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ABSTRACT

In this paper, we address the problem of multichannel image partitioning and restoration, which includes simulta-

neous denoising and segmentation processes. We consider a global approach for multichannel image partitioning

using minimum description length (MDL). The studied model includes a piecewise constant image representation

with uncorrelated Gaussian noise. We review existing single- and multichannel approaches and make an extension

of the MDL-based grayscale image partitioning method for the multichannel case. We discuss the algorithm’s

behavior with several minimization procedures and compare the presented method to state-of-the-art approaches

such as Graph cuts, greedy region merging, anisotropic diffusion, and active contours in terms of convergence,

speed, and accuracy, parallelizability and applicability of the proposed method.

Keywords: Segmentation, Denoising, Minimum Description Length, Energy Minimization, Multichannel images.

1 INTRODUCTION

The goal of image partitioning is to detect and extract

all regions of an image which can be distinguished with

respect to certain image characteristics. A special form

of image partitioning is image segmentation, where one

or a few regions of given characteristics are separated

from the rest of the image. If the underlying image is

supposed to be piecewise constant, image partitioning

is equivalent to the restoration of that image, which is

often obtained using denoising algorithms. Although

there exist plenty of methods for solving image parti-

tioning, segmentation, and restoration problems, many

of them are task-specific or require intensive user inter-

action and triggering of a large number of parameters.

In this paper, we restrict ourselves to generic solutions

using automatic methods based on energy minimiza-

tion. Hence, two tasks need to be tackled: First, one

needs to formulate an energy functional based on some

assumptions and, second, one needs to find an appro-

priate and computationally feasible minimization algo-

rithm. The main emphasis of this work is put on anal-

ysis and discussion of an energy functional, based on

the assumption that the processed image is multichan-

nel, piecewise constant, and affected by white Gaussian

noise. We analyse and compare several minimization
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procedures and draw analogies to other approaches.

Color images are used as examples, as they document

the algorithmic behavior in an intuitive manner. How-

ever, all steps work are applicable for any multichan-

nel image data. The paper is organized as follows. In

Section 2 the related work in this area is described. In

Section 3 we formulate the energy functional and de-

scribe two minimization procedures. Our findings are

presented and discussed in Section 4.

2 RELATED WORK

Global energy minimization approaches originate

from such seminal works as the ones by Mumford

and Shah [24] and Blake and Zisserman [2]. The

Markov Random Fields (MRF) framework (see the

seminal work of Geman and Geman [8]) is a stochastic

branch of the energy minimization approaches. In the

last years a great breakthrough has been done in the

direction of Markov random fields methods [19]. Such

methods as Graph Cuts [5] are mathematically well

described and allow to find a solution that lies close to

the global optimum.

The minimum description length (MDL) based ap-

proach [15] uses basic considerations from information

theory [19] in the formulation of the energy term, in the

sense that the best image partitioning is equivalent to

obtaining the minimum description length of the image

with respect to some specific description language.

There exist two main tendencies in further develope-

ment of this approach. The first one consists in extend-

ing the functional to be minimized. These extentions

include either different noise models (not only white

Gaussian noise), or elimination of the model parame-

ters that must be manually tuned by a user.
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Kanungo [12] et al. formulated the functional for multi-

band and polynomial images. Lee [17] considered cor-

related noise. Galland [7] et al. considered speckle,

Poisson, and Bernoulli noise. Zhu and Yuille [31] pro-

posed an algorithm combining region growing, merg-

ing, and region competition which permits one to seg-

ment complex images. In several approaches [20, 16],

an extended version of the functional is used and all

user-defined parameters are eliminated. For example,

Luo and Khoshgoftaar [20] propose to use the well

known Mean-Shift method [6] to obtain the initial seg-

mentation and start the MDL-based region merging

procedure from it.

These approaches utilize region growing, as the

minimization of the extended functional is infeasible.

However, such an iterative technique, generally, does

not lead to a stable local minimum and can give

much coarser results, when compared to the relaxation

technique, if the procedure of region merging is non-

reversible. Moreover, the authors state, for instance,

in [20], that the initial region selection has a strong

impact on the efficiency and effectiveness of the region

merging.

The second direction is to use a simplified or lim-

ited model with some user-defined parameters, but ap-

ply a global minimization procedure, which allows one

to find at least a stable local minimum. Kerfoot and

Bresler [13] formulated a full MDL-based criterion for

piecewise constant image partitioning, but the class of

images is limited to the class of simply-connected ones.

For minimization such methods as Graph Cuts [5] have

gained in popularity in the last years.

3 METHODS

3.1 Multichannel Model Description

The fundamental idea behind the Minimum Description

Length (MDL) [19, 23] principle is that any regularity

in the given data can be used to compress the data.

The image partitioning problem with respect to the

MDL principle can be formulated as follows: Using

a specified descriptive language, construct the descrip-

tion of an image (code) that is simplest in the sense of

being shortest (when coded, needs the least number of

bits) [15]. Let L(M) denote the language for describing

a model M and L(D|M) the language for describing data

D given model M. Moreover, let |.| denote the number

of bits in the description. The goal is to find the model

M that minimizes the code length Cl = |L(M)|+ |L(D|M)|

. This corresponds to the two-part MDL code [9]. If the

a priori probabilities P(M) of the described models are

known, then the number of bits in the description equals

the negative base-two logarithm of the probability of

the described models [19]: |L(M)|=− log2 P(M).

In terms of image partitioning and restoration the code

length can be written as Cl = |L(u)|+ |L(z−u)| ,where

the model we are looking for is the underlying im-

age representation (or partitioning) u that minimizes the

code length. The term z describes the initial (or given)

image, and the difference r = (z−u) between the given

image z and the partitioning u corresponds to the noise

in the image. The noise describes the data with respect

to model u.

A simple implementation of the MDL principle for im-
age partitioning was presented by Leclerc [15, 23]: he
assumed a piecewise constant model and derived the
functional (or energy term)

Cl =
b

2
∑
i∈I

∑
j∈Ni

(

1−δ
(

ui−u j

))

+a∑
i∈I

(

zi−ui

σ

)2

, (1)

where u denotes the underlying image, z the given im-

age, and σ2 the noise variance. Moreover, δ (ui−u j)
denotes the Kronecker delta (1 if (ui = u j), else 0), I

denotes the range of the image, and Ni is the neigh-

bourhood of the ith pixel, a and b are constants. The

first term in Equation (1) encodes the boundaries of the

regions, whereas the second term encodes the noise in

form of uncorrelated white Gaussian noise.

One can observe the similarities between the functional

in Equation (1) with constants a,b,σ and the energy

considered in different MRF approaches, namely in the

Graph Cut methods (see [5] for more details): E( f ) =

λ ∑
(p,q)∈N

Vp,q( fp, fq) + ∑
p∈I

Dp( fp), where the interaction

potential V between pixels p,q having labels (colors)

fp, fq is taken from the Potts model (which corresponds

to the Kronecker deltas), D is the distance between the

initial and current colors of the pixel p (which corre-

sponds to the noise values), and λ is a constant.

We expand on this approach to derive a multichannel

image description length. For encoding the model,

i.e., deriving L(u), we have to encode the boundaries

of the regions. To do so, we calculate the number

of pixels that contribute to the boundary. Hence,

the codelength for the boundary encoding is given

by |L(u)| = b
2 ∑

i∈I
∑
j∈Ni

(

1− ∏
k∈Ch

δ
(

uk
i −uk

j

)

)

, where

k denotes the channel, Ch is the range of channels

(e.g., RGB in the three-channel color case), and other

notations are as above. To encode the data that do

not fit the model, i.e., the noise, we derive L(z− u)
assuming that the values in each channel are subject to

white Gaussian noise with parameters (0,(σ k)2). This

assumption implies that the noise between channels is

not correlated. Such an assumption allows for better

understanding of the underlying processes and is often

sufficient for many applications, since the uncorrelated

noise can appear during the transmission, storing, or

manipulation of images [1]. Moreover, the assumption

holds when a multichannel image is combined from

different independent modalities for processing.
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The codelength of the noise is derived as

|L(z−u)|=−∑
i∈I

∑
k∈Ch

log2 P(rk
i ) (2)

=−∑
i∈I

∑
k∈Ch

log2

(

q
√

2π(σ k)2
exp

(

−

(

rk
i

)2

2(σ k)2

))

=
1

2ln2
∑
i∈I

∑
k∈Ch

(

rk
i

σ k

)2

+ const

where q = 1 is the pixel precision, const is an addi-

tive constant, which is discarded, if
(

σ k
)2

is considered

constant and equal for all channels.

The resulting codelength functional becomes Cl =

b
2 ∑

i∈I
∑
j∈Ni

(

1− ∏
k∈Ch

δ
(

uk
i −uk

j

)

)

+
1

2ln2
∑
i∈I

∑
k∈Ch

(

rk
i

σ k

)2

.

This functional corresponds to the one considered in

the Graph cuts method up to the constant weights.

3.2 Minimization

Having formulated the energy functionals, one needs to

minimize them for a given image in order to compute

the image partitioning. As it has been shown that com-

puting the global optimum even of the simplest func-

tional is an NP-hard problem [5], in practice one has to

look for efficient approximations for it.

In the current paper, we will deal with two optimization

approaches for energy minimization: a discrete one and

a continuous one, namely, the α-expansion Graph Cut

algorithm, introduced by Boykov [5], and the GNC-

like approach, introduced by Leclerc [15], with several

modifications, which have been done to check the con-

vergence.

Graph cuts is an efficient minimizing technique that al-
lows for finding a local minimum within a known factor
of the global one. This algorithm belongs to the class
of discrete optimization. Here, we give the outline of
the algorithm and refer the reader to the original paper
by Boykov et al [5] for further details. Let S and L

denote image pixels (lattice) and the palette (set of all
possible colors), correspondingly. The labeling u is de-
scribed as {Sl |l ∈L }, where Sl = {p ∈ S|up = l} is a
subset of pixels with assigned color l. Given a label α a

move from a labeling u to a new labeling u
′

is called an

α- expansion if Sα ⊂S
′

α and S
′

l ⊂Sl for any label
l 6=α . In other words, an α-expansion move allows any
set of image pixels to change their labels to α [5]. The
minimum of the energy E for each label α is found by
constructing a graph and finding the minimum cut for
it. It is efficiently done by the algorithm developed by
Boykov and Kolmogorov [3].

Start with an arbitrary partitioning u

repeat

Set success← 0

for all α ∈L do

Find û = argminE(u
′
) among u

′
within one

α-expansion of u

if E(û)< E(u) then

u← û

success← 1

end if

end for

until success 6= 0

Return u

A Relaxation method using ideas of Graduated Non

Convexity (GNC) by Blake and Zisserman [2] was pro-

posed by Leclerc [15]. This is a continuous optimiza-

tion method, where the labeling u is not selected from

the given palette, as in the Graph Cuts case, but is it-

eratively computed. Here, u ∈ R
n. The basic con-

cept of the minimization procedure is to replace the

non-convex codelength functional Cl(u) by an embed-

ding in a family of continuous functions Cl(u,s), where

s ∈ R is a user-defined parameter, that converge to-

wards the target functional Cl(u) when s goes to zero.

lims→0 Cl(u,s) = Cl(u). For the starting value of s, the

functional Cl(u,s) is convex such that standard con-

vex minimization procedures can compute the single

minimum. When s approaches zero, number and po-

sitions of the local minima of Cl(u,s) become those of

Cl . The minimization procedure iterates over s, which

steadily decreases, and minimizes Cl(u,s) for the re-

spective value of s in each iteration step.

To obtain a continuous embedding, the discontinuous

parts in functional Cl need to be replaced by a continu-

ous approximation. The discontinuity of Cl is due to

the use of the function δ . Hence, function δ is re-

placed by a continuous approximation that converges to

δ when s goes to zero [15]. We use the approximation

δ
(

uk
i −uk

j

)

≈ exp

(

−
(uk

i−uk
j)

2

(sσ k)
2

)

= ek
i j.

The minimization iteration starts with a sufficiently

large value s = s0 and computes the (global) minimum

u0 of the convex functional Cl(u,s
0). In each iteration

step T + 1, we set sT+1 = rsT , where 0 < r < 1, and

compute the local minimum of Cl(u,s
T+1) starting from

minimum uT of the previous iteration step. The itera-

tion is repeated until s is sufficiently small, i.e., until

s < ε with ε being a small positive threshold.

To compute the local minimum u on each iteration we
apply Jacobi iterations [26]. The functional Cl(u,s) is

convex, if we choose a value for s that satisfies (xk
i −

xk
j)

2≤ 0.5
(

sσ k
)2

for all pixels i and j with i 6= j) and all

channels k. Hence, when this condition is met, the local
minimum must be a global one. The condition needs
to be fulfilled for the starting value s = s0. Then, the

condition
∂Cl(u,s

T )
∂uk

i

= 0for the local minimum at iteration

step T becomes

2a
(

uk
i − zk

i

)

(

σ k
)2

+
b

2
∑
j∈Ni





2
(

uk
i −uk

j

)

(

sT σ k
)2 ∏

l∈Ch

el
i j



= 0, (3)
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where constant a = (2ln2)−1. As Equation (3) can-
not be solved explicitly, we use an iterative approach,
where at each iteration step t +1 we compute

u
k,t+1
i =

zk
i +

b

a(sT )2 ∑
j∈Ni

u
k,t
j ∏

l∈Ch

elt
i j

1+
b

a(sT )2 ∑
j∈Ni

∏
l∈Ch

elt
i j

. (4)

In total, we have two nested iterations. The outer itera-
tion denoted by T iterates over sT , while the inner iter-

ation denoted by t iterates over u
k,t+1
i . Considering the

behavior of the exponential function, the termination

criterion for the inner loop is given by

∣

∣

∣
u

k,t+1
i −u

k,t
i

∣

∣

∣
<

sT σ k, ∀i ∈ I. Starting with u = z, the minimization
procedure can be summarized by the following pseudo-
code:

while s≥ ε do

start with local minimum for u found in previous itera-

tion

while termination criterion for u is not met do

recalculate u using Equation (4)

end while

update s

end while

Comparison to Anisotropic Diffusion. The derived iter-

ative scheme for computing ut+1
i in the single-channel

case, cf. [15], is similar to the iteration in the well-
known anisotropic diffusion approach. The continuous
form of the Perona-Malik equation [25] for anisotropic
diffusion is given by

∂ I

∂ t
= div(g(‖∇I‖) ·∇I) , (5)

where I denotes the image and function g is defined by

g(‖∇I‖)= exp

(

−

(

‖∇I‖

K

)2
)

with flow constant K. The

discrete version of Equation (5) is given by It+1
i − It

i +

λ ∑ j∈Ni

(

It
i − It

j

)

exp



−

(

It
i − It

j

K

)2


 = 0, where λ is a

normalization factor.

The local minimum of the MDL-based energy Cl in
single-channel notation (for a fixed s) is defined by

solving
∂Cl(u,s)

∂ui
= 0, which leads to

(ui− zi)+α ∑
j∈Ni

[

(

ui−u j

)

exp

(

−

(

ui−u j

)2

(sσ)2

)]

= 0.

The continuous version of this equation can be written
as

∫ tend

0

∂u

∂ t
dt = div(g(‖∇u‖) ·∇u) , (6)

where u0 = z and utend
describes the image values at

the current step tend . Comparing the continuous form

of the Perona-Malik equation (5) with the continuous

form of the MDL-based equation (6), one can immedi-

ately observe the similarity. The main difference is the

integral on the left-hand side of Equation (6). The inte-

gral represents the changes between the current image

and the initial image. Thus, this version of the MDL-

based minimization algorithm can be considered as an

“anisotropic diffusion algorithm with memory”.

In general, the assumptions about the convexity of

Cl(u,s) do not hold anymore, when s is small. Hence,

the relaxation method with Jacobi iterations can give

an inadequate result. To check this we implemented

the steepest descent minimization scheme [26] and

compared the results.

4 RESULTS AND DISCUSSION

The presented algorithm belongs to the class of algo-

rithms that are not purely for denoising or segmenta-

tion, but can be treated as an elegant combination of

both approaches. Usually, some part of meaningful im-

age data might be lost on the denoising step, which

affects the subsequent segmentation results. Here, on

the contrary, the complete information is used both for

boundary preservation and noise exclusion, which is re-

ferred in the literature as image restoration [28] or re-

construction [25].

The algorithm ( minimization procedures with Jacobi

iterations, Gradient descent, and Graph cuts) was im-

plemented using C/C++ programming language, opti-

mized appropriately, and was compiled under gcc4.4.

The Graph cuts code for grayscale images was kindly

provided on the Vision.Middlebury web-site [22].

Figure 1 documents the general behavior of the Relax-

ation scheme. Starting with a synthetic 100× 100 im-

age with manually added noise, we apply the Jacobi

iteration minimization procedure. The three rows in

Figure 1 show (intermediate) results at iteration T = 4,

T = 600, and T = 1484, respectively. The first col-

umn shows the currently detected underlying image and

the second column the currently removed noise, i.e.,

the difference between the initial image and the cur-

rently detected underlying image (first column of Fig-

ure 1). For the generation of the images in column

three, we picked one row of the image, i.e., a horizontal

cut through the image, and show the current values of u

for that single row. The third column in Figure 1 docu-

ments nicely, how individual values (first row) start as-

similating and grouping together (second row) to even-

tually form a piecewise constant representation (third

row).

To qualitatively describe the restoration results,

we evaluated the difference between the resulting

and initial (not noisy) images using two mea-

sures. The first one is the mean squared error

(MSE) estimator [18], which is suitable to show

whether the colors were reconstructed as close to
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Figure 1: Different phases of MDL minimization on

timesteps 4, 600, and 1484. The images from left to

right are: the detected underlying image, the removed

noise, image values u of one row (The pixel coordinates

are given in x axis, and u values are in y axis).

the initial ones as possible, i.e., for the denoising

part. For the multichannel case, MSE is defined as

MSE =
1

cwh
∑

c1∈c
∑
y∈h

∑
x∈w

(In(x,y,c1)−Res(x,y,c1))
2
,where

c is the number of color channels, w is the image width,

h is the image height, and In and Res define the initial

and resulting image, respectively.

The second metric is utilized to evaluate the segmen-
tation results, i. e., oversegmentation and inaccurate
boundary localization. It is based on the one proposed
by Mezaris et al [21]. This metric is defined as fol-
lows. Let S = s1,s2, ...,sK be the segmentation mask to
be evaluated, comprising K regions sk, k = [1,K], and
let R = r1,r2, ...,rQ be the reference mask, comprising
Q reference regions rq, q = [1,Q]. Each region rq is
associated with a different region sk, i. e. sk is chosen
such that the overlap rq∩ sk is maximized. Let A(rq,sk)
denote the set of region pairs and let NS denote the set
of non-associated regions of mask S. Energy Eb is used
for the evaluation, values closer to zero indicate better
segmentation: Eb = ∑

Q
q=1 Eq + ∑

sk∈NS

Fk, where Eq and Fk

are defined are follows.

Eq = ∑
p∈(rq−rq∩sk)

f1(p,rq)+ ∑
p∈(sk−sk∩rq)

f2(p,rq) (7)

Fk = α ∑
p∈sk

f1(p,rq) (8)

Eq is a weighted sum of misclassified pixels for region
pair (rq,sk) ∀(rq,sk) ∈ A. Fk is a weighted sum of mis-
classified pixels ∀sk ∈ NS. f1 and f2 are weight func-
tions, proposed by Villegas et al [30] to deal with the
fact that the distance of a misclassified pixel from the
boundary of the reference region to which it belongs

affects the visual relevance of the error [21]. f1 is used
for false negatives and f2 is used for false positives.

f1(p,rq) = d(p,rq)∗10−4
,

f2 =

{

d(p,rq)∗10−4 d(p,rq)< 10

10−3 otherwise
.

Moreover, d is the Euclidean distance between the pixel

p and the boundary of the region rq. α is a weight pa-

rameter which was heuristically set to 100 in our exper-

iments, since we would like to penalize oversegmenta-

tions.

First, we run a series of tests on synthetic images with

artificially added Gaussian noise applying three algo-

rithms: Graph Cuts, Relaxation with Jacobi iterations,

and Relaxation with steepest descent. Figures 2 and 3

demonstrate the high-quality results produced by both

Graph Cuts and Relaxation with gradient descent meth-

ods. The exact regions are reconstructed with few mis-

classifications. Graph Cuts restore the closest colors to

the initial image (MSE = 830.65).

However, the computational costs of these methods are

rather high. For the Graph cuts method the execution

time is dependent on the palette size, i. e., the number

of colors (labels) which would be considered for expan-

sion. Ideally, the palette should include the whole color

space. In this case, the optimum will be found accu-

rately. Boykov et al. proposed to reduce the space of

labels for this case [4], taking, for instance, only unique

colors of the image and their closest neighbors as la-

bels. Such a choice allows for a massive label space

reduction, but leaves enough variability for the label

expansion. In our experiments the computation for a

100×100 color image with 50,000 labels (unique col-

ors and their closest neighbours of a noisy synthetic im-

age) took around 10 minutes per iteration. As usually

several iterations are needed, this approach appears to

be infeasible for bigger datasets.

The relaxation scheme with the Gradient Descent

method for a 100× 100 color image takes in several

hours, which makes this method inapplicable for real

datasets.

The relaxation scheme with Jacobi iterations restores

more regions than required, however, they have very

close colors and the “weak” region boundaries can not

be distinguished by a human eye. Due to such color

closeness, these regions can be merged into one using a

simple region-merging procedure. Starting at any pixel

(seed point), the algorithm subsequently adds neigh-

bouring pixels to the region if the distance in color

space between them and the region color is lower than

a certain threshold. The region color is the average

color of the pixels that belong to it. The algorithm stops

when all pixels belong to some regions. Computational

costs of the region merging procedure are negligible
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when compared to the ones of the Relaxation method.

When the simple region merging is applied, we obtain

Eb = 0.0021, which is slightly better than the other re-

sults.

The main advantage of the Jacobi iteration approach is

its independence of the palette size and straightforward

parallelizability, such that computations only take sec-

onds [11], which makes this method attractive for real

applications.

Next, we would like to compare the presented method

to other (similar) approaches, namely, anisotropic dif-

fusion, region merging, and a combination of these two

procedures. Although anisotropic diffusion is primarily

used to remove noise from digital images without blur-

ring edges, it can be used in edge detection algorithms.

By running the diffusion with an edge seeking diffusion

coefficient for a certain number of iterations, the im-

age can be evolved towards a piecewise constant image

with the boundaries between the constant components

being detected as edges [25]. We compared our ap-

proach to the anisotropic diffusion algorithm for multi-

channel images, presented by Sapiro and Ringach [27].

This method similarly to ours considers the influence

of all image channels at once, which allows for better

boundary preservation when compared to the methods

treating each image channel separately. However, our

approach has a “memory”, as it always refers to the ini-

tial image instead of iterating from the result obtained

on the previous time step. Such a behavior should guar-

antee a better boundary preservation and initial color

restoration if the parameters are properly chosen. Fig-

ure 4 demonstrates that Sapiro’s method successfully

eliminates the noise (except from some mistakes on

the image boundaries) and preserves most of the object

boundaries. Our approach appears to be stable to noise,

preserves object boundaries, restores the colors close to

the initial ones, and produces the most uniformly col-

ored background.

Due to the energy functional complexity, which arises

for the models with no manually adjustable parameters

or for more complicated noise models, it is often dif-

ficult to find a feasible minimization procedure. Thus,

many authors follow a "greedy" region merging strat-

egy [12, 20, 14, 16]. The idea of the algorithm is as

follows. It starts from some initial oversegmentation.

Then at each timestep it chooses two neighbouring re-

gions and merges them to form a new region. These

two regions are chosen in such a way that, when they

are merged, it provides the largest energy reduction

amongst all other possible merges. Although this pro-

cedure is very fast, it has several drawbacks. First, it

does not guarantee convergence to a stable local mini-

mum, especially, in the presence of noise. Second, the

way the initial oversegmentation is chosen also affects

the results.

Although Kanungo et al. [12], Luo and Khoshgof-

taar [20], Lee [16], and Koepfler et al. [14] propose to

use different functionals for color image segmentation,

the region merging procedures are similar to each

other. We assume that a more complicated functional

could lead to a more adequate result. However, there

is no guarantee about the convergence to a stable local

minimum, and this issue stays unresolved.

We compared our approach to the algorithm proposed

by Koepfler et al. [14]. They use the Mumford-Shah

functional for the piecewise constant case, which co-

incides with the MDL-based functional Cl . Here, we

computed both metrics to evaluate the results. As it

can be observed in Figure 5, the iterative region merg-

ing produces results with some misclassified bound-

aries, which appears due the fact that the merging al-

gorithm did not land close to the minimum, and not

completely erased noise when compared to Figure 4.

The relaxation approach can be approximated with a

pipeline that utilizes several algorithms, namely, de-

noising, boundaries sharpening, and region merging.

We constructed a pipeline from Sapiro’s anisotropic dif-

fusion and Koepfler’s region merging. As it can be ob-

served in Figure 5, the pipeline produces the best result

in terms of boundary preservation and noise elimina-

tion when compared to the independent application of

these methods. However, in general, each method in the

pipeline requires additional adjustment of the parame-

ters for each image.

Our comparison shows that the proposed approach pro-

duces the best results in terms of color (the lowest

MSE = 377.628) and region restoration (the lowest

Eb = 0.0008) for the test image.

We also compared our results to the results obtained

with the Active contours without edges [29] method in-

troduced by Chan and Vese. This is a variational ap-

proach based on energy minimization, and the energy is

formulated using the Mumford-Shah functional for the

piecewise constant case. For our tests, we applied the 4-

phase version of the algorithm for color piecewise con-

stant images with the parameters for each phase:λ1,2 =
1, ν = 0, as it is recommended by the authors. We ex-

perimented with different values of parameter µ and

initial contour locations. We executed the algorithm

with max. 2000 iterations with the timestep = 0.5. Fig-

ure 6 documents that it is problematic to obtain decent

results for images with low signal-to-noise ratio for the

reasonable amount of time and the prior denoising is

needed.

When applied to real images, our approach allows

for obtaining the results with different levels of de-

tail, which reminds one of the multi-scale theory of

piecewise image modeling, introduced by Guigues et

al. [10]. In Figure 7 the results illustrate this effect.

Increasing the value of b allows us to reduce the
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Figure 2: First: Input diamand image with manually added noise N(0,702). Second: Graph cuts result. MSE =
830.65. Eb = 0.0027 Third: Relaxation (Steepest descent on inner iterations) result. MSE = 2273.8096. Eb =
0.0031 Fourth: Relaxation (Jacobi iterations) result. MSE = 2418.262. No region merging Eb = 651.287. With

region merging Eb = 0.0021

Figure 3: First: True image with 8 regions (5 unique colors). Second: Piecewise-constant regions are marked

with random different colors on the Graph cuts result. The image consists of 8 regions (7 unique colors). Third:

Regions are marked with random different colors on the Relaxation (Descent) result. The image consists of 8

regions. Fourth and Fifth: Piecewise-constant regions are marked with random different colors on the Relaxation

(Jacobi) result. The image consists of 49 regions (before region merging) and 8 regions (after region merging).

Figure 4: First: Initial synthetic image. Second: Synthetic image with added noise N(0,702). Third: Result for our

approach with subsequent region merging. MSE = 377.628. Eb = 0.0008. Fourth: Result for Sapiro’s anisotropic

diffusion with parameters: edge = 49, numStep = 45. MSE = 447.83.

Figure 5: First: Result for iterative region merging with

λ = 106. Noise is not erased completely. Further in-

creasing the parameter ν0 does not improve the result.

MSE = 436.538. Eb = 6.5369 Second: Result for the

pipeline consisting of the anisotropic diffusion and re-

gion merging based on the Mumford-Shah functional.

MSE = 419.7864. Eb = 0.26

number of details, i.e., the number of regions, and leave

only the "strongest" edges.

Figure 6: First: Result for Active contours. The result-

ing contours are still noisy. Second: Initial contours.

5 CONCLUSION AND FUTURE

WORK

We generalized the existing single-channel MDL-based

method to a multichannel one and applied it to color

image partitioning and restoration. For synthetic color

images, the results were compared to the ones obtained

with Graph cuts, anisotropic diffusion, greedy region

merging with energy, and active contours approaches.

Our method produces best results in terms of color

Journal of WSCG, Vol.20 17 http://www.wscg.eu 



Figure 7: Results with different b for the "woman" im-

age. The initial image is the leftmost one. The param-

eter b is selected: 2, 5, 20 for the images from left to

right, correspondingly.

restoration and boundary accuracy for our test cases.

Moreover, the relaxation scheme with Jacobi iterations

combined with a simple region merging procedure al-

lows for fast computations due to straightforward par-

allelizability, which is important when applied to real-

world problems.

We believe that this approach has potential in solving

problems of image restoration. The future work di-

rections include studying different noise models (e. g.

correlated noise) for piecewise constant and piecewise

smooth images as well as the models based on other

MDL codes.
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