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Abstract

In this work we present a robust and accurate method for the computation of centerlines inside branching
tubular objects starting from a piecewise linear representation of their boundary. The algorithm is based on solving
the Eikonal equation on the Voronoi diagram embedded into the object, with wavefront speed inversely proportional
to Voronoi ball radius values. As a result, provably accurate centerlines and maximal inscribed ball radius values
along them are provided. In the same framework, a method for local surface characterization is also developed,
allowing robust computation of the distance of surface points to centerlines and disclosing the relationship of surface
points with centerlines. A new surface-based quantity is finally proposed, the normalized tangency deviation, which
provides a scale-invariant criterion for surface characterization. The developed methods are applied to 3D models
of vascular segments in the context of patient-specific anatomical characterization.
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1 Introduction

Given the influence of geometry on fluid dynamics and
the great inter-individual anatomic variability of blood
vessels, characterization of blood vessel geometry is an
important step towards a better understanding of the
factors involved in vascular pathology. This kind of
analysis must be performed at different levels of detail
– synthetic parameters quantifying geometric features,
such as stenosis grade, are required in diagnostic imag-
ing; vessel axis definition and local radius measurement
are important to synthesize the geometry of the vascu-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG POSTERS proceedings
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

lar surface, in order study how different vessel global
configurations undergo different pathological histories
on populations of subjects; local geometric character-
ization of vessel surface is necessary to document the
progression of vascular disease and to look for typical
local geometric features associated with disease initia-
tion.

In this work we present a method to perform center-
line computation, local radius measurement and local
surface characterization in a single framework, and in a
robust and accurate way. Our starting point is a polyg-
onal surface representing the vascular wall. Our tech-
nique is based on solving weighted geodesic problems
on an approximation of the medial axis of tubular ob-
jects.

2 Methods

2.1 Centerline computation

Centerline can be defined as the line drawn between
two sections of a tubular structure which maximize the
distance from the boundary. The problem of centerline
computation inside an object Ω � ℜ3 can therefore be



formulated as looking for a path C � C
�
s � traced be-

tween two points p1 and p2 for which the following
functional

Ecenterline
�
C ���

� L � C � 1 � p1 �
0 � C � 1 � p0 � F

�
C
�
s �	� ds (1)

is minimal, where F
�
x � is a scalar field which is lower

for more internal points, for example a decreasing func-
tion of the distance transform associated with Ω, de-
fined as

DT
�
x �
� min

y � ∂Ω ��
 x � y 
�� (2)

where 
 � 
 denotes the Euclidean distance, and ∂Ω the
boundary of Ω. It is possible to demonstrate [Ant03]
that by choosing F

�
x ��� DT � 1 � x � , centerlines defined

as in Equation 1 lie on the medial axis of Ω, MA
�
Ω � ,

defined as the locus of centers of the maximal inscribed
balls in Ω, where an inscribed ball is maximal if it is not
strictly contained in any other inscribed ball. Dealing
with piecewise linear approximations of ∂Ω, a method
to obtain an approximation of the medial axis of Ω is to
compute the embedded Voronoi diagram of a point set P
densely sampling ∂Ω ([AM97]). The Voronoi diagram
of P is defined as

Vor
�
P �����

p � P

∂V
�
p � (3)

where V
�
p � is the Voronoi region associated with point

p, defined as

V
�
p ����� x � ℜ3 : 
 p � x 
���
 q � x 
�� q � P � (4)

In 3D, the Voronoi diagram is a non-manifold surface
made up of convex polygons, whose vertices are the
centers of the maximal emtpy balls with respect to point
set P, whose radius is indicated by R

�
x � . Computation

of the embedded Voronoi diagram was performed by
first computing the Delaunay tessellation of P, Del

�
P � ,

removing the tetrahedra whose circumcenter falls out-
side the object (using outward surface normals) and
then constructing only those Voronoi polygons whose
vertex loops are complete.

We then solved the problem in Equation 1 on the em-
bedded Voronoi diagram, taking F

�
x ��� R � 1 � x � , with

an approach similar to that presented in [DC01] for the
computation of centerlines in 3D images. As shown
in [CK97], the strong formulation of Equation 1 is the
Eikonal equation


∇T
�
x � 
 � F

�
x � (5)

with boundary condition T
�
p0 � � 0. Equation 5 is a

nonlinear partial hyperbolic equation that models first
arrival times of a wavefront propagating over the do-
main with speed F � 1 � x � . A very effecient method
for the solution of the Eikonal equation is the Fast

Marching Method ([Set99]), based on upwind finite-
difference approximation, originally developed for or-
thogonal grids and successively extended to triangu-
lated manifolds ([KS98]). In order to solve the problem
on the Voronoi diagram, we extended the Fast Marching
Method to polygonal non-manifolds [Ant03], in which
more than two polygons can share a point or an edge.
Once the Eikonal equation is solved over the whole
Voronoi diagram with boundary condition T

�
p0 � � 0,

centerlines are obtained by backtracing a path from p1

along the direction of maximum descent of T
�
x � . The

resulting centerline is a piecewise linear line defined on
VorE

�
P � , whose vertices lie on Voronoi polygon bound-

aries. Moreover, values of Voronoi sphere radius R
�
x �

are defined on centerlines, so that centerline points are
associated with maximal inscribed spheres.

2.2 Geometric analysis

In this section we show how the techniques introduced
so far can be further developed to geometrically char-
acterize the surface of interconnected tubular objects.
We do that by relating centerlines to surface points (and
vice-versa) on the embedded Voronoi diagram domain.
The idea is to take advantage of Voronoi diagram topol-
ogy in evaluating the distance from surface points to
centerlines, therefore overcoming the problems arising
when simply calculating minimum Euclidean distance
in complex geometries. The method is subdivided into
two steps, the first of which is computing the distance
from embedded Voronoi diagram points to centerlines,
and the second finding a correspondence between sur-
face points and embedded Voronoi diagram points.

Computation of the distance, measured on the em-
bedded Voronoi diagram, from embedded Voronoi dia-
gram points to centerlines is performed by solving the
Eikonal equation


∇T̃
�
x � 
 � 1 � x � VorE

�
P � (6)

with boundary condition T̃
�
C ��� 0, where C stands for

centerlines. Equation 6 returns the geodesic distance
field T̃

�
x � on each point of VorE

�
P � .

The correspondence between surface points and em-
bedded Voronoi diagram points is then given in terms
of poles. The poles of a surface point are defined as
its farthest inner and outer Voronoi vertices ([ACK01]).
Since we are working with the embedded Voronoi di-
agram, only the inner fathest Voronoi vertex is consid-
ered, here denoted as pole

�
p � . In 3D the set of poles

of P converges to the medial axis of Ω when sampling
density tends to infinity ([ACK01]). Moreover, the di-
rection

�
pole

�
p �"! p � approximates the inward surface

normal in p, and leads from p to to the deepest Voronoi
vertex around p. As a result, we define the geodesic



distance from surface points to centerlines as

Dg
�
p ��� 
 pole

�
p � ! p 


�
T̃
�
pole

�
p ��� (7)

Correspondence between surface points and centerlines
is then performed by tracing a path from each surface
point p to pole

�
p � , and from that to centerlines follow-

ing the steepest descent of T̃
�
x � . The endpoint c

�
p � of

the path starting in p is therefore the centerline point
geodesically nearest to p. Once c

�
p � is identified, the

Euclidean distance of surface points to centerlines can
be computed as De

�
p � � 
 c

�
p �"! p 
 . From such corre-

spondence, surface points can be characterized accord-
ing to their belonging to different centerline branches or
to the position along centerlines.

Last, we define a new surface-based quantity, named
normalized tangency deviation, as

NTD
�
p ��� T̃

�
pole

�
p �	�

Dg
�
p � (8)

which is a normalized measure of how far a surface
is from being tangent to a maximal inscribed ball at
a given point p, independently from object scale. It
is possible to demonstrate that for a cylinder with el-
liptical base NTD only depends on ellipse eccentricity
[Ant03]. NTD is therefore a scale-independent param-
eter for the characterization of surface features.

3 Results

We first validated the techniques presented above ap-
plying them to circular and elliptical base cylinders for
different aspect ratios of the base ellipses (see Table 1),
and for different sampling point densities (see Table 2).
The results show that the algorithm performance de-
creases when the section has a low aspect ratio. This
is due to the fact that in these cases F

�
x � is near to

be constant over the medial axis around the centerline,
so that line position is more sensitive to numerical ar-
tifacts. The correctedness of the interpretation is con-
firmed by the fact that maximal inscribed ball radius is
accurately computed even in low aspect ratio models.
As to dependence from point sampling density, the re-
sults show how the algorithm is very roust when the
section is circular, while for lower aspect ratio elliptical
sections a good performance relies on an adequate sur-
face sampling density. It must be noted, however, how
the density required for accurate results is not high (30
points on section edge, which roughly means one point
every 12 degrees along the section edge). High maxi-
mal inscribed ball radius measurement error for ellipti-
cal base cylinders of low mesh density is caused by the
fact that in this case Voronoi balls are not tangent to the
surface, but rather intersect it between sampling points,
thus overestimating real inscribed ball radius.

Aspect Error % � µ � σ ���
ratio Centerline Radius
5/5 0.01(0.02) 0.03(0.06)
4/5 0.24(0.19) 0.33(0.04)
3/5 0.84(0.78) 0.57(0.04)
2/5 2.17(1.34) 0.96(0.17)

Table 1: Validation results for elliptical base cylinders
of different aspect ratio (semiminor to semimajor ra-
tio). Percent errors of centerline position and maximal
inscribed ball radius along centerline are normalized
against cylinder maximum and minimum radius respec-
tively.

Vertex no Error % � µ � σ ��� Time
edge(tot) Centerline Radius (s)

A

40(2975) 0.01(0.02) 0.03(0.06) 12.34
30(1693) 0.02(0.03) 0.10(0.15) 5.86
20(757) 0.02(0.04) 0.25(0.35) 1.97
10(198) 0.44(0.33) 1.38(1.20) 0.31

B

40(3628) 0.84(0.78) 0.57(0.04) 6.20
30(2073) 0.74(0.72) 1.01(0.08) 3.18
20(934) 2.88(1.95) 2.08(0.19) 1.21
10(239) 4.42(4.68)* 7.48(0.79) 0.26

Table 2: Validation results for circular (A) and elliptical
(aspect ratio 3/5) (B) base cylinders of different surface
mesh density. Percent errors of centerline position and
maximal inscribed ball radius along centerline are nor-
malized against cylinder maximum and minimum ra-
dius respectively.

Figure 1: Left: abdominal aorta model and its em-
bedded Voronoi diagram; colors represent Voronoi ball
radius values. Middle: solution of the Eikonal equa-
tion from aorta inlet (upper outermost section) on the
Voronoi diagram. Right: centerlines backtraced from
the outlets to the inlet.



Figure 2: Left: solution of the Eikonal equation with
unit speed from the centerlines on the Voronoi diagram.
Middle: geodesic distance of surface points to center-
lines Dg. Right: NTD distribution.

We then applied the presented techniques to a
model of abdominal aorta reconstructed from contrast-
enhanced 3D MR angiography using a level set ap-
proach. The steps leading to the computation of cen-
terlines are shown in Fig. 1, while geometric character-
ization phase is depicted in Fig. 2. It is worth to note
how normalized tangency deviation distribution is ef-
fective in evidencing surface irregularities in a scale-
indepentent way.

Maximal inscribed balls are depicted in Fig. 3 in two
positions along the centerline traced from aorta inlet to
celiac outlet. In particular, Fig. 3 left and middle depict
the same sphere viewed in two different projections, ev-
idencing the relationship from maximal inscribed ball
radius measurement and minium projection diameter
measurement, which is employed in the clinical prac-
tice on classic angiographic images. Minimum projec-
tion diameter measurement in fact consists in finding
the minimum diameter of a vessel in a given position
among angiographic images taken from different orien-
tations.

4 Discussion

In this work we presented a general approach to char-
acterize the geometry of objects composed of intercon-
necting tubular structures given their boundary surface.
The method relies on solving weighted geodesics com-
putation problems over the approximation of the object
medial axis. Centerlines are computed accurately and
in a robust way and local surface characterization with
respect to the computed centerlines is provided in the
same framework.

Figure 3: Maximal inscribed balls along a centerline for
the abdominal aorta model. Left and middle: the same
sphere is depicted from two different orientations.

The methods are currently employed in the field of
geometric analysis of vascular structures, in order to
characterize patient-specific vascular anatomy and doc-
ument the alterations due to pathological conditions,
such as atherosclerotic plaque or aneurysm evolution.
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