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ABSTRACT
This paper presents the use of a topological model to simulate a soft body deformation based on a Mass-Spring
System. We provide a generic framework which can integrate any kind of geometrical meshes (hexahedral or tetra-
hedral elements), using several numerical integration schemes (Euler semi-implicit or implicit). This framework
naturally allows topological changes in the simulated object during the animation. Our model is based on the 3D
Linear Cell Complex topological model (itself based on a 3D combinatorial map), adding the extra information
required for simulation purposes. Moreover, we present some adaptations performed on this data structure to fit
our simulation requirements, and to allow efficient cutting or piercing in a 3D object.
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1 INTRODUCTION

Following the increasing demand of realism in com-
puter graphics, physically-based simulation has become
a very active research field over the last decade. This is
particularly apparent in medical simulation, interactive
entertainment, and more generally in all virtual real-
ity applications where animation, interaction or alter-
ation of deformable objects is required in interactive
time. Two perennial challenges in this domain are real-
time simulation of object undergoing user’s interaction
like cutting, tearing or fracture, and the adaptive mesh
coarsening and refinement, to better handle interaction
within a simulation scene (for example in collision and
contact zones).

The use of a topological model naturally provides a
framework to describe objects subdivided into cells
(vertices, edges, faces, volumes) and to modify their
topology by performing the appropriate operations. In
that case, the information required by the simulation
has to be associated with cells. Moreover, an efficient
implementation of this kind of data structure should
minimize the impact on computation time and should
still enable real-time user interactions during the simu-
lation.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

The aim of this paper is to put forward the benefits of
the use of a topological model for a physical anima-
tion based on a Mass-Spring System (denoted MSS).
In this sense, we use the 3D Linear Cell Complex (de-
noted LCC) as topological model (itself based on a 3D
combinatorial map). We add on the LCC all informa-
tion necessary for simulation purposes. Furthermore,
we present the adaptations operated on this data struc-
ture to facilitate topology changes during the animation,
and specifically to allow cutting or piercing of the sim-
ulated 3D object. This process is illustrated in Fig. 1.

The use of a topological model for a physical anima-
tion presents two main interests. (1) It describes all the
cells and all the adjacent and incident relationships be-
tween these cells. This is particularly important to as-
sociate information to some cells, and to efficiently up-
date this information during the operations. (2) It pro-
poses rigorous operations allowing topological changes
while guaranteeing the validity of the mesh. These two
features make the topological model unavoidable for a
problematic of adaptive mesh refinement.

In this paper, our main contributions are:

• a fully generic framework for topology-based mod-
eling, not only to describe the relationships between
geometrical elements, but specifically fitted to the
context of physically-based simulation;

• an embedded structure dedicated to storing the
mechanical properties, leading to facilitating all
the topological changes during animation while
preserving the mechanical behavior of the altered
object;

• a stable and robust implementation, as the optimized
structure will minimize the memory usage and at the
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Figure 1: Overview of our method.

same time will permit a simplification of the algo-
rithmic aspects of manipulating elements, i.e. low
cost browsing through all elements, or accessing to
neighbors;

• the detailed formulation of the force differentials
(required for the Euler implicit integration scheme)
in the context of soft body simulation with MSSs.

2 RELATED WORK
Topological model. Several topological models have
been featured in recent years, but only a few of the pro-
posed solutions are fully generic. The combinatorial
map is such a solution [1]. It consists of a combinato-
rial data structure allowing a description of nD objects
subdivided into cells (vertices, edges, faces, volumes)
using only one basic element, called dart, and a set of
pointers between these darts. Thanks to these pointers,
all the incidence and adjacency relationships between
the cells of the subdivision may be easily retrieved.

The main interest of combinatorial maps is: (1) to be
generic i.e. defined in any dimension; (2) to fully de-
scribe the incidence and adjacency relationships be-
tween cells, which information is useful for algorithmic
aspects; (3) to be possibly customized by adding any
type of information to cells. For all these reasons, these
models and their variants have already proven to be use-
ful and efficient data structures for image representation
and processing [2], or for geometrical modeling [3].

Physical simulation and cutting. In Computer Graph-
ics, significant efforts have been put in proposing effi-
cient methods to model deformable objects, as stated in
the following state of the art [4]. Among them, the Fi-
nite Element Method (denoted FEM) is the most com-
mon. However, it generally requires expensive pre-
computation to allow interactive topological changes.
In [5], a cutting method based on a co-rotational im-
plicit FEM [6] is presented to overcome this limitation,
by successively removing, subdividing and adding el-
ements. This avoids the reconstruction of the global
matrix, but may generate ill-conditioned elements that
are prone to produce numerical instabilities.

The MSS is an interesting alternative for physical mod-
eling. Indeed, as for the tensor-mass model, it supports
modification of its geometry in a more natural way, that
can be managed locally. Moreover, the principle of
splitting faces, instead of removing elements, will re-
sult in more plausible animations. The difficulty is then
to redistribute the mass and physical parameters over
the elements, but none of the past attempts was able to
preserve exactly the same behavior as the original MSS.
Concerning cutting, some process have been proposed
to follow a cutting path either by refining the element
or by moving artfully the vertices [7, 8]. This gener-
ally implies complex topological modifications and an
exhaustive knowledge on the incident and adjacency
relationships. For example, an algorithm is proposed
in [9] to guarantee the manifold property of the ob-
ject after topological changes to avoid ill-structured el-
ements. However, this solution requires to handle sub-
stantial number of cases. Hence, in our paper, we show
a cutting method along edges, particularly tailored for
simulation of deformable objects.

Hybrid model. The use of a topological model to
dynamically handle changes of object during a physi-
cal simulation (generally for cutting purposes) is rare
enough to be worthy of note. In 2010, Meseure [10, 11]
have presented in this sense a physical simulation based
on a MSS using generalized maps, a variant of combi-
natorial maps. In 2011, Darles [12] has also used the
generalized map topological model, this time for simu-
lation based on a model of mass-interaction.

In the first two papers [10, 11], the mechanical informa-
tion of the objects discretized into tetrahedra is embed-
ded in the topological model by attaching it to the darts.
Then, a semi-implicit integration scheme is used for the
simulation. But some drawbacks remain in this propo-
sition. Springs are only associated with edges of the
topological model. Thus, this cannot be generalized to
others geometries, as it will be impossible for example,
to add inner diagonal springs in a hexahedron. There is
no direct access to particles and springs. Consequently,
the topological data structure is computationally expen-
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Figure 2: (a) A 3D object composed of two hexahedra (mesh). (b) The corresponding 3D combinatorial map.
(c) We add 3D points linked with 0-cell to obtain a 3D LCC. (d) We associate the structures of Particle and
Spring to obtain our LCC+MSS, a 3D LCC allowing a physical simulation based on a MSS.

sive just to retrieve these elements. Thus, they propose
to set an additional array containing all the elements
plus a pointer through the corresponding dart. This so-
lution improves the speed up of the method, but it leads
to a more complex structure and burdens significantly
updating operations, as these arrays must be recom-
puted after each topological modification made on the
generalized maps.

The solution introduced in our paper is based on similar
ideas as in [10, 11], overcoming the above-mentioned
limitations thanks to a more generic model (not only
tetrahedra but any type of cells may be taken into
account) allowing fully integrated physical simulation
(currently based on a MSS) with incremental topo-
logical changes. Lastly, high level C++ mechanisms
present in CGAL LCC are used. For example, functors
are automatically called when a particle is split,
allowing us to simplify the updating of mechanical
information associated with the topological model.

3 3D LCC FOR MSS
MSSs have largely been used in animation. It consists
of discretizing the object in a set of particles (also called
masses) connected together by springs. The data struc-
ture of our MSS simulation is based on the 3D LCC [13]
from the CGAL Open Source geometric algorithms li-
brary [14]. This structure allows a representation of an
orientable 3D object subdivided into cells with linear
geometry.

Fig. 2 illustrates the main steps to construct a 3D LCC
for a MSS (denoted LCC+MSS): given the geometrical
input data of the 3D object - Fig. 2(a), we first describe
its topology with a 3D combinatorial map - Fig. 2(b)
which describes cells as well as their incidence and ad-
jacency relationships. Then, we add coordinates of the
points to obtain a 3D LCC - Fig. 2(c) which describes
the geometry of the objects. Finally, we associate the
structure Particle with vertices and Spring with
edges to fit the simulation requirements for a MSS -
Fig. 2(d).

3D combinatorial map. We give here an intuitive pre-
sentation of combinatorial maps. The interested reader
may find all the mathematical background in [1, 15].

In practice, a 3D combinatorial map is an edge-centered
data structure composed of a set of basic elements
called darts, four pointers between these darts noted β0,
β1, β2 and β3, and some constraints defined on these
pointers to guarantee the topological validity of the de-
scribed objects.

Fig. 2(a) presents a 3D object composed of 2 3-cells
(volumes), 11 2-cells (faces), 20 1-cells (edges) and
12 points associated with the 12 0-cells (vertices).
Fig. 2(b) shows the 3D combinatorial map describing
this object. Each cell is described by a set of darts.
Indeed, each dart (drawn by oriented segments) of the
3D combinatorial maps belongs to a vertex, an edge, a
face and a volume. Each cube is described by 24 darts.
Given a dart d, β1(d) gives the next dart belonging to
the same face and volume and β0(d) gives the previous
one; β2(d) gives the other dart belonging to the same
edge and volume but not to the same face and β3(d)
gives the other dart belonging to the same face and
edge but not to the same volume.

Thanks to these rules, starting from a dart, the differ-
ent pointers can be used to retrieve all the darts that
describe the same i-cell, ∀i ∈ {0,1,2,3}. Moreover, the
adjacency and incidence relationships between the cells
are entirely given by these pointers.

This basic description (darts, pointers and constraints)
defines a 3D combinatorial map carrying no additional
knowledge. But, some information is generally re-
quired to describe the geometry of the objects, their
colors, the area of their faces, etc. Consequently, in
3D combinatorial maps, any type of information may
be associated with any cell. This is done through an
association between all the darts that belong to a same
cell and an attribute containing the information. This
allows a direct access to every attribute of a given dart.

3D LCC. The 3D LCC uses the mechanism of at-
tributes to associate a 3D point with each vertex of
the combinatorial map (represented by grey dots in
Fig. 2(c)). Thus, the geometry of each edge of a 3D
LCC is a segment whose endpoints are associated with
the two vertices of the edge; the geometry of each face
is obtained from all the segments associated with the
edges describing the boundary of the facet; and so on.
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Figure 3: A 3D LCC with additional information of a physical model based on a MSS.

One strength of the CGAL implementation of the LCC
is to store every attributes in a compact container which
is a set of arrays. Thus, we can directly iterate through
all the attributes associated with a given dimension
without iterating through darts. Moreover, each array
can be processed in parallel, as they are independent.
Lastly, the ability to automatically call a function (de-
fined by the user), when two attributes are merged or
when an attribute is split in two during an operation, is
a powerful mechanism that we use to define our cutting
operation (explained in the following).

Another particularly interesting feature is that different
geometrical kernels are provided within CGAL, allow-
ing for example the use of exact or inexact arithmetic,
exact or inexact geometric predicates. Each kernel de-
fines basic types and geometric primitives. FT is the
field number type used as basic type to define each co-
ordinate of points and related measures. Depending on
the kernel, FT could be double or an arbitrary preci-
sion number type based on the GMP library [16]. Using
FT, Point_3 describes a 3D point, and Vector_3 a
3D vector. As LCC is templated by a kernel, all our
code is generic and any type of kernel may be chosen
without having to modify anything other than the tem-
plate argument. This will allow us to easily perform
tests of robustness thanks to exact arithmetic to detect
possible errors coming from roundness problems.

3D LCC+MSS. To understand our topological model
for a MSS, we first briefly recall here the dynamics of
a MSS. Thus, considering a MSS composed of n 3D
particles, we note M the diagonal mass matrix (of size
3n× 3n), F, V, P respectively the force, velocity and
position vectors of particles (of size 3n). For each par-
ticle i, we note mi its mass, Pi(t),Vi(t) its position and
velocity at time t, and Fi(t) the sum of forces it un-
dergoes (spring forces and external forces like gravity
or interaction). For each spring connecting particles i
and j, we note ki j its stiffness constant and li j its initial
length.

Then, the dynamics of the model are governed by New-
ton’s law with the following relation at time t for each
particle i:

mi
d2

dt2 Pi(t) = Fi(t). (1)

From this equation, the acceleration of the particles
may be deduced according to applied forces. A numer-
ical integration scheme is then used to obtain velocity
(according to acceleration) and position (according to
velocity) of the particles.

In the current version of our framework, 3D objects are
discretized either into hexahedra or tetrahedra. For a
tetrahedral discretization, a particle is associated with
each vertex, and respectively a spring with each edge of
the object. In a same way, for a hexahedral discretiza-
tion (see example in Fig. 2(d)), a particle is associated
with each vertex, a spring with each edge, but in addi-
tion there are 4 internal diagonal springs for each hexa-
hedron (with no corresponding edges, 1-cell).

Fig. 3 illustrates with more details the use of a 3D LCC
to describe a MSS containing one hexahedron. It con-
tains 8 particles (numbered from v0 to v7), 16 springs
corresponding to the 12 edges and the 4 internal diago-
nals of the hexahedron.

For each 0-cell, we store the structure Particle cor-
responding to the information related to the MSS: its
index (used for the Euler implicit integration scheme
explained later), its mass, its acceleration, its velocity,
the sum of the forces applied on this particle, and its di-
rection constraints (to fix the position of a particle along
the different axis). We also store the redundancy of
the considered particle (the number of volumes incident
to the vertex), and the diagonal springs linked to the
considered particle, as an array of pointers to Spring
(only for hexahedral element). Note that the position of
the particle is given by the Point_3 associated to the
corresponding vertex in the 3D LCC.

For each 1-cell, we store the associated Spring of
the MSS: its initial length, its stiffness and an array of
pointers to its two extremities (i.e. pointers on the two
Particle connected by the considered spring). We
also store information concerning its redundancy (the
number of volumes incident to the edge).

Lastly, we store the global stiffness matrix (used for the
Euler implicit scheme) into the 3D LCC+MSS object
as this matrix is shared by all the volumes of the same
3D LCC.
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4 TOPOLOGY-BASED SIMULATION
Fig. 1 presents an overview of our method which pro-
poses a topology-based model embedding geometrical
and physical information for an efficient response to
complex simulation cases. Our method is divided in
two parts. (1) A pre-processing part with the construc-
tion and the initialization of our model based on the 3D
LCC integrating the input parameters of the object (ge-
ometrical data, mechanical parameters). (2) An anima-
tion part with the simulation loop including the com-
putation of the forces applied on the particles and the
numerical integration scheme used to update the veloc-
ity and position of the particles; and the possibility of
dynamically cutting or piercing our object during the
animation. Moreover, we use either the semi-implicit
or the implicit version of Euler’s integration scheme,
leading to fast and stable simulation.

Initialization. The first step of the topology-based sim-
ulation consists of the computation of the mechanical
information, and in the initialization of the attributes
associated with the 3D LCC.

We start by reading an input file describing the geomet-
rical information of the hexahedral or the tetrahedral
mesh, and we create the corresponding elementary vol-
umes in the 3D LCC. Then, we identify all the faces that
share the same geometry to obtain a connected object.

Next, we iterate through all the particles (0-cells) to ini-
tialize the mass, redundancy and index. (1) The index
is initialized at the creation of a new particle. (2) The
redundancy is the number of volumes incident to the
vertex, which can be directly computed using the inci-
dence relations. (3) For the computation of the mass of
each particle, the global mass of the object is properly
distributed over its n particles. Consequently, consider-
ing a 3D homogeneous object discretized into hexahe-
dra with a mass density ρ , the mass mi of each particle
i of the MSS is defined by:

mi = ∑
j|i∈E j

ρ VE j

8

with E j the set of hexahedra of volume VE j containing
the particle i. Identically for a tetrahedral discretization,
we get:

mi = ∑
j|i∈E j

ρ VE j

4

with E j the set of tetrahedra of volume VE j containing
the particle i. Note that it is also possible to attribute
a specific mass density to each element, in case of het-
erogeneous material.

Then, we iterate through all the edges (1-cells) of the
LCC to create and initialize the corresponding springs.
(1) The stiffness constant is calculated and attributed
to each spring of the MSS accordingly to the desired

Young modulus E and the Poisson ratio ν (in our ex-
amples, we set E = 100 MPa and ν = 0.3). Our calcu-
lations are based on the formulations given in [17, 18].
(2) The redundancy is the number of volumes incident
to the edge, which again can be directly computed.
(3) We initialize also the two extremity pointers by us-
ing the incidence relationships given by the LCC.

Lastly, we iterate through all the volumes (3-cells) to
create diagonal springs when necessary. For each hex-
ahedron, we create the four inner diagonal springs, ini-
tialize their information, and insert them into the corre-
sponding particles.

Forces computation. The first step of the simulation’s
loop is to compute all the forces applied on the parti-
cles, due to springs or external interactions. The force
involved at time t by a spring connecting particles i and
j is defined by:

Fi j(t) = Fe
i j(t)+Fv

i j(t) (2)

• Fe
i j(t) is the elasticity force of this spring defined by:

{
Fe

i j(t) = ki j
(
di j− li j

)
Ui j(t)

Fe
ji(t) =−Fe

i j(t)

with di j = ‖P j(t)−Pi(t)‖ and Ui j(t) the normalized
direction vector defined as:

Ui j(t) =
P j(t)−Pi(t)
‖P j(t)−Pi(t)‖

• Fv
i j(t) is the viscosity force of this spring (used to

simulate dissipated energy due to frictions) defined
by:

Fv
i j(t) = γi j [(V j(t)−Vi(t)) ·Ui j(t)]Ui j(t)

with the spring’s viscosity coefficient defined
by [19]:

γi j = 2

√
mi +m j

2
ki j

To enable this computation with our 3D LCC+MSS
model, we first iterate through all the 0-cell attributes
to reset the particles force to a null vector, and we add
the external forces. In this work we only consider the
gravity by adding mi g to Fi (with g = 9.8 m/s2). Then,
we iterate through each spring (both non-diagonal and
diagonal for hexahedral elements). We compute the
force of the considering spring by using equation (2)
and we accumulate the calculated force on the two par-
ticles linked to it. All the required information is stored
in the topological model and may be directly accessed
through the attributes (the position, velocity and force
of the particles; the extremities, initial length, redun-
dancy, stiffness of the springs).
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Numerical integration schemes. The second step of
the simulation’s loop is to compute the velocity and po-
sition of all the particles by using a numerical integra-
tion scheme. This enables the update of the geometrical
coordinates of all the 0-cells of the LCC.

The Euler semi-implicit integration method has been
implemented first. After the computation of the accel-
eration of all the particles (using equation (1)), we get
for a time step h:





d
dt

Pi(t +h) =
d
dt

Pi(t)+h
d2

dt2 Pi(t)

Pi(t +h) = Pi(t)+h
d
dt

Pi(t +h)

But, to obtain a stable simulation, h has to be reduced,
especially when stiffness increases. So, to enable larger
time steps, the Euler implicit scheme has been imple-
mented:




d
dt

Pi(t +h) =
d
dt

Pi(t)+h
d2

dt2 Pi(t +h)

Pi(t +h) = Pi(t)+h
d
dt

Pi(t +h)

This scheme may be reformulated as follows [20]:
(

M−h
∂F(t))
∂V(t)

−h2 ∂F(t)
∂P(t)

)
∆V= h F(t)+h2 ∂F(t)

∂P(t)
V(t)

with
∆V =

d
dt

P(t +h)− d
dt

P(t)

and ∂F/∂P, ∂F/∂V, the Jacobian matrices (of size
3n×3n, for n particles) encoding the variation of forces
resulting from position and velocity change at time t.
After computing these matrices, this linear system is
solved using the Conjugate Gradient method to obtain
∆V. Then, the velocity is updated with:

d
dt

P(t +h) =
d
dt

P(t)+∆V

and the position with:

P(t +h) = P(t)+h
d
dt

P(t +h)

Naturally, the damping coming from the environment
is taken into account when updating the velocity of the
particles. Moreover, we can note that the acceleration is
never really computed according to equation (1) within
the Euler implicit scheme.

Computation of the global stiffness matrix ∂F/∂P. To
fill, at time t, the nonzero entries of matrix ∂F/∂P, we
compute ∂Fi j/∂Pi (matrix of size 3× 3) only if parti-
cles i and j are connected (with i 6= j), with:

∂Fi j

∂Pi
=

∂Fe
i j

∂Pi
+

∂Fv
i j

∂Pi

with




∂Fe
i j

∂Pi
= ki j

[
li j

di j
(I−Ui j UT

i j)− I
]

∂Fv
i j

∂Pi
=

γi j

di j

[
[Ui jUT

i j− I]ω +[W Ui jUT
i j]

T ]

where I is the identity matrix of size 3× 3 and W a
diagonal matrix defined by:

W =−
Vi j

Ui j
+ω× (1,1,1)T with ω = Vi j ·Ui j

Fig. 4 illustrates the matrix ∂F/∂P for a 2D MSS with
6 particles. This matrix is composed of:

• non-diagonal elements ∂F ji/∂Pi and ∂Fi j/∂P j de-
duced from ∂Fi j/∂Pi with:

∂Fe/v
i j

∂Pi
=−

∂Fe/v
ji

∂Pi
,

∂Fe/v
ji

∂Pi
=

∂Fe/v
i j

∂P j

• diagonal elements [∂F/∂P]i,i with:

[
∂F
∂P

]

i,i
= ∑

k∈S

∂Fik

∂Pi

with S the set of particles connected to i.

Note that this global stiffness matrix is filled using the
particle index.
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Figure 4: Illustration of the Jacobian matrix ∂F/∂P for
a 2D MSS composed of 6 particles.

Computation of the damping matrix ∂F/∂V. The ma-
trix ∂F/∂V corresponds to the Rayleigh Damping de-
fined by µ M + λ ∂F/∂P, with µ and λ the mass and
stiffness proportional Rayleigh damping coefficients.

5 TOPOLOGICAL CUTTING
Amongst all the changes that a 3D object may undergo
during an animation, cutting is one of the most chal-
lenging, as it implies deep topological changes, i.e. el-
ement removing or splitting. Without an efficient topo-
logical model, it may cause difficulties, as generating
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ill-structured and non-manifold mesh when refining el-
ements or moving points to follow the cutting path.
In this section, we demonstrate through this particular
operation that the proposed model is robust and well
adapted, with limited additional computational cost.

Unsewing in 3D LCC. In a 3D LCC, the i-unsew
operation, i ∈ {1,2,3}, unglues two i-cells which are
glued along one of their (i− 1)-cells. For that, we un-
link βi pointers for all the darts belonging to the shared
(i− 1)-cell. After this operation, the initial shared
(i−1)-cell is split in two (i−1)-cells, and respectively
this initial (i−1)-cell will no more be shared by the two
i-cells.

If the unsew operation splits a j-cell c, ∀ j ∈ {0,1,2,3},
in two j-cells c1 and c2, and if c is associated with a
j-attribute attr1, then this attribute is duplicated into
attr2, and all the darts belonging to c2 are associated
with this new attribute. Next, a functor is called on the
two attributes allowing the user to update its specific
information.

In Fig. 5, an example of 3-unsew operation is pre-
sented. We start from the LCC given in Fig. 5(a) made
up of 4 hexahedra. A 3-unsew operation is pro-
cessed to unglue the dark grey and the white hexahe-
dra. The face separating these two hexahedra (named
(v1,v2,v3,v4) in the initial configuration) is split in two
by the 3-unsew operation. We can see in Fig. 5(b)
that this split involves the duplication of the two ver-
tices v1 and v2, and the duplication of the three edges
(v4,v1), (v1,v2) and (v2,v3). The user defined functor
is called on each pair of duplicated cells, for example on
(v1,v′1) for vertices, and ((v4,v1),(v′4,v

′
1)) for edges. In

this example, note that vertices v3 and v4 are not dupli-
cated during the unsew operation as they are still con-
nected by the two grey hexahedra right below, and con-
sequently the edge (v3,v4) is not duplicated either.
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Figure 5: Example of 3-unsew in a 3D LCC.

Object cutting during simulation. During the phys-
ical simulation, we use the 3-unsew operation to cut
an object by separating two adjacent volumes. As ex-
plained above, this operation duplicates the attributes
where necessary. In our case, particles and springs are

possibly duplicated. In both cases, the physical infor-
mation stored in the attributes has to be updated.

For new particle. If the cutting involves the creation of
a new particle (for example particle v′1 in Fig. 5), all the
information is first duplicated from the initial particle
(v1). Then we initialize the index of v′1 to a new index
(used for the Euler implicit integration) and we update
the mass of v1 and v′1 by decrementing their redundancy
(i.e. the number of volumes incident to the particles).
Lastly, we update the list of diagonal springs connected
to v1 and v′1. Indeed, springs associated with the second
volume are still attached to the initial particle v1, that is
incorrect (see Fig. 6(a)). Thus, we iterate through all the
springs associated with v1 and for each one whose other
extremity belongs to the second volume, we detach it
from v1 and attach it to v′1 (see Fig. 6(b)).
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Figure 6: Modification of springs in the 3D LCC+MSS
after 3-unsewing. (a) The bold segments represent the
springs wrongly attached to particle v1 before updating.
(b) Same springs after updating.

For new spring. If the cutting involves the creation of
a new spring (for example edge (v′1,v′2) in Fig. 5), all
the information of the spring associated with the ini-
tial edge (here, the edge (v1,v2)) is duplicated on the
new spring created and associated with the new edge.
Then, we update the redundancy of the two springs by
counting the number of volumes incident to each cor-
responding edge, and we update the two extremities of
the new spring to link the two particles incident to the
new edge.

As a consequence of the creation of new particles, the
cutting of the object involves the re-sizing of the data
structures that store the mechanical information: force,
acceleration (for Euler’s semi-implicit scheme), veloc-
ity, position vectors, and the global stiffness matrix (for
Euler’s implicit scheme). Then, the computation of the
forces applied on each particle is performed as usual.

6 RESULTS
In this section, we present some results to validate
the behavior of our animation based on a topological
model. We show how our model can simulate defor-
mation of a soft body and how it can be cut or pierced
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during the animation. All our experiments were car-
ried out on an Intel Core i7 processor (2.40 GHz with
4 multi-threaded cores). We set the material proper-
ties to E = 100 MPa, ν = 0.3 and ρ = 1,000 kg/m3 to
simulate behaviors similar to soft tissues. All the given
times correspond to one step of the simulation process,
in milliseconds. For all the presented results, only the
gravity force is applied. Moreover, the red spheres in
figures are particles constrained in all directions and the
3-unsewed faces are drawn in red.

Semi-implicit vs. implicit integration scheme. We
simulate a cube modeled by 1 hexahedron with 16
springs and 8 particles, and the same cube modeled
with 5 tetrahedra, 18 springs and 8 particles. Table 1
compares the computation times resulting from the
use of the Euler semi-implicit and implicit integration
schemes (with h = 1 ms). As expected, the implicit
one is slower, but this will be advantageously counter-
balanced by more stability, allowing larger time steps.

Semi-implicit Implicit
Hexahedral mesh 0.009 0.42
Tetrahedral mesh 0.012 0.42

Table 1: Time (in ms) per simulation step.

Scale up. Fig. 7 presents the scale up property of
our simulation by considering a beam with an increas-
ing number of hexahedral elements: 1 cube of 10 cm;
2× 2× 2 cubes of 5 cm; 4× 4× 4 cubes of 2.5 cm;
8× 8× 8 cubes of 1.25 cm; 16× 16× 16 cubes of
0.625 cm (simulations made with h = 0.1 ms) and
32×32×32 cubes of 0.3125 cm (simulation made with
h = 0.01 ms). Results show that the complexity of our
method is linear according to the degree of freedom
(DOF) within our system.
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Figure 7: Time (in ms) per simulation step according to
the size of a hexahedral beam (with log-log scale).

Comparison performance with SOFA. We now con-
sider a mesh with 640 hexahedra, 4,954 springs and
891 particles. We compare our simulation times with
the ones obtained using our same MSS implemented
in the Open Source Framework SOFA [21, 22]. With
our topological framework, we obtain an average of

0.55 ms by simulation step with the Euler semi-implicit
integration scheme, while we get 0.77 ms by using
the Euler explicit integration scheme in SOFA (with
h = 1 ms). We note that the additional cost due to the
topological structure remains limited, using a similar
integration scheme. This first comparison is very en-
couraging as it shows that our method is competitive
even in its preliminary form (not fully optimized).

Comparison with another topological model. In [11]
a similar solution has been proposed. With a mesh com-
posed of 1,856 tetrahedra, 2,850 springs and 564 par-
ticles, they stated that the simulation step takes 8 ms
on a dual core 2.8GHz processor, using an Euler semi-
implicit integration (4th order Runge-Kutta integration
scheme).

For comparison purposes, we built a similar beam com-
posed of 1,890 tetrahedra, 2,655 springs and 480 parti-
cles. We obtain an average of 0.5 ms by simulation step
when using the Euler semi-implicit integration (with
h = 1 ms). Even if these results do not involve the same
CPU, nor exactly the same mesh, this preliminary com-
parison is very satisfactory and demonstrates that the
proposed structure is well adapted for simulation appli-
cations, leading to minimizing the additional memory
and operative cost induced by the topological model.

Cutting. As presented above, cutting objects during the
animation is easily supported by the proposed structure.
In the following, the Euler implicit integration scheme
is used for its stability when high deformation is under-
gone by the 3D object.

Fig. 8, 10 and 11 show examples of interactive defor-
mation and cutting of a beam. The user is provided
with tools permitting him to select the particles belong-
ing to the face to 3-unsew. If necessary, a zone can be
selected by the user, where all the faces including the
selected particles are 3-unsew.

In Fig. 9, we present the cutting performed on two big-
ger meshes representing a frog. This illustrates that our
method can be used for detailed objects.

Piercing. Thanks to our cutting method, we can pierce
an object by 3-unsewing all the faces around the volume
to be removed. In Fig. 12, we pierce a beam composed
of 5×3×3 hexahedral elements by 3-unsewing 3 cubes
in the middle of the beam.

7 CONCLUSION AND PERSPECTIVE
In this paper, we have presented the use of the 3D LCC
topological model for a physical simulation based on
a MSS. The mechanical information of the object is
added to the data structure as attributes associated with
i-cells, avoiding the duplication of data and the manage-
ment of different data structures. Our first experiments
illustrate that our method is competitive, even without
any specific optimization.
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In the future, we first plan to improve our simulation
time. All the operations used for the simulation can be
easily implemented in parallel, and a version of the sim-
ulation on the GPU is under investigation. Moreover,
we work to insert other physical models like tensor-
mass model, finite element method or even a more
evolved mass-spring system. Finally, we want to in-
tegrate in our framework the automatic refining and
coarsening of cells during the simulation. Indeed, the
3D LCC provides all the basic topological operations
required for that kind of operation. Consequently, the
next stage will be: how to update the physical informa-
tion and to define the criteria to decide where these op-
erations must be applied? This improvement will allow
us to overcome the current limitation of cutting only
along the faces of the mesh. Indeed thanks to the subdi-
vision features, we will be able to follow a cutting path
through elements.

Figure 8: 10 faces are 3-unsewed of a beam composed
of 5×3×3 elements (initial state in top right).

Figure 9: Cutting one hexahedral mesh representing a
frog with 26,125 hexahedra and 32,934 particles.
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Figure 10: Beam composed of 5×3×3 elements, progressively cut by a knife (from the Avalon 3D archive).
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Figure 11: Beam composed of 5× 3× 3 elements. 1) 3 faces are 3-unsewed. 2) and 3) Two states after the
3-unsewing of 9 faces.
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Figure 12: Beam composed of 5× 3× 3 hexahedral elements. 1) Initial deformed state. 2) and 3) Two views of
the same object after piercing by 3-unsewing 14 faces.
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