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ABSTRACT 
This paper presents Celtic Canvas -- a framework towards computationally generating patterns similar to simple Celtic 
artwork. As Celtic patterns are highly structured, a robust model of curvature dynamics is introduced in the paper to allow the 
evolution of space curves as a foundation for line drawing and structural anatomy.  Cellular automata integrates several 
features including  -- lines and forms, allocation of space, a solution of crossing states, the occlusion processing, depth cues, 
and line weighing.  Lattice gas automata assist in generating varying width patterns. Original digitally available artwork 
provides shapes and forms as line-art.  Our novel contribution is that we are successful in generating examples of knotwork 
and zoomorphs (animal designs shapes) that mimic the characteristics of the Celtic art forms.  Future research areas are also 
identified. 
 
1. INTRODUCTION 
 
Reconstruction of Celtic design methods could perhaps be 
traced to the work of J. Romilly Allen’s [All93] 1903’s 
survey which was followed by the studies of George Bain 
[Bai51] in 1951. As part of her survey of Celtic interlace in 
Northumbria (Northern England, 500-1100), Gwenda 
Adcock [Adc74] developed the system now used for 
archeological description and analysis.  Iain Bain in 1986 
[Bai86] transformed many of his father’s construction 
techniques into concise procedures or algorithms.  Peter 
Cromwell [Cro93] followed with his examination of frieze 
patterns, and is credited with considering interlace as being 
traced by a ray reflected by bounding structure [Fun07].  
Paul Gerdes described this generator in detail, first for 
Tchokwe and Tamil pictograms [Ger90] and later for Celtic 
interlace [Ger99]. A theory of mirror curves emerged in 
[Jab95].  Adcock’s research [Adc74] discussed evidence of 
templates. While the approach is workable in typography, it 
also helped illustrate another of Adcock’s observations, that 
a skilled artist is needed to prevent monotonous patterns.  
Christians Mercat [Mer97] observed that crossings in Celtic 
interlace comprise an encoding (tetravalent, of four 
converging cord segments) enabling the specification of 
arbitrary interlace in terms of planar graphs.  Frank Drewes 
[Dre89] demonstrated graph grammars where terminal 
symbols are associated with tiles.  This resembles the 
approach taken in Lindenmayer-Systems [Pru90] as well.  
One of the characteristics of the illustrations is to appear 
hand drawn.  So the following guidance was developed: (a) 
reduce artifacts that may be perceived as the result of a 

rendering process, (b) portray materials accurately 
according to context; (c) understand what to emphasize; (d) 
avoid patterns and regularities; (e) follow established rules 
of traditional rendering techniques – how the lines are 
placed and use visual cues such as line weight and depth 
variation.   
Development in the theory of alternating knots [Bro05, 
Chu05] and tangles now extends to classification and 
enumeration [Bae07]. Adcock [Adc02] completed a study 
of interlaced animal designs (zoomorphs) in Bernician 
sculpture and their relationship to work produced by the 
monastery at Lindisfarne.  One significant difference 
between zoomorphs and interlace is that interlace involves 
strictly closed curves and animal designs more often 
involve open curves. The Isenberg [Ise06] study 
recommends experimentation with approaches to line 
weight and cuing and line shape as that can convey emotion 
[Fre03]. Knotwork, such as work by David Llewellyn-
Jones, posted on the web, does not have a zoomorph 
implementation.  NPR research today includes modeling 
for pencil  [Mer08] and ink on paper [Chu05], brush and 
paint on canvas [Bax04], medieval manuscripts [Bro04] 
and collections at Trinity College Dublin [Qui07]. 
Parametric curves, such as Bezier, Hermite, or B-Splines 
[Far97] tend to be less expressive than those drawn by 
hand, yet managing continuity is always an important piece 
which may affect the artwork. Work by Kurt Fleischer 
[Fle97] on self-organizing geometry is relevant for 
generating adaptive and curved lattice gas models [Har71], 
and can be useful due to the  evolution of a trefoil shaped 
filament [Mal96] shapes and shape grammars. In this paper, 
we focus on providing research on how to computationally 
generate knotwork [LAr07] and zoomorphs (animal design 
forms). Our research and results are novel and promising in 
the sense that we have been successful in capturing some of 
the innate aesthetics and simplicity observed in knotwork 
and zoomorphs of Celtic Art form. These are shown as 
crossing (Figures 2, 4, 12, and 13), design elements (Figure 
6-8), and zoomorphs (Figures 9 and 14).  These are basic 
elements found in Celtic Art, and according to best of our 
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knowledge, not captured by any other existing 
computational method. 

2. BACKGROUND 
To conform to the style of insular design from the 9th 
century, proportions for interlace are found in Adcock 
[Adc74; 02].  Alternatively these can also be measured 
from lithographs, photography from the manuscript 
departments of universities, or measured from digital 
photography available on the web.  Similar measurements 
may be developed for zoomorphs, plant designs, humans, 
key patterns, spirals, and so forth. 
The key idea in complex systems theory is that local 
interactions give rise to organized global behavior.  Brush-
strokes by an artist are examples of local control creating 
global emergence, which is the overall painting. Modeling 
of these systems involves simulation over assemblies of 
discrete elements such as brush-strokes.  Broad surveys 
have been done [Fle95].  Organizations include lattice gas 
automata (LGA) [Har76]. Other related work are in 
[Sim94] but for very different applications.  
Differential Geometry 
The nib of a pen traces a line on a writing surface.  The 
point of contact may be thought of as a particle moving 
along a space curve in the plane of the writing surface.   
From the fundamental theorem of space curves, if curvature 
and torsion are differentiable over the arc length and 
curvature is everywhere positive, there exists a unit speed 
space curve with those properties.  The initial unit tangent 
and unit normal vectors may be assigned as long as their 
dot product is everywhere zero.  For a planar space curve, 
torsion is everywhere zero.  In this special case, the 
curvature function may be signed, allowing turns left and 
right.  The formulation is interesting to us as varying shape 
curve can be generated given an initial position X, unit 
tangent (T), unit normal (N), and B, and assigned curvature 
K(s) and torsion (TO(s)) values which provide the rate of 
change of present position of the curve using curve 
parameter (s) based on differential equation formulation 
described in [Gra98].   
Mirror Curve Generator 

 
Figure 1: Single knot three cord border. 

Part of the fascination of mirror curves in design is that an 
outcome may not be immediately obvious.  For example, 
while placing breaks in a variation on a grid studied by 

Aidan Meehan [Mee03], it was not apparent that the 
preceding knot-work in Figure 1 uses a single cord.   
Designs in this study, following the example of George 
Bain, are first developed using medial lines with a density 
of a one cord per square. As a cord passes through a square, 
its departure is designated by a chain code.  Chain code 
directions on the Moore neighborhood are shown in Figure 
2. 

 
Figure 2: chain code directions. 

Using a varying grid, an automaton, called a lattice gas 
automaton, for left reflection is derived by examining part 
of the following knot in the following work (Figure 3) 
using chain codes: 

 
Figure 3: (left) Derivation of left mirror (bottom 3 by 4) 

moves as (Right) chain codes (3 by 4). 
For left reflection assume that mirrors are placed to the left 
of the particle path in the lattice gas particle automaton.  
Begin with the particle in the lower left corner heading in 
chain code direction five (Figure 3).  The model describes a 
particle that interprets a break as a 45-degree direction 
change.  Angles are additive. Addition of random moves 
can provide more variety as the particle moves, offering 
variation of patterns.   
The motion of the particle simulates the generation of a 
mirror curve as chain codes  Each mirror curve defines the 
intersections of a guide curve with the grid.  If the path 
traced by the particle is closed in the desire curve, 
Thurston’s theorem says that an alternating knot covering 
that path exists.  A GCA particle tracing the edges of the 
major grid, interpreting breaks as mirrors, can use Mercat’s 
algorithm to find a coding for the crossings (Figure 4). 
Alternatively, the encoding can be determined using a 
mobile cellular automaton that traces an image of the 
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solution for each guide curve across the drawing surface to 
interpret a composite image of all the guide curves in the 
composition.   

 
Figure 4: A path traced by Mercat’s coding algorithm. 

From this all of the intersections are identified.  Each 
intersection, as with Mercat’s algorithm, is used to hold the 
identification of guide curves that pass through it and the 
reservation of the above or below state for each intersection 
of the knot.  If, while traversing the image of a guide curve, 
the mobile automaton encounters an intersection where the 
needed reservation is already taken, the solution fails.  In 
the case of designs involving only knots, resolution of these 
failures may be resolved through a divide and conquer 
strategy.  However, if the design contains tangles, a 
solution may not exist.  Where a crossing solution exists, it 
is encoded as a function of arc length on each guide curve 
in the composition.  The coding is adjusted so that state 
transitions occur half way between intersections. 
The lattice gas particle path is drawn as a polygon joining 
the centers of cell entry and exit points.  This automatically 
generates results in Glassner’s visualization [Gla99].  Since 
the grid is square, the generating sequence for a space 
curve covering the path can be assembled by collecting 
sequences from a small set of standard curve segments, 
indexed by which turn is taken by a particle on exiting a 
cell relative to the direction on entry.  When the grid is 
irregular, a suitable curve for each segment must be 
adaptively produced.  For example, models for the curve 
segment are selected and then, in the worst case, fitted by 
evolutionary search on the ranges of their parameters and 
the one with the best-fit wins.  Our observation is that the 
behaviour of the particle with such set interfaces resembles 
what an artist may be doing when judging how to draw a 
line.  In studying the lines of Celtic interlace some of these 
shapes are familiar.  Their incorporation may also be 
important as suggested by a study on the effect of line 
shapes on the perception of emotion or style [Fre03].  

3. INFLATING THE CURVES 
Once the lines representing the Celtic-canvas are 
satisfactory, closed or open curves represented by cords or 
the lines can be inflated. For interlace, a cord must be fitted 
to the guide curve.  This process is often described as 
inflating the cord.  If the left and right edges of the cord are 

assumed to be lines parallel to the guide curve, the parallel 
line theorem from differential geometry may be used 
[Gra98]: 

c
c ||α

α , s, t( ) =
sJ ʹ′α t( )
ʹ′α t( )  

Tangent velocity of the curve is normalized at t, and scaled 
by distance s; J is the two-dimensional Jacobian [Gra98; 
Doy08].  The cord is inflated in the direction of the curve’s 
normal and then repeated in the opposite direction to create 
cords from lines in a cylindrical fashion.  The radius of the 
cord is used as the scale factor and can vary based on 
parameter t as shown above. Parameter t could also be used 
for mapping textures in future. 
Design Elements as Forms and Sleeves 
Design elements are described as forms and sleeves, as 
detailed in [Doy08].  Each is represented by line art for the 
shape of a given element around symmetries to be provided 
by guide curves which are generated from the given celtic 
art piece as explained below.  Forms are used primarily for 
zoomorphs and plants in the Celtic Art.  Sleeves are 
specialized forms that provide the shape for cords in the 
knotwork.  The reason for using line art is to allow a 
designer the freedom to draw these shapes as needed 
without relying on any particular technology.  These line 
art can then be inflated to create knotwork supplementing 
the computer generated forms.  Design elements provide an 
efficient mean to provide templates, and can be used as 
tiles to create continuous curves if properly used.   
A form (input shape) is specified in terms of four files:  
anatomy, symmetry, segmentation, and pivots.  Figure 5 
shows such an arrangement for our implementation. 
Anatomy defines what a form looks like (leftmost Figure 
5).  Symmetry defines a skeleton (left-middle Figure 5).  
Segmentation defines where a form can be split and 
stretched along symmetry (right-middle Figure 5).  Pivots 
define where parts of the anatomy may be independently 
turned and are left for future study (rightmost Figure 5).   

 
Figure 5: Celtic Snake anatomy, symmetries, segmentation 

and pivots (left to right). 
Extraction of lines from the anatomy drawing is supported 
by connected region enumeration and a simple set algebra, 
so desired lines can be obtained (Figure 6). Extracted lines 
are sampled as distance functions along the arc length of 
the corresponding symmetry and then coded as part of the 
genotype for the shape.  To resolve occlusion during 
rendering, lines that form the outermost outline of the form 
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are marked as exterior.  Sleeves are handled similarly and 
only have one symmetry.  Sleeves are fitted to cover a 
portion of the arc length of a guide curve.  Examples of 
cord sleeves with their specifications are as follows (Figure 
7). 
 

 
Figure 6: Left Nose ridges extracted from anatomy. 

 

 
Figure 7: Chord sleeve, left, chevron sleeve right turn, 

right. 
The well structured basic shapes representing genotypes 
(code for the line-art) for a composite sleeve are assembled 
on request when binding to the guide curve for a knot.  
Generative system implementations where genotype or 
binary bit pattern representing the eventual shape can be 
expanded to present line art (phenotypes) has been also 
used in our implementation. An appropriate sleeve (cord, 
left or right chevron) is selected for each segment of arc 
length of the guide curve, where a segment is the portion of 
the guide curve that passes through each cell in the grid.   
Artifacts of hand drawn line and rendering 
Noise or small random variations in basic line-art code 
shape or genotype, are used in our implementation to create 
variety of shapes or phenotypes which then can be 
represented in line form and inflated as explained earlier. 
Some of the issues identified by Isenberg [Ise06] have been 
included in this study. Vector noise accounts for variations 
in the movement of a designer’s hand when drawing.  We 
assume that variation in the motion of the hand, 
perpendicular to the direction in which a line is being 
drawn, varies as an arrival problem.  In other words random 
variation occurs at some rate, and can be modeled as an 
exponential distribution. The scaling term from the 
Brownian Bridge is borrowed to assure that the ends of 
walks meet as follows: 

W
s
=

s s
1
− s( )
s
1

⋅ f N
0.1

( )
, 0 < s < s

1  
where s1 is the length of the respective walk and s is the 
parameter within the walk.  This is implemented by 
genetically generating piecewise continuous curves whose 
positions left and right of zero are randomly varied by the 
normal distribution at the rate of the exponential 
distribution.  The generator joining two points is zero 
seeking. These functions are expensive (time consuming) to 
generate; so, they are kept short and looped as needed.  
This noise process is added to the widths of lines centered 
on guide curves: 

w
noisy

s( ) = w s( ) +W
s  

The lengths of these noise functions, the amount of their 
variation, and the rate at which variations occur are set by 
the designer.  The above value of w provides variation of 
cord width simulating human hand drawing.  The depth cue 
parameter is implemented as a multiplier, d(s), on the width 
function.  Again the curvature dynamics system is used to 
develop easements in and out of these cues.  The combined 
effect of depth cue and hand motion variation becomes: 

w
noisy&depth

s( ) = d s( ) ⋅w s( ) +W
s  

The designer can set an arc length distance from the guide 
curve being crossed to start a depth cue, as well, as separate 
parameters for the width of above and below states. The 
two pass rendering algorithm is implemented.  The first 
pass draws all lines having the above state.  Lines with the 
below state are drawn on the second pass.  When the image 
of an exterior line having the above state is encountered on 
the second pass, the state of the lower line is changed to 
“occluded.”  This state continues until the next exterior line 
of the form being passed under is reached.  The Sousa 
pencil model [Sou03] simulates the abrasion and deposition 
of a graphite source when rubbed against paper.  We also 
implemented an alternate approach for deriving guide 
curves as patterns generated from a genetic interpretation of 
a Perlin [42] noise process (Figure 8). 

 
Figure 8: Cross in circle pattern using Perlin Noise. 

A number of exotic problems arise first in attempting to 
find these patterns and then extract them for use in 
assembling interlace.  Although promising, more is needed 
to computationally extract zoomorphs and knot-work from 
Perlin noise, especially representing the aesthetics and 
complexity of Celtic art. More details of this work are in 
[Doy08]. 
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4. IMPLEMENTATION 
Based on methods from the previous Section, our algorithm 
is summarized as follows: 
1:  Define structures (grids) with breaks on a canvas 
2:  Define design elements for the grids 
3:  Arrange and pose elements within the structure 
4: Solve alternating crossings for knots and tangles, 
ensuring continuity as the curve crosses grid elements 
5:  Render a result 
Multiple grids provide structures for local interactions that 
are consistent with neighbors joining two points across grid 
elements, thus providing consistency across grid 
boundaries.  Quadrilateral meshes for structure grids were 
based on the templates of Matthias Muller-Hannemann 
[Mul97]. Design elements provide the context and include 
chain-code shapes (genotypes) or line-art from Celtic art 
pieces as guidance curves. Complete Celtic-Canvas system 
diagram is shown in Figure 9.  
The system is organized around a set of user interface tools.  
Inputs to the system include mattes of the drawing 
surfaces(s), under drawings (optional), line drawings of 
forms (animals, plants, etc.), and of sleeves.  
Morphological analysis is used to provide an initial 
interpretation of drawing surfaces.  Tools are provided for 
defining and editing grids and placing breaks, assisting 
with the design of guide curves (lattice gases and freehand 
drawing) and applying them to posing forms. 
Celtic Canvas provides an opportunity to view such an art 
form as a complex system using the work of Mitchell 

[Mit09].  Complex forms are simulated using mutation and 
variation of genotypes, and rendering them as phenotypes.  
Specifically, The forms and guide curves are easily 
identified as individuals (genotypes).  Their phenotypes 
consist of both structural and visual components including 
variation of depth and width.  Design elements are first 
formed by a skeleton of guide curves which are derived 
from their symmetries. The chromosome of a composite 
sleeve might contain hundreds of sequences, including the 
description of each thing to be drawn and it’s binding to a 
guide curve.  The genotype of a form provides everything 
needed to solve and pose its anatomy on the supporting 
guide curve(s).  
A Celtic-composition in this system presented contains 
grids and design elements.  It contains a constructor 
(ribosome) that builds phenotypes of its elements under the 
guidance of the designer.  Its phenotype is the rendering of 
its design-elements which are results of our 
implementations as presented in Figures 1, 5, 8, and 10-14.  
The reason that the shapes generated by our 
implementation resemble Celtic-art forms is because design 
elements used in our system are either guided  by Celtic-
Art form or are designed that way.    
Although our focus has been to computationally generate 
Celtic knotwork and zoomorphs, the formulation presented 
in Section 2 is also capable of producing three-dimensional 
shapes and forms if we use 3D design elements and suitable 
phenotypes. In addition, the formulation presented in this 
paper can be extended to non-existent new interpretations 
of Celtic-Art forms based on 3D Space filling arbitrary 
shapes using either solid or hollow three-dimensional cords 
and zoomorph as design elements. 

Figure 9: Celtic-Canvas: system diagram. 
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5. RESULTS 
This section describes results of our implementation 
using Celtic-Canvas (Figure 10 [Doy08]).  They are 
presented with examples from the Book of Kells and 
the Lindisfarne Gospels [Hen74, Mee94].  The 
primary references for comparison with hand-drawn 
examples are those developed by Adcock and the 
illustrations of Iain Bain. Our review of the literature 
found that automatic means for evaluating the quality 
of a visual design remains an open question [Ise06].  
Our results in Figures 10-14 show major 
improvement over existing computational methods 
presented in [Gla99, Kap03], and take few minutes as 
symmetry, shape, skeletion and pivot points are 
defined, as discussed in [Doy08].  Since curvature is 
such a natural attribute of space curves, one of our 
first attempt was a Celtic spiral.  Our reconstruction 
(left) uses a progression based on the golden ratio 
indicated (right) in Figure 11.  The design was 
inspired by a triple spiral on folio 34r of the Book of 
Kells.  It is presented here (left) without artifacts and 
in the original (Figure 10). 

 
Figure 10: Triple spiral from MS 58 f34r, Board of 
Trinity College Dublin (right) with permission. 
Lindisframe Knotwork (Bain): Although knotwork 
is not part of the lozenge in folio 34r of the Book of 
Kells, it is fundamental to most Celtic design.  Using 
Celtic Canvas, a reconstruction using Celtic Canvas 
of a design from the Lindisfarne Gospels (f. 11) [7] is 
shown in Figure 11 using with (right) and without 
(left) slight artifact.  Both are produced with our 
implementation.  

 
Figure 11: Lindisfarne (f. 11) reconstruction, left, and 
with added artifacts, right. 
Lindisframe Knotwork (Adcock) 
A more complex example of knotwork is a fragment 
from the Lindisfarne Gospels (f. 26)  [Adc73, Bai51].  

The design was not drawn from a single cord, but 
rather three. An omitted break revealed a design 
using only two cords.  A single cord would be Celtic 
symbolism for eternity.  A reconstruction with 
chevrons and artifacts is in Figure 12. Patterns for 
curves with larger radii can be recognized when 
curve segment sequences are symbolically coded.  
This figure includes curve sweetening by substitution 
of larger radii curves.  These beautiful 
computationally generating curves using Celtic-
Canvas can be further improved by evolving the 
parameters that affect their proportional fit in the 
grid. 
 

 
Figure 12: Lindisfarne Gospels (f. 26) corner with 
artifacts 
Reptile (snake) based from Lozenge of MS 58 f 
34r: A motivator for our research was the lozenge in 
cross of the Chi in folio 34r of the Book of Kells, 
first studied by George Bain in 1951[Bai51].  An 
example of a snake posed on a guide curve designed 
by a mirror curve using Celtic Canvas is in Figure 13. 

 
Figure 13: Posed reptile with artifacts 

A significant portion of the design in the lozenge in 
folio 34r is devoted to a tangle of creatures.  A series 
of reptiles were assembled as a test of the solver for 
crossings in alternating knots and tangles.  An LGA 
(Lattice Gas Automata) with a higher degree of 
freedom was used to design guide curves to pose 
each of the snakes.  The result of our implementation 
without artifacts is in Figure 14 and shows complex 
tangled designs Celtic Canvas can generate, specially 
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the visual variation in each resulting snake is 
interesting. 

 
Figure 14: Tangle of reptiles. 

6. CONCLUSIONS  
In this paper, we have presented a novel 
implementation to computationally generate 
interlacing knotwork and zoomorphs seen in 
historical Celtic Art. The complex system based 
implementation integrates some of the aesthetics and 
characteristics of the original art form as its design 
elements.  Significant contribution of our work is that 
shapes and forms, mimicking the original art, emerge 
as shown by several examples of knotwork (Figures 
11, 12) and zoomorphs (Figure 14).  In addition, we 
also developed a solution for alternating crossings 
and rendering. An implementation of additive vector 
noise based on our research provides hand-drawn 
quality to our work.  We were not able to 
computationally generate complexities in Figure 15. 
George Bain’s reconstruction of the lozenge at the 
crossing of strokes in the Chi of folio 34r in the Book 
of Kells, the XPI monogram page (Figure 15), is 
indeed remarkable and worth pursuing further.  
Appearing as a mass of tangles, it contains little of 
the regular structure found in Celtic interlace and 
would require further study. 

 
Figure 15: Lozenge of MS 58 f34r, Board of Trinity 
College Dublin with permission. 

Computationally generating and measuring the 
aesthetic quality of generated art form [Yev02] and 
identifying it to be similar to Celtic-art, and occlusion 
shading is another research challenge for the future.  
A line of inquiry, which is of interest to us, is the 
work by Itti, Dhavale and Pighin [Itt04] and Santella 
[San05]. These will be further investigated and are 
still open areas of research at this time. 
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