
FINDING FEASIBLE PARAMETER SETS FOR SHAPE FROM 
SILHOUETTES WITH UNKNOWN POSITION OF THE VIEWPOINTS 

 

Andrea Bottino 

DAUIN – Politecnico di Torino 
Corso Duca degli Abruzzi, 24 

 10129 Torino, Italy 

bottino@polito.it 

Luc Jaulin 
LISA  

Avenue Notre Dame du Lac, 62  
49 000 Angers, France 

jaulin@univ-angers.fr 

Aldo Laurentini 
DAUIN – Politecnico di Torino 
Corso Duca degli Abruzzi, 24 

 10129 Torino, Italy 

laurentini@polito.it 

 

ABSTRACT 

Reconstructing 3D shapes from 2D silhouettes is a common technique in computer vision. It requires knowing the position of 

the viewpoints with respect to the object. But what can we say when this information is not available? This paper provides a 

first insight into the problem, introducing the problem of understanding 3D shapes from silhouettes when the relative 

positions of the viewpoints are unknown. In particular, the case of orthographic silhouettes with viewing directions parallel 

to the same plane is thoroughly discussed. Also we introduce sets of inequalities, which describe all the possible solution sets 

and a paving technique to calculate the feasible solution space of each set. 
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1. INTRODUCTION 
Understanding the shape of 3D objects from image features is 

a central problem in computer vision. Many algorithms have 

been presented in literature, based on occluding contours or 

silhouettes (see for instance [Ast89a], [Zhe94a]). Let Ci be the 

solid regions obtained by back-projecting a silhouette Si from 

the corresponding viewpoint. The volume R shared by the 

regions Ci (Fig. 1) summarizes the information provided by a 

set of silhouettes and viewpoints. Finding this volume is a 

popular reconstruction technique called Volume Intersection 

(VI) (see [Ahu89a], [Pot87a]). This approach requires 

knowing the 3D positions of silhouettes and viewpoints in 

order to position the cones produced by back-projecting each 

silhouette from its viewpoint and to intersect them. But what 

can we say when this information is not available?  
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Fig. 1 - 3D shape reconstruction from silhouettes  

Before entering the problem, we briefly review some relevant 

definitions. First, the concept of visual hull of an object 

[Lau95a] which is the object that can be obtained by VI using 

all the viewpoints that belong to a viewing region completely 

enclosing the original object without entering its convex hull. 

It is also the largest object that produces the same silhouettes 

as the given object. The definition of visual hull allows to 

state that an object can be reconstructed from its silhouettes iff 

it is coincident with its visual hull. Another tool for the shape-

from-silhouette approach is the concept of hard point 

[Lau95a]. A point of the surface of the reconstructed object R 

is hard if it belongs to any object that produces the same 

silhouettes from these viewpoints. In the following, for 

brevity, we will use the expression “set of silhouettes” to 

specify a set of silhouettes together with the position of the 

corresponding viewpoint with respect to each silhouette. 

These data allow constructing a solid cone for each silhouette, 

but not positioning the cones in the 3D space. The main 

question that will be considered is therefore: given a set of 

silhouettes, does an object exist able to produce them? We 

will call compatible a set of silhouettes if the same object can 

generate them. An object able to produce a compatible set of 

silhouettes will be said to be compatible with the set. Clearly, 

the main practical issue is to find one or more compatible 

objects given a compatible set of silhouettes, as that produced 

by a real object. Let us recall that VI at most allows 

constructing the visual hull of an object. Infinite objects can 

have the same visual hull. Although we have not been able to 

find answers to the previous questions in the general case, we 

will present a set of results able to provide a first insight into 

the problem.  

2. COMPATIBILITY OF ORTHOGRAPHIC 

SILHOUETTES 
In the rest of this paper we will restrict ourselves to consider 

simply connected 3D objects and their orthographic 

projections. This approximates the practical case of objects 

small with respect to their distance from the camera. 

 
Fig. 2 - The 1D silhouette L(S,αααα) of a 2D silhouette  

First, we will investigate the compatibility of two silhouettes. 

Let S be a 2D orthographic silhouette of a 3D object, and let 

us project orthographically S along a direction making in the 

plane of S the angle α with the x axis of a reference system 

fixed with respect to S (Fig. 2). Let L(S,α) be the length of the 

1D silhouette of S. By rotating the projection direction from 0 

to π we obtain all possible values of L(S,α). The following 

statement holds (see [Bot02a] for a proof). 



Proposition 1. A necessary and sufficient condition for two 

orthographic silhouettes S1 and S2 to be compatible is that 

two angles α1 and α2 exist such that L(S1,α1)=L(S2,α2). 

When we have more silhouettes, clearly, we have that:  

Proposition 2. A necessary condition for a set of silhouettes to 

be compatible is that all pairs of silhouettes of the set are 

compatible. 

 
Fig. 3 - The annular strip ST(V) and the curve Cv 

However, in general, to be compatible in pairs is not sufficient 

for a set of silhouettes to be compatible (see [Bot02a]). To 

derive a necessary and sufficient condition for the 

compatibility of more than two silhouettes we can exploit one 

property of the reconstructed object R. Let us consider one of 

the silhouettes involved in the process, the corresponding 

viewing direction V and the cylinder circumscribed to the 

object O, which is made of lines parallel to this direction (Fig. 

3). Each line of this cylindrical surface must share with the 

surface of O at least one point. These points form a curve CV 

belonging to a closed annular surface, a strip ST(V) of 

variable width (measured along a line of the cylinder), which 

is what is left of the original circumscribed cylinder after the 

various intersections. During the reconstruction process, this 

annular strip cannot be interrupted: at most it can reduce to a 

curve with zero width. In this case, the curve consists of hard 

points. Therefore, we can formulate the following condition 

for the VI algorithm to be feasible:  

Proposition 3.  A necessary and sufficient condition for a set 

of silhouettes to be compatible is that it be possible to find 

viewpoints such that no annular strip of the reconstructed 

object is interrupted. 

In the next sections this condition will be used for 

constructing algorithms both to verify the compatibility of a 

set of silhouettes and to reconstruct compatible 3D objects. 

3. SILHOUETTES WITH VIEWING 

DIRECTIONS PARALLEL TO A PLANE 
In this section we deal with a particular case of the general 

problem, where all viewing directions are parallel to the same 

plane (Fig. 4). This case idealizes some practical situations, as 

observing a vehicle on a planar surface. Clearly, all silhouettes 

have the same height and the same plane must support all 

cylinders obtained by back-projection (see [Bot02a]).  

 
Fig. 4 - Viewing directions parallel to the same plane 

Let’s start by considering the compatibility of three silhouettes 

(S0, S1 and S2). Let us introduce some notations (see Fig. 5). 

Each planar silhouette Si is defined, for 0≤y≤ymax by two 

curves Sil(y) and Sir(y). For simplicity, let us consider mono-

valued functions. Also let Si(y)=Sir(y)-Sil(y). Given a set of 

silhouettes, we will apply the condition of Proposition 3 and 

derive various sets of inequalities. 

 
Fig. 5 - Notations used for a silhouette. 

Let us consider a horizontal plane corresponding to a value of 

y between 0 and ymax, and its intersection with the three 

cylinders obtained by back-projecting the silhouettes.   

The values of S0(y), S1(y), S2(y) and their relative position in 

Fig. 6(a) satisfy in this plane the condition of Proposition 3. It 

is not difficult to see that this condition requires that the two 

lines that project the endpoints of S2(y) along the direction V2 

must lie inside the two areas highlighted in Fig. 6(a), 

otherwise a silhouette smaller that S0(y) would be obtained 

from V0. For the whole silhouettes to be compatible, this 

condition must hold for all y. Fig. 6(b) shows the orthogonal 

projection for all y of the vertices of the parallelogram marked 

as 1, 2, 3 and 4 in Fig. 6(a) onto the plane of S2. For the 

reconstruction to be feasible, S2l(y) must lie between the two 

curves projections of the vertices 3 and 4, and S2r(y) must lie 

between the two curves projections of the vertices 1 and 2.  

 
Fig. 6 - The condition for the compatibility of S2(y) 

The set of inequalities that define feasible intersection 

parameters can be derived inspecting in more detail the 

intersection in a horizontal plane Fig. 7.  

 
Fig. 7 - The intersections in a horizontal plane  

Let O0, O1, and O2 be the intersections of the axis y of each 

silhouette with this plane. Intersecting S0(y) and S1(y) requires 

fixing an angle, let it be α1. Intersecting also S2(y) requires 

choosing two more parameters: the angle α2 and the distance 

d2 between the projection of O1 along V1 and of O2 along V2 

on the line projecting O0 along the direction V0 (see Fig. 7). 

Thus, to find feasible solutions we must search the 3-

dimensional space [α1,α2,d2]. Now, let P1(y), P2(y), P3(y) and 

P4(y) be the distances from O2 of the orthographic projections 

of the vertices of the parallelogram onto the line supporting 



S2(y). The compatibility condition for the three silhouettes is 

expressed by the following inequalities, which can be worked 

out from the figure.  
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Fig. 8 - The four intersection cases  

In (1), the purpose of the fifth inequality is to characterize the 

case just analyzed, let it be Case 1. Seven other cases are 

possible, each producing different sets of inequalities, as 

shown in Fig. 8. For each case, a possible orthographic 

projection onto the plane of S2 of the edges of the object 

produced by the first intersection is shown with thick lines. 

The boundaries of S2 are the thin lines.  

The inequalities for more than three silhouettes 
Let us consider any of the four cases described in the previous 

section, for instance Case 1, and let us add a fourth silhouette 

S3. In each horizontal plane S0(y), S1(y) and S2(y) produce a 

polygon with six vertices and three pairs of parallel edges. The 

new volume intersection is defined by two more parameters, 

the angle α3 between V0 and V3 and the distance d3, measured, 

as d2, along the line that projects O0. Satisfying the condition 

of Proposition 3 requires, in each horizontal plane, to cut 

away two opposite vertices, for instance vertices 7 and 5 in 

Fig. 9, without eliminating completely the edges that meet at 

these vertices. By orthographically projecting the six vertices 

onto the plane of S3 we obtain six curves. For the new 

intersection to be feasible, the boundaries S3l(y) and S3r(y) of 

S3 must lie in the areas bounded by the two leftmost and the 

two rightmost curves respectively. Various sets of inequalities 

result. First, let us distinguish two cases (case (a) and (b) of 

Fig. 9) related to which are the leftmost and rightmost vertices 

(respectively, 5 and 7 for case (a) and 7 and 5 for case (b)). 

For each case, eight distinct sub-cases result (see Fig. 10). The 

inequalities corresponding to each sub-case are easily written. 

For instance, for the first sub-case of case (a) it is: 

P5(y)≤S3l(y)    S3l(y)≤P4(y)    P1(y)≤S3r(y)    S3r(y)≤P7(y)  

P4(y)≤P6(y)     P6(y)≤P8(y)    P8(y)≤P1(y) 

where the Pi(y) are defined on the line supporting S3. 

Summarizing, each set of inequalities contains 12 inequalities, 

the five of Section 4 and seven new also referring to S3. As for 

the number of sets of inequalities, we have 8 cases for three 

silhouettes, 3 pairs of opposite vertices and 16 cases for each 

pair, and thus 384 sets each containing 12 inequalities. 

The previous discussion holds for any further silhouette. In 

fact, we must always cut a pair of opposite vertices without 

deleting completely the edges converging at these edges. It 

follows that each new silhouette adds two parameters, seven 

inequalities for each case and 16 sub-cases for each pair of 

opposite vertices. For the nth silhouette, the pairs of vertices 

are n-1. Let Nc(n) be the number of sets of inequalities for n 

silhouettes. For n>3 it is: Nc(n)=16(n-1)Nc(n-1).  

 

Fig. 9 

 
Fig. 10 – Cases (a) and (b) and the 16 sub-cases 

4. SOLVING THE SETS OF INEQUALITIES 
We have developed an algorithm to write automatically the 

sets of inequalities. The axes of the reference system are 

aligned with the axis of the projection of S0 on the plane. Let’s 

assume, without loss of generality, that V0 is parallel to the y 

axis of the reference system and the line supporting S0 is 

parallel to the x axis. The origin of the reference system 

corresponds with the intersection of the projections of O0 

along V0 and O1 along V1 on the plane. The position of the ith 

silhouette is determined by two parameters, di and αi, 

previously defined. In particular, we assume that αi (the angle 

between Vi and V0) is positive if V0×Vi has the same verse of 

x×y; it is also Vi = (senαi,-cosαi). Let Cj be the vertices of the 

polygon; the equations of the first 4 vertices, as in Fig. 11, are: 

Fig. 11 Fig. 12 
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The sets of inequalities previously introduced can be rewritten 

in terms of the distances from the origin along the y axis of the 

projections of the vertices of the parallelogram and of Sil and 

Sir along the viewing direction of the ith silhouette. For each 

projection, the lines passing through the vertices of the 

polygons have equations Cj + Vit and their intersections (Pij) 

with the y axis of the reference system are: 
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Now, let dil, dis be the projections on the y axis of Sil and Sir. It 

follows that: 
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Projecting the vertices and Si onto the y axis, the verse of the 

inequalities also depends on the value of αi. For instance, in 

the example shown in Fig. 12, we have: 
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In order to be able to write the inequalities in an automatic 

way, the general form of the inequalities can be rewritten 

multiplying each term by sin(αi). 

We also have to express the co-ordinates of the vertices Cj, 

j>4, as function of the VI parameters (see Fig. 13, where Cj 

and Ck are the couple of opposite vertices affected by the ith 

silhouette). Each new vertex is the intersection of the line 

every edge lies on and the specific projection line relative to 

Vi. All these lines are projection lines, and can be written as: 
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Fig. 13 
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Writing the equations as A + Br = D + Vit and given a vector 

W=(cosαi,senαi) perpendicular to Vi, the co-ordinates of the 

new vertex can be found as: 
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As an example, the equations for case 1 of Fig. 8 are: 
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A set inversion technique ([Jau01a]) has been applied for 

finding the feasible solution set S of the set of non-linear 

inequalities that characterizes each sub-case. This technique 

performs a paving of the parameter space with boxes. If the 

current box [p] is proved to be inside S, then the box is kept 

as part of the solution space or discarded if it has an empty 

intersection with S then it is discarded. Otherwise, [p] is 

bisected except if its width is smaller than a defined threshold. 

Bisection occurs in the middle of the box, perpendicularly to 

the side of the largest length. The dimensionality of the initial 

box is equal to the number of variables involved in the set of 

inequalities, and each dimension has initial size [0,2π] for 

angular variables αi and [-∞,∞] for linear variables di. To 

prove that a given box [p] is inside S, interval computation 

([Moo79a]) has been used. This technique can be used to find 

feasible parameter sets for one value of y between 0 and ymax. 

If one of the parameter sets is empty, the corresponding group 

of inequalities can be discarded. Otherwise, we could perform 

an incremental computation, adding each time a small ∆y, 

related to the shape of the silhouettes, to the previous y. For 

each group of inequalities, the new feasible parameter set at 

y+∆y must be a subset of the set at y. 

 

Fig. 14 - The silhouette S0, S1 and S2 

 

Fig. 15 – The eight solution spaces 

In Fig. 14 three silhouettes S0, S1 and S2 of a parallelepipedon 

are shown. The boxes defining the paving of the solution set 

of each of the eight sub-cases obtained are depicted in Fig. 15, 

where the axis of the reference system are α1 and α2 on the 

plane and d2 as vertical axis.  

5. CONCLUSION AND OPEN PROBLEMS 
In this paper we have presented an approach to the new 

problem of understanding the shape of 3D objects from 

silhouettes when the relative position of the viewpoints is not 

known. We have presented a compatibility condition, which 

has been applied to the particular case of orthographic 

projections with viewing directions parallel to a plane.  For 

this case, we have been able to work out sets of inequalities, 

involving the volume intersection parameters, which allow 

computing feasible solution sets, if they exist. An algorithm 

for automatically writing the inequalities has been developed, 

and some preliminary results have been presented. Several 

problems are open. Among them, the case of orthographic 

projection with unrestricted viewing directions, and the case 

of perspective projections.  
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