovitý výkon: Spotřeba el. proudu: Vstupní / výstupní napětí: Kompenzace: Magnetická jádra:

Obr. 20 Čelní pohled

Obr. 21 Symetrizační tlumivka

max. 1800 kVA, omezeno na 1200 kVA změřeno 1214 kWh na 2100 kg šedé litiny 22 000V / 992 V 2x 2210 + 442 kVAr 18 jader,rozměry: V x Š x H = 150 x 17 x 10 [cm]

Obr. 22 Magnetická jádra na obvodu pece

Obr. 23 Přívod induktoru

Obr. 24 Celkový pohled na ind. kelímkové pece

Obr. 25 Horní pohled, upevnění magnet. jader

Obr. 26 Obvodové schéma 4t indukční kelímkové pece 50Hz

Významnou firmou zabývající indukčními pecemi je německá firma OTTO JUNKER GmbH

Příloha VI - Vliv svazků transformátorových plechů na indukčnost induktoru

Vliv svazků transformátorových plechů na hodnotu indukčnosti induktoru lze názorně změřit v laboratorní úloze měřené v předmětu Základy elektrotepelných procesů, který jsem absolvoval ve třetích ročníku bakalářského studia. V této laboratorní úloze dokážu zvyšující tendenci indukčnosti přidáváním svazků transformátorových plechů, což ve svém důsledku přináší zvýšení buzeného magnetického toku a zvýšení účinnosti pecní cívky.

Měření jsem prováděl pro dvě různé cívky. Zde uvádím základní parametry:

Tab. 1 Cívka C7		
C7		
d ₁ [m]	0,1082	
d _{vod} [m]	0,0014	
h [m]	0,158	
Ν	59	
d/l	0,68481	
α_{c7}	0,76498	

Tab. 2 Cívka C5		
C5		
d ₁ [m]	0,075	
d _{vod} [m]	0,0014	
h [m]	0,151	
N	55	
d/l	0,496689	
α_{c5}	0,81814	

Zpočátku uvedu hodnotu indukčnosti cívek C7 a C5 určenou pomocí vztahu

$$L = \frac{N \cdot \phi}{I} = \mu_0 \cdot \mu_r \cdot \pi \cdot \left(\frac{d}{2}\right)^2 \cdot \frac{N^2}{l} \cdot \alpha$$
 (VI - 1)

• Cívka C7:

$$L_{C7} = \mu_0 \cdot \mu_r \cdot \pi \cdot \left(\frac{d_1}{2}\right)^2 \cdot \frac{N_1^2}{l_1} \cdot \alpha_{C7} = 4\pi \cdot 10^{-7} \cdot 1 \cdot \pi \cdot \left(\frac{0,1082}{2}\right)^2 \cdot \frac{59^2}{0,158} \cdot 0,765 = 194,74\mu H$$

• Cívka C5:

$$L_{C7} = \mu_0 \cdot \mu_r \cdot \pi_r \left(\frac{d_2}{2}\right)^2 \cdot \frac{N_2^2}{l_1^2} \cdot \alpha_r = 4\pi \cdot 10^{-7} \cdot 1 \cdot \pi_r \left(\frac{0,075}{2}\right)^2 \cdot \frac{55^2}{l_1^2} \cdot 0.818 = 90.99\,\mu H$$

$$L_{C5} = \mu_0 \cdot \mu_r \cdot \pi \cdot \left(\frac{d_2}{2}\right)^2 \cdot \frac{N_2^2}{l_2} \cdot \alpha_{C5} = 4\pi \cdot 10^{-7} \cdot 1 \cdot \pi \cdot \left(\frac{0,075}{2}\right)^2 \cdot \frac{55^2}{0,151} \cdot 0,818 = 90,99\mu H$$

Nagaokovy součinitele $\alpha = f(d/l)$ určeny z tabulek v Příloze II

K měření indukčností cívek C7 a C5 jsem používal LCR meter typ ESCORT ELC 3131D. Přesnost přístroje je při rozsahu: 10mH - 100H Δ +- (1%Rdg+1digit) 1mH a 1kH Δ +- (2%Rdg+1digit)

	Naměřeno	
	L [µH]	Q [-]
cívka C7	203,3	2,95
cívka C5	94	2,09

Tab. 3 Indukčnost samotných cívek C7, C5

Tab. 4 Změna indukčnosti cívky C7

C7 + plášť		
Počet paketů	L [µH]	Q [-]
0	172,8	2,04
2	182,5	2,51
4	202,2	2,74
6	205,5	2,84
8	207,4	2,88
10	208,3	2,91
12	209,4	2,93
14	210,7	2,97
16	211,4	2,98

Tab. 5	5 Změna	indukčnosti	cívky	<i>C5</i>
--------	---------	-------------	-------	-----------

C5 + plášť			
Počet paketů	L [µH]	Q [-]	
0	88,2	1,83	
2	88,8	1,86	
4	89,8	1,89	
6	90,7	1,93	
8	91,6	1,95	
10	92,2	1,98	
12	92,8	2,00	
14	93,1	2,01	
16	95,3	2,08	

Jan Košťál

2013

Zvýšené hodnoty indukčností se určí dle vzorců:

$$L_{C7}' = \mu_0 \pi \left(\frac{d_1}{2}\right)^2 \frac{N_1^2}{l_1} \alpha_{C7}' \text{ [H, m]} \qquad \alpha_{C7}' = \alpha_{C7} \frac{L_{C7m}}{L_{C7}}$$
$$L_{C7}' = 4\pi \cdot 10^{-7} \cdot \pi \cdot \left(\frac{0,1082}{2}\right)^2 \cdot \frac{59^2}{0,158} \cdot 0,795 = 202,5\mu H$$
$$\alpha_{C7}' = 0,765 \cdot \frac{211,4}{203,3} = 0,795$$

$$L_{c5}' = \mu_0 \pi \left(\frac{d_2}{2}\right)^2 \frac{N_2^2}{l_2} \alpha_{c5}' \text{ [H, m]} \qquad \alpha_{c5}' = \alpha_{c5} \frac{L_{c5m}'}{L_{c5}}$$
$$L_{c5}' = 4\pi \cdot 10^{-7} \cdot \pi \cdot \left(\frac{0,075}{2}\right)^2 \cdot \frac{55^2}{0,151} \cdot 0,829 = 92,19\,\mu H$$

$$\alpha_{c5}' = 0.818 \cdot \frac{95.3}{94} = 0.829$$

Obr. 27 Grafické znázornění L v závislosti na počtu paketů

Obr. 28 Grafické znázornění L v závislosti na počtu paketů

Z měření je patrné, že při použití stínění svazky transformátorových plechů vzroste vlastní indukčnost (o 22 % resp. 8%). Je to dáno snížením magnetického odporu a tím zvýšením magnetického toku, na kterém je právě přímo úměrná indukčnost cívky. Z grafů je patrná tendence růstu indukčnosti při přidávání svazků. Hodnoty naměřené a vypočítané se přibližně shodují (až na indukčnost cívky C7, kde je větší odchylka).

Laboratorní úloha byla měřena společně s Bc. Michal Tajer

Jan Košťál 2013

Příloha VII - Analytický výpočet intenzity magnetického pole prázdného induktoru [13]

Pro kontrolu naměřených respektive nasimulovaných hodnot a pro získání představy o velikosti intenzity magnetického pole uvnitř induktoru lze provést analytický výpočet. Ve výpočtu vyjdu z hodnoty vlastní indukčnosti laboratorního modelu induktoru (viz Tab. 4. 1).

$$L = \mu_0 \cdot \mu_r \cdot \pi \cdot \left(\frac{d}{2}\right)^2 \cdot \frac{N^2}{l} \cdot \alpha = 4\pi \cdot 10^{-7} \cdot 1 \cdot \pi \cdot \left(\frac{0,22}{2}\right)^2 \cdot \frac{42^2}{0,317} \cdot 0,761 = 202,288\mu H$$

Znám-li hodnotu vlastní indukčnosti induktoru, mohu určit maximální hodnotu magnetického toku.

$$\psi_{\max} = N \cdot \phi_{\max} = L \cdot I \cdot \sqrt{2}$$
 (VII - 1)

Potom $\phi_{\rm max}$

$$\phi_{\max} = \frac{L}{N} \cdot I \cdot \sqrt{2} = \frac{202,288 \cdot 10^{-6}}{42} \cdot 15 \cdot \sqrt{2} = 102,171 \cdot 10^{-6} Wb$$
 (VII - 2)

Poté výslednou hodnotu H_{max} získám úpravou vzorce $\phi_{\text{max}} = \mu_0 \cdot \mu_r \cdot H_{\text{max}} \cdot S$ do tvaru:

$$H_{\text{max}} = \frac{\phi_{\text{max}}}{\mu_0 \cdot \mu_r \cdot \pi \cdot r^2}$$
(VII - 3)
$$H_{\text{max}} = \frac{102,171 \cdot 10^{-6}}{4\pi \cdot 10^{-7} \cdot 1 \cdot \pi \cdot 0,11^2} = 2138,861 \, A/m$$

Efektivní hodnota intenzity magnetického pole prázdného induktoru vychází na základě analytického výpočtu takto $H_{oef} = \frac{H_{max}}{\sqrt{2}} = 1512,403 \text{ A/m}$

Druhým způsobem analytického výpočtu je přes intenzitu magnetického pole. Platíli, že rozměry induktoru jsou nesrovnatelně malé vzhledem k vlnové délce (v mém případě toto pravidlo je splněno: $\lambda_{50} = \frac{v}{f} = \frac{3 \cdot 10^8}{50} = 6000 \ km$ (VII - 4) (resp. $\lambda_{4100} = 73,17 \ km$, $\lambda_{10000} = 30 \ km$) $\rightarrow r << \lambda$ potom lze určit $\mathbf{H} = H_1 = N_1 \cdot I$ (magnetické pole je uvnitř induktoru homogenní).

$$N_1 = \frac{N}{l} = \frac{42}{0,317} = 132,49$$
 H = $H_1 = N_1 \cdot I = 132,49 \cdot 15 = 1987,382 \text{ A/m}$

přepočet závitů na počet závitů osové délky

10

8

8

10

12

14

12

14

50 Hz

4100 Hz

-10000 Hz

50 Hz

4100 Hz

10000 Hz

Příloha VIII - Srovnání procentuálního rozdílu stínění, 2D grafy pro kmitočet 4 100 Hz

V 2D grafech je přehledně zobrazeno působení stínění vně induktoru. Největší odstínění je vně induktoru, v ose induktoru menší.