
Adaptive Surface Reconstruction for SPH using 3-Level
Uniform Grids

Gizem Akinci Nadir Akinci Edgar Oswald Matthias Teschner
gakinci,nakinci,oswald,teschner@informatik.uni-freiburg.de

University of Freiburg
Georges Koehler Allee 052
79110 Freiburg Germany

ABSTRACT
The marching cubes algorithm is a popular method for constructing surfaces from SPH data sets. In order to
preserve all of the surface details in high curvature regions and to prevent potential temporal coherence artifacts,
the resolution of the underlying uniform MC grid should be set up sufficiently high. However, this requirement
unnecessarily increases the resolution in relatively flat regions where the surface can be constructed with lower
resolutions without changing the quality. Accordingly, excessive number of triangles are generated, the memory
consumption increases dramatically, and the performance decreases. In this paper, we present a 3-level grid struc-
ture which adapts its cells according to the curvature of the fluid surface. In contrast to widely-used octrees, we
propose a simple to construct yet efficient hierarchical uniform grid structure. Mesh blocks from different reso-
lution cells are seamlessly stitched by closing cracks with new triangles which establish only 0.15% to 0.6% of
overall number of triangles in average. Experiments show that in contrast to the single level low resolution uni-
form grid approach, the presented method reconstructs fine details properly with a comparable performance; while
it produces similar results with less number of triangles, up to four times better memory consumption and up to
60% better performance when compared to the single level high resolution uniform grid approach.

Keywords
particle-based fluids, surface reconstruction, marching cubes, multi-level uniform grids, surface curvature, cracks

1 INTRODUCTION
Generating triangle meshes using the marching cubes
algorithm (MC) [LC87] is a common approach for
both static point clouds and dynamic particle data.
However, the chosen grid resolution restricts the
user since surface details are reconstructed properly
only by using high resolution grids at the expense of
performance, memory footprint and storage. This issue
has prompted many researchers to investigate adaptive
mesh refinement techniques, e.g. by using octrees
[WvG92, SFYC96, WKE99, VT01, LY04, JU06,
Man10]. Although being efficient in terms of memory
consumption and storage reduction, the construction
of adaptive structures is not straightforward, and they
lead to cracks in between different resolution cells
which need to be handled carefully. The use of uniform
grids, on the contrary, is motivated by the simplicity
of the structure which is advantageous for especially

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

dynamic scenes since it allows fast rebuilding of the
data structure. To the best of our knowledge, most
of the presented adaptive approaches focus on static
scenes, e.g. medical visualizations or CAD models, and
there are only few researchers who aim to efficiently
rebuild those data structures for dynamic scenes, e.g.
[ZGHG11].

Our contribution. In this paper, we present a memory
efficient and performance friendly multi-level uniform
grid structure for Smoothed Particle Hydrodynamics
(SPH) surface reconstructions which allows for fast re-
build in dynamic scenes.
In our technique, the particle data set is covered by
an axis aligned bounding box (AABB) which is ini-
tially subdivided uniformly with coarse (level-1) cells.
These cells are utilized to extract the narrow-band re-
gion where the surface is actually defined. Depending
on the surface curvature, coarse surface cells are sub-
divided by one (level-2) or two more levels (level-3).
This allows for preserving the surface details even on
highly turbulent, high curvature parts by using less tri-
angles, since relatively flat parts are treated as level-2
parts. According to our experiments, the explained data
structure is sufficient for a proper surface reconstruction
of any fluid data set; and the fourth level is not neces-
sary since it does not improve the quality further but

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 195 ISBN 978-80-86943-74-9



(a) (b) (c) (d)

Figure 1: The 3-level adaptive grid. (a) The bounding box of the fluid is used to generate the coarse level uniform
grid (level-1). (b) Cells that contain the fluid surface (dashed blue line) are extracted. These surface cells are
shown in blue color. (c) Surface cells with low surface curvature are marked as level-2 (light gray cells) and the
other surface cells are marked as level-3 (dark gray cells). Cells around the isolated pieces are always considered
as level-3. (d) Level-2 cells are subdivided by one more level (straight red lines) while level-3 cells are subdivided
by two more levels (dashed red lines).

reduces the performance significantly. The described
three levels are illustrated in Fig. 1. We close the arisen
cracks eventually by creating new triangles in between
different resolution mesh blocks.

Experiments show that when compared to high resolu-
tion single level uniform grids, the presented method
produces similar results with up to four times better
memory consumption and up to 60% better computa-
tion time. Two different test scenarios are discussed in
Sec. 4, where the computation time and memory con-
sumption data are given for all scenes.

2 RELATED WORK
There exist various approaches that address the visual-
ization of surfaces for fluids or unorganized point data
sets that can also be applied to particle based fluids,
e.g. implicit surface tracking [WH94], explicit surface
tracking [Mul09, BB09], surface splatting [ZPvBG01,
ALD06, vdLGS09], screen space meshes [MSD07],
rendering using raycasting [MSD07, FAW10, GSSP10]
or surface generation using voronoi diagrams [RS09].
Our approach contributes to the field of generating en-
closed triangulated fluid surfaces using the marching
cubes approach with an adaptive mesh generation tech-
nique.

One way to generate an adaptive mesh is to use octree
structure which was addressed by many researchers,
e.g. [WvG92, SFYC96, WKE99, VT01, LY04, JU06,
Man10]. While being very efficient in terms of mem-
ory consumption and storage reduction, the construc-
tion of octrees is time consuming. Dynamic update of
octrees, e.g. shrinking or enlarging the grid and up-
dating child cells, in particular can be time consum-
ing, as one can probably end up with total rebuild of
the octree; which makes them less feasible for dynamic
scenes. However, we aim a data structure which al-
lows for a fast total rebuild. Furthermore, random ac-
cess to octree cells usually take logarithmic time, which

causes additional overhead. In addition, octrees pro-
duce many different resolution cells which means that
two leaf cells may differ more than one level. In such
a case, crack handling gets difficult, which is not an is-
sue for our data structure. A similar discussion can be
found in [Bri03] where Bridson proposes an alternative
grid-based method that focuses on the narrow-band re-
gion by using only one level of detail.
As mentioned earlier, if levels of two neighboring
cells differ, cracks arise in the corresponding transi-
tion faces. There exist different approaches which
address this problem. Using simple crack patching
[SFYC96, VKSM04], points that reside on the high
resolution edge of one cell are projected on the low
resolution edge of the neighboring cell. However,
this technique produces T-vertices which may lead to
visual artifacts during rendering. Filling cracks with
new triangles is another popular method for handling
cracks. Westermann et al. [WKE99] proposed a
method where cracks are fixed by replacing coarse
triangles by fans of triangles. Ju and Udeshi [JU06]
prevented cracks by adding new polygons using a
hybrid method that uses the marching cubes and dual
contouring. It is stated in [JU06] that the mesh size can
get too large by using this approach after newly added
triangles. Later, Lengyel [Len10] presented transition
cells method where new cells are added in between two
different resolution cells for generating new triangles.
The newly generated transition cells have to be checked
for many cases which is a time consuming process.
Although conventional adaptive structures reduce the
storage requirements efficiently, more effective results
can be obtained by incorporating hashing. However,
this is a challenging task and only few approaches have
been proposed so far which address either hashing of
octrees [Sigg06] or hashing of multi-level grids for ray-
tracing, e.g. [CPJ10, LD08]. We also get assistance
from hash maps for keeping our newly generated fine
resolution grid points in each coarse cell (see Sec. 3.2),

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 196 ISBN 978-80-86943-74-9



while we leave our top level coarse grid un-hashed for
a straightforward implementation.

Memory footprint can be reduced by also applying dy-
namic tubular grids (DT-grid) [NM04] or run-length
encoding (RLE) [HWB04] schemes, which are rather
challenging to implement in comparison to alternative
grid- and tree-based data structures.

Parallelization of the surface reconstruction algorithm
is another topic which has been gaining attention in re-
cent years. Zhou et al. [ZGHG11] proposed a paral-
lelization technique for octrees which runs entirely on
GPU. Later, Akinci et al. [AIAT12] presented a paral-
lel method which reconstructs the surface of particle-
based fluids in the narrow-band region and runs either
on CPU or GPU. Memory footprint is still an open issue
to be improved in this method since it sticks to single
level uniform grids. While being very efficient in terms
of performance, the incorporation of hashing in both
approaches is challenging due to the potential thread
safety issues.

The quality of the reconstructed surface depends not
only on the resolution of the underlying grid but also on
the preferred scalar field computation method. Within
the context of these techniques, Zhu and Bridson
[ZB05] proposed the signed distance field approach
which alleviates former bumpiness issues but suffers
from artifacts in concave regions. Solenthaler et al.
addressed this issue in [SSP07]. In [YT10], Yu and
Turk presented an anisotropic kernel approach which
results in high quality, less bumpy surfaces while being
computationally expensive. Recently, Bhattacharya
et al. [BGB11] proposed a surface reconstruction
technique which is based on a level set method. This
method outputs surface approximations and performs
smoothing steps that finally generate rough surfaces
which causes to lose the details of the input particle
set. With these issues in mind and based on the
comparisons given in [AIAT12] and [AAIT12], we
decided to use the method of Solenthaler et al. [SSP07]
in all of our test scenes.

To the best of our knowledge, the efficient implemen-
tation of adaptive structures for particle-based fluids is
limited with the work of Zhou et al. [ZGHG11] which
uses octrees unlike our method. In this paper we present
a method which allows for fast rebuild of the grid and
is suitable for dynamic scenes in terms of both memory
efficiency and performance.

3 SURFACE RECONSTRUCTION US-
ING 3-LEVEL GRIDS

In this section, we present an adaptive surface recon-
struction method for SPH using 3-level uniform grid.

According to our experiments, in order to obtain proper
surface reconstructions, MC grid cell size should not

be larger than 2r, with r being the radius of the fluid
particles, i.e. the half of the particles’ equilibrium dis-
tance. However, even 2r cell size can be insufficient to
preserve all of the surface details. In such a case, exper-
iments show that the cell size of r preserves all surface
features appropriately. However, using such a small cell
size throughout the whole scene causes a trade-off be-
tween the surface quality and the performance-memory
consumption. Besides, it is clear that on relatively flat
regions, the cell size of 2r is already sufficient for ob-
taining proper results. Therefore, we reconstruct the
fluid surfaces using these two resolutions in different
regions depending on the surface details.
We initialize our surface reconstruction steps by ex-
tracting the narrow-band region where the surface is
actually defined. Performing this operation does not re-
quire a high resolution grid. We initially create our grid
using the cell size of 4r, extract the narrow-band region
using the coarse cells in this resolution, and subdivide
the found surface cells using the surface curvature in-
formation.
We extract the surface cells using the method of Ak-
inci et al. [AIAT12]. We refer the reader to [AIAT12]
for details, however, we briefly outline the steps here.
According to this method, any grid point that is in the
proximity of a surface particle is defined as a surface
point. Therefore, we traverse through all surface par-
ticles, define an AABB which spans 4r length in x, y,
z directions around each surface particle and mark all
grid points that reside in this AABB as surface points.
Each surface point is used to mark the corresponding
cell whose lower left corner is initiated in this point as
a surface cell. Different from [AIAT12], we mark the
cells as splash cells instead of surface cells if they are
in the neighborhood of splash particles, i.e. particles
whose number of neighbors are less than a pre-defined
value which is 3 in our test scenes. By doing this, we
are easily able to exclude such cells from the curvature
computation in future steps and gain performance since
they are directly subdivided as level-3 high resolution
cells.
Surface particle extraction is performed in the prepro-
cessing step using the smoothed color field method of
Muller et al. [MCG03]. The same method is also used
to compute particles’ normals which are required for
the curvature computation in the following step (see
Sec. 3.1). After refining the cells, the scalar field is
computed over all grid cells (see Sec. 3.2), the cracks
are handled by adding new triangles and different reso-
lution meshes are stitched seamlessly (see Sec. 3.3).

3.1 Curvature Computation
According to our criterion, a coarse surface cell can be
subdivided as either level-2 or level-3 which depends
on the surface curvature inside the cell. We approxi-
mate the surface curvature using the method described

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 197 ISBN 978-80-86943-74-9



in [IAAT12]. Hence, we firstly compute the curvature
for each surface particle that resides in this cell with the
help of its neighboring particles as:

κi = ∑
j

κi j = ∑
j
(1− n̂i · n̂ j)W(xi j,h) (1)

where j stands for the neighboring particles, n̂ is the
normal of any particle and W is the kernel function de-
scribed as:

W(xi j,h) =

{
1−
∥∥xi j

∥∥/h
0

if
∥∥xi j

∥∥≤ h
else

(2)

with xi j = xi −x j.

Finally, the curvature of any surface cell is approxi-
mated as:

κcell =

(
∑

for all i
κi

)
/N (3)

where i and N represent the surface particles and the
total number of surface particles inside the cell, respec-
tively.

If the curvature is smaller than the predefined threshold,
we mark the cell as low resolution level-2 cell. Other-
wise, the cell is marked as high resolution level-3 cell.
In the remainder of the paper, we will call any coarse
surface cell as level-2 or level-3 cell depending on its
refinement level.

3.2 Scalar Field Computation
We initialize the second step of our method with cell
refinement. Therefore, we traverse through all coarse
surface cells. If the cell is marked as a level-2 cell, we
generate 8 new cells in the coarse cell which correspond
to 27 new grid points. A similar approach is followed
for level-3 cells with 64 new cells and 125 new grid
points. A 2-dimensional illustration of this refinement
is shown in Fig. 2.

At this part of our implementation, we need a data struc-
ture to keep our newly generated grid points. This
structure should support easy access to the required
grid point. For this aim, we compute an id for each
grid point and use hash map structure which allows for
easy data access by querying the ids that are the keys
of the hash map. This structure also stores the corre-
sponding scalar values as the data part of each entry.
The id of a grid point is computed using its position
GridPosl−3 = (gpx,gpy,gpz) and number of potential
grid points Xl−3 and XYl−3 in x- and xy-directions,
respectively, in a virtual, high resolution level-3 grid
throughout the whole scene. GridPosl−3 can be written
as:

(4r)

(2r)

(r)

Figure 2: A 2-dimensional illustration of the cell re-
finement. The thick black line shows the outline of the
coarse surface cell whose initial coarse point is colored
in black. The gray circles demonstrate level-2 points
and both gray and red circles demonstrate level-3 points
that are added after the cell refinement.

GridPosl−3 = 4 ·vc+offset (4)

where vc is the position of the coarse initial grid point of
the cell in the coarse grid. The 3-dimensional offset =
(a,b,c) vector of any new grid point describes the po-
sition of this point in the cell. a, b and c values are
defined within the range of [0,5). Thus, these values
start with 0 and depending on the refinement level, they
increase by 1 or 2 for the high resolution and low reso-
lution cells, respectively (see Fig. 3-(a)). Furthermore,
Xl−3 and XYl−3 are computed as:

Xl−3 = 4 ·ncx+1
Yl−3 = 4 ·ncy+1 (5)

XYl−3 = Xl−3 ·Yl−3

with ncx and ncy being the number of cells in x and y
directions in our coarse grid. Finally, the id of a grid
point is computed as:

id = gpx+Xl−3 ·gpy+XYl−3 ·gpz (6)

After computing the id of any grid point, we check
whether it is already stored in the hash map. In such
a case, we do not compute the scalar value since this
information is already kept together with the id. Oth-
erwise, we compute the scalar value of the grid point
using the improved signed distance field approach of
Solenthaler et al. [SSP07]. At this step, it is impor-
tant to identify the particles which contribute to the
scalar value computation of each grid point. Particles
within the influence radius of each coarse grid point
can be easily retrieved by using the method of Akinci
et al. [AIAT12]. However, since the influence region
is changed for the newly added fine points, we check
all the particles that lie also in the influence region of
the final grid point in the cell, i.e. the fine point with
offset(4,4,4), which is shown with yellow color in Fig.
3. The computed scalar value can now be stored in our
hash map with its corresponding id.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 198 ISBN 978-80-86943-74-9



Figure 3: (a) The coarse initial grid point with position
vc is illustrated with a black circle. Offset values for
some fine grid points are given in 2-D which is similar
for the 3-D version. (b) The white, large circle shows
the influence region of the coarse initial surface grid
point. However, this region is not sufficient for newly
added fine grid points. The red region which is the in-
fluence region of the yellow point in the figure should
also be checked for influencing particles.

3.3 Triangulation
Triangulation is the most challenging part of our
method, since we need a special treatment for handling
the cracks which arise in between different resolution
cells. As mentioned before, various crack handling
techniques have been proposed in the literature. Many
of these methods, however, are either computationally
expensive, or produce T-vertices which cause visual ar-
tifacts, or produce large number of triangles and cause
memory inefficiency. Therefore, we present a method
for an efficient crack closing. We perform this step
gradually by ensuring the scalar field continuity first
and covering the cracks with new triangles afterwards.

3.3.1 Scalar Field Continuity
The scalar field that is computed over our multi level
grid is not continuous, i.e. the scalar field continuity is
broken on the faces of neighboring different resolution
cells. Therefore, similar to [OR97], we adjust the val-
ues of intermediate grid points on such transition cell
faces by sub-sampling the original data (see Fig. 4). So
as to carry out this task in our implementation, we tra-
verse through all level-2 cells and identify the cells that
have a level-3 cell neighbor. If any level-2 cell meets
this condition, we adjust the values in the correspond-
ing face.
Even though this approach alleviates the scalar field dis-
continuity, cracks can still occur due to the numerical
sampling problems which are generally observed after
the computations around the middle grid point of the
face, e.g. the pink grid point in Fig. 4. Those cracks are
covered with triangles in our method which is explained
in the following section.

3.3.2 Crack Problem
At the final step of our method, we close the cracks with
new triangles for a proper visualization.

a

(Va+Vb)/2

b

Common face

Figure 4: The scalar field continuity is ensured on tran-
sition cell faces by sub-sampling the original data.Va
and Vb are the scalar values of grid points a and b, re-
spectively.

In the beginning of our implementation, we apply stan-
dard marching cubes algorithm to all level-2 cells. Sub-
sequently, we visit each level-3 cell and handle them
sub-cell by sub-cell (see Fig. 5-(a)). We keep the face
information of each sub-cell relative to the coarse cell
in which it lies. For instance, the sub-cell which is
shown as the first sub-cell in Fig. 5-(a), shares its near,
left and bottom faces with the coarse cell that hosts it.
Then, we check whether any of these shared faces has
a level-2 cell neighbor using the cell neighborhood in-
formation of the coarse cell. As soon as the condition
is met, we determine the edges (see Fig. 5-(b)) which
have a potential surface intersection point on itself that
will be computed by the marching cubes algorithm. It
is sufficient to check the scalar values of the end points
for each edge to determine potential intersections. Ac-
cording to our criterion, if there is an intersection on at
least one of the inner edges (e8...e11), then there exists
a crack at that face (see Fig. 6). Therefore, we keep the
intersected edge information of each sub-cell face.

Once all of the required information is gathered for the
crack handling, we apply marching cubes algorithm to
all eight level-3 fine cells of the sub-cell. Later, we
check each face of our sub-cell to see if there is any
previously marked intersection on inner edges. In this
case, we firstly create a crack array which is neces-
sary to keep the intersected edge ids, and then we per-
form the following steps: 1) Go through outer edges

1 2

3 4

6

8

2

4

3 4

7 8

e0

e1

e2

e3
e5

e4

e6

e7

e9

e8

e1
0

e1
1

(a) (b)

Figure 5: (a) Eight sub-cells of a level-3 cell are illus-
trated by red cells. (b) Edges are illustrated with their
ids for the right transition face of sub-cell-6.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 199 ISBN 978-80-86943-74-9



Figure 6: Three of the possible configurations for crack
formation. Gray and black colored points have scalar
values that are either less or more than the specified
isovalue, respectively. Blue lines are generated on high
resolution face while red lines are the results of low res-
olution face. Either one or two cracks can arise (left
and middle) or only one crack can cause two triangles
(right).

(e0...e7). Push the id of the first found edge which has
an intersection point into the crack array. 2) For the
found outer edge, check neighboring inner (NI), oppos-
ing inner (OI) and neighboring outer (NO) edges in its
quarter in order to find a new intersection (see Fig. 7).
Push the id of the found edge into the crack array. 3)
Jump to the neighboring quarter in which the currently
found edge lies and continue to search for a new inter-
section point by checking neighboring outer, opposing
outer (OO) and neighboring inner edges. Push the id
of the found edge into the crack array. 4) Follow either
step 2 or 3 for any newly found outer or inner inter-
sected edge, respectively.

Instead of simply traversing the edges of each quad-
rant in any ordering, we follow the edges in an order
explained above since this method simplifies having a
complete crack array which consists of the intersection
points in an order that is easy to follow for triangle gen-
eration. For instance, if we have only 3 points in this ar-

OO

NO

OI

NO

NI

NI

Figure 7: The illustration of an inner (red line) and an
outer edge (blue line) together with their neighboring
and opposing edges.

Figure 8: The fluid surface is shown before (left) and
after (right) crack handling.

Figure 9: The splash scene with up to 500k particles.
The seamlessly stitched mesh is shown on the left;
while blue and green regions on the right image shows
the high and low resolution parts, respectively.

ray, we simply create a new triangle using these points
as triangle corners. If we have four points, then we or-
der the triangles’ corners as c1, c2, c4 and c2, c3, c4
where c1...c4 are the entries of the crack array.

In order to prevent redundant computations on inter-
sected edges, we follow the technique discussed by Ak-
inci et al. [AIAT12], in which grid points store each
computation information for the corresponding three
edges that leaves this point. This technique aims single
level uniform grids and we pursue a slightly different
approach for our multi level grid. We store the informa-
tion in separate hash maps for level 2 and level 3 fine
cells whose keys are again the grid point ids, and data
part of each entry is composed of 3 integers that are the
intersection points of corresponding edges. We firstly
finish the triangulation for both level 2 and level 3 fine
cells, and fill their hash maps accordingly. Later, we
check the level 2 side of the transition cell faces to see
if there is any marked intersection on the correspond-
ing edge. For each transition sub-cell face of the level
3 cell, we check the fine edges of level 2 side and use
the information on the associated sub-cell edge. This
method is helpful to store the mesh in an indexed format
(e.g. Wavefront OBJ). These indexes are also used for
an easy retrieval of the corners of the newly generated
triangles that fill cracks. At the end of this step, we ob-
tain a surface mesh which contains seamlessly stitched
two different resolution mesh blocks (see Fig. 8).

4 RESULTS
In this section, we demonstrate the utility of our ap-
proach with two different test scenes. Average per
frame timings, the number of level-2, level-3, patch
triangles and the memory consumption information of
both test scenes can be found in Table 1. The demon-
strated surface reconstructions were run single-threaded
on Intel Xeon X5680 CPU with 24GB RAM. For the
fluid simulation, we employed the PCISPH method
[SP09]. For all examples in the paper, we performed
rendering using mental ray [mental].

In our first experiment, we show a scene with a rotated
plane along which the pouring water scatters (see Fig.
9). The scene was simulated using up to 500k particles.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 200 ISBN 978-80-86943-74-9



scene #particles ts f ttri ttotal #tril−2 #tril−3 #trip MEM[GB]
Splash up to 500k 25.5 sec 4.5 sec 30 sec 140k 1.1m 4000 1
Sink up to 2.5m 18 2 20 295k 76k 587 1.25

Table 1: Average per frame timings in seconds for each scene. ts f , ttri and ttotal represent the scalar field computa-
tion, triangulation and total timing, respectively. #tril−2,#tril−3 and #trip show the number of level 2, level 3 and
patch triangles in order.

Figure 10: The sink scene with up to 2.5 million par-
ticles. Opaque and transparent renderings of the seam-
lessly stitched mesh are shown in the top row. In the
bottom row, results with two different curvature thresh-
olds: 4 (left) and 3 (right) are shown. Green and blue
regions represent the low and high resolution parts, re-
spectively.

This test scene shows the increase in high resolution
parts and so the computation time (see Table 1) due to
the particle scattering and the dominance of high turbu-
lence regions, see Fig. 9-right.

Our next scenario is the Sink scene which consists of up
to 2.5 million fluid particles (see Fig. 10 and 11). Using
this scene, we firstly experimented with the curvature
threshold. The curvature threshold should be chosen by
taking the nature of the scene into consideration, e.g.,
the scene can be turbulent and dominated by high cur-
vature regions or vice versa. Thus, the preferred thresh-
old should guarantee sufficient resolution everywhere.
In our experiments, we used 1.5 for the splash scene and
3 for the sink scene. Fig. 10 shows the difference be-
tween using two different thresholds on the sink scene.
While the value of 3 guarantees a sufficient resolution
on high curvature, turbulent regions, e.g. pouring water
from the tap; the value of 4 cannot provide sufficient
resolution on those parts. Secondly, we compare our
method with low and high resolution single level uni-
form grid approaches which use the cell size of 2r and
r, respectively. As shown in Fig. 11-left, the low reso-

method ttotal #tritotal MEM[GB]
Uniform low res. 7 310k 1.2

Our method 20 375k 1.25
Uniform high res. 34.5 1.2m 4

Table 2: The comparison of our method with single
level uniform grid approaches on the sink scene. ttotal ,
#tritotal and MEM[GB] represent average per frame
computation time, number of triangles and memory
consumption, respectively.

lution single level approach is not able to preserve the
details of the pouring water and isolated pieces; and it
creates under-tessellated structures. However, it is suffi-
cient to construct the surface properly in the sink where
the fluid surface is relatively flat. On the contrary, high
resolution single level uniform grid preserves the de-
tails properly as can be seen in the right hand side but
this resolution is not necessary for the fluid in the sink.
Fig. 10 shows that our method uses low resolution in-
side the sink and high resolution for the pouring water.
Finally, we produce a surface which is of similar quality
in comparison to the high resolution single level uni-
form grid (see Fig. 11-middle). Table 2 and Fig. 12
illustrates the test results which show that even we in-
troduce many steps for setting up the grid structure and
crack handling, our method runs up to 60% faster than
the high resolution single level uniform grid approach
with up to 4 times better memory consumption. When
compared to low resolution single level uniform grid
approach, our approach preserves all of the surface de-
tails that yields a proper surface visualization, with an
acceptable performance and memory overhead.

When we compare the splash scene and the sink scene,
we see that the computation time and the memory
consumption is nearly the same for both scenes,
even though the sink scene was simulated with larger
number of particles. The reason of this similarity
is that the particles do not spread around the scene
too much in the sink scene in contrast to the splash
scene. Therefore, both the coarse grid resolution and
the number of surface cells in the narrow band region
of the splash scene is slightly larger than the sink
scene. Besides, the splash scene is dominated by high
resolution parts while the sink scene is dominated
by low resolution parts. These points clarify that the
computation time depends not only on the resolution of
the scene but also on the nature of the scene.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 201 ISBN 978-80-86943-74-9



Figure 11: The comparison of the sink scene with single level uniform grid approaches. The low resolution single
level uniform grid (left) neither preserve details nor reconstruct the surface properly as our approach (middle) or
the high resolution single level uniform grids (right) do. On the other hand, we achieve a similar quality that
high resolution single level grids produce with up to four times better memory consumption and up to %60 better
performance.

1: Uniform low resolution

2: Adaptive grid

3: Uniform high resolution

Figure 12: Two graphs represent the average per frame
memory consumption and the computation time of the
Sink scene using our method or high/low resolution
uniform grid approaches.

5 CONCLUSION AND FUTURE
WORK

In this paper, we presented an adaptive surface recon-
struction technique for SPH by using a 3-level uniform
grid. The presented grid adapts its cells depending on
the surface curvature, which allows for generating less
triangles in flat regions but preserving all surface details
in curvature regions. Consequently, the number of tri-
angles, memory consumption and the computation time
decrease as we produce similar quality results in com-
parison to high resolution single level uniform grids.

In the future, we would like to consider using hashing
for also our top level coarse grid so as to prevent unnec-
essary data storage for unused cells.

Parallel algorithms have been gaining attention in re-
cent years for high performance computing. However,
the incorporation of parallelization in our method is a
challenging task due to potential thread safety issues
that arise in hashing. Another direction for future work
can be addressing these issues and parallelizing our al-
gorithm.

6 ACKNOWLEDGEMENTS
We thank reviewers for their helpful comments.
This project is supported by the German Research
Foundation (DFG) under contract numbers SFB/TR-8
and TE 632/1-2. The sink model is courtesy of
www.turbosquid.com. We also thank NVIDIA ARC
GmbH for supporting this work.

7 REFERENCES
[AIAT12] Akinci, G., Ihmsen, M., Akinci, N. and

Teschner, M., Parallel surface reconstruction for
particle-based fluids. Computer Graphics Forum
(2012), 31: pp. 1797-1809.

[AAIT12] Akinci G., Akinci N., Ihmsen M. and
Teschner, M., An efficient surface reconstruc-
tion pipeline for particle-based fluids. Proc. VRI-
PHYS, Darmstadt, Germany, pp. 61-68, Dec. 6-7,
2012.

[ALD06] Adams B., Lenaerts T., Dutre P.: Particle
Splatting: Interactive Rendering of Particle-Based
Simulation Data. Tech. Rep. CW 453, Katholieke
Universiteit Leuven, 2006.

[BB09] Brochu T. and Bridson R.: Robust Topological
Operations for Dynamic Explicit Surfaces. SIAM
Journal on Scientific Computing 31, 4 (2009),
2472-2493.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 202 ISBN 978-80-86943-74-9



[BGB11] Bhattacharya H., Gao Y. and Bargteil A.
W., A Level-set method for skinning animated
particle data. In roceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer
Animation (SCA) (2011).

[Bri03] Bridson R. E., Computational aspects of dy-
namic surfaces. PhD Thesis, Stanford University.
2003.

[CPJ10] Costa V., Pereira J. and Jorge J., Multi-
Level Hashed Grid Construction Methods. WSCG
(2010), Czech Republic.

[FAW10] Fraedrich R., Auer S., Westermann R.: Ef-
ficient High-Quality Volume Rendering of SPH
Data. IEEE Transactions on Visualization and
Computer Graphics (Proceedings Visualization
/ Information Visualization 2010) (2010), 1533-
1540.

[GSSP10] Goswami P., Schlegel P., Solenthaler B.,
Pajarola R.: Interactive SPH Simulation and Ren-
dering on the GPU. In Proceedings of the Eu-
rographics / SIGGRAPH Symposium on Com-
puter Animation (SCA) (Aire-la-Ville, Switzer-
land, Switzerland, 2010), pp. 55-64.

[HWB04] Houston B., Wiebe M. and Batty C. 2004.
RLE sparse level sets. In Proceedings of the SIG-
GRAPH Conference on Sketches and Applica-
tions.ACM.

[IAAT12] Ihmsen M., Akinci N., Akinci G. and
Teschner M., Unified spray, foam and bub-
bles for particle-based fluids, The Visual Com-
puter , vol. 28, no. 6-8, pp. 669-677, 2012,
doi:10.1007/s00371-012-0697-9

[JU06] Ju T. and Udeshi T., Intersection-free contour-
ing of an octree grid. In Proceedings of Pacific
Graphics (2006).

[LD08] Lagae A. and Dutré P., Compact, fast and ro-
bust grids for ray tracing. In ACM SIGGRAPH
2008 talks (SIGGRAPH ’08). ACM, New York,
NY, USA, , Article 20 , 1 pages.

[LC87] Lorensen W. and Cline H., Marching cubes:
A high resolution 3D surface construction algo-
rithm. In SIGGRAPH 1987: Proceedings of the
14th annual conference on Computer graphics
and interactive techniques (New York, NY, USA,
1987), ACM Press, pp. 163-169.

[LY04] Lee H. and Yang H. S., Real-time Marching-
cube-based LOD Surface Modeling of 3D Ob-
jects, ICAT 2004, 2004-12-00.

[Len10] Lengyel E., Transition cells for dynamic mul-
tiresolution marching cubes. Journal of Graphics,
GPU, and Game Tools (2010), 15:2, pp. 99-122.

[Man10] Manson, J. and Schaefer, S., Isosurfaces
over simplicial partitions of multiresolution grids.

Computer Graphics Forum (2010), 29(2): pp.
377-385.

[mental] Nvidia ARC, 2011. mental ray 3.9 [software].
URL: http://www.mentalimages.com/products/
mental-ray/aboutmental-ray.html.

[MSD07] Muller M., Schirm S., Duthaler S.: Screen
Space Meshes. In Proceedings of ACM SIG-
GRAPH / EUROGRAPHICS Symposium on
Computer Animation (SCA) (Aire-la- Ville,
Switzerland, Switzerland, 2007), pp. 9-15.

[MCG03] Muller M., Charypar D. and Gross M.,
Particle-based fluid simulation for interactive ap-
plications. In SCA 2003: Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on
Computer animation, pp. 154-159, Aire-la-Ville,
Switzerland, Switzerland, 2003. Eurographics As-
sociation.

[Mul09] Muller M.: Fast and robust tracking of fluid
surfaces. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer
Animation (New York, NY, USA, 2009), SCA
2009, ACM, pp. 237-245.

[NM04] Nielsen M. B. and Museth K. Dynamic Tubu-
lar Grid: An efficient data structure and algo-
rithms for high resolution level sets. Linkoping
Electronic Articles in Computer and Information
Science 9, 001

[OR97] Ohlberger M. and Rumpf M., Hierarchical and
adaptive visualization on nested grids. Comput-
ing, 59 (4): 269-285, 1997.

[RS09] Rosenthal, P. and Linsen, L. (2009), En-
closing Surfaces for Point Clusters Using 3D
Discrete Voronoi Diagrams. Computer Graph-
ics Forum, 28: 999-1006. doi: 10.1111/j.1467-
8659.2009.01448.x

[SFYC96] Shekhar R., Fayyad E., Yagel R., and Corn-
hil J. F., Octree-based decimation of marching
cubes surfaces. In Proceedings of the 7th confer-
ence on Visualization ’96 (VIS ’96), Roni Yagel
and Gregory M. Nielson (Eds.). IEEE Computer
Society Press, Los Alamitos, CA, USA, pp. 335-
ff..

[Sigg06] Sigg C., Representation and rendering of im-
plicit surfaces. PhD Thesis, ETH Zurich. 2006.

[SSP07] Solenthaler B., Schlafli J. and Pajarola R., A
unified particle model for fluid-solid interactions.
Computer Animation and Virtual Worlds 18, 1
(2007), pp. 69-82.

[SP09] Solenthaler B. and Pajarola R.: Predictive-
corrective incompressible SPH. In SIGGRAPH
2009: ACM SIGGRAPH 2009 Papers (New York,
NY, USA, 2009), ACM, pp. 1-6.

[VKSM04] Varadhan G., Krishnan S., Sriram T., and

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 203 ISBN 978-80-86943-74-9



Manocha D., Topology preserving surface extrac-
tion using adaptive subdivision. In Proceedings of
the 2004 Eurographics/ACM SIGGRAPH sympo-
sium on Geometry processing (SGP ’04). ACM,
New York, NY, USA, pp. 235-244.

[VT01] Velasco F. and Torres J. C., Cell Octrees: A
New Data Structure for Volume Modeling and
Visualization. In Proceedings of the Vision Mod-
eling and Visualization Conference 2001 (VMV
’01), Thomas Ertl, Bernd Girod, Heinrich Nie-
mann, and Hans-Peter Seidel (Eds.). Aka GmbH,
pp. 151-158.

[vdLGS09] Van Der Laan W. J., Green S., Sainz M.:
Screen Space Fluid Rendering with Curvature
Flow. In Proceedings of the 2009 symposium on
Interactive 3D graphics and games (New York,
NY, USA, 2009), ACM, pp. 91-98.

[WKE99] Westermann R., Kobbelt L. and Ertl T.,
Real-time exploration of regular volume data by
adaptive reconstruction of iso-surfaces. The Vi-
sual Computer 15 (1999), pp. 100-111.

[WH94] Witkin A. and Heckbert P.: Using Particles
to Sample and Control Implicit Surfaces. In SIG-
GRAPH 1994: Computer Graphics and Interac-
tive Techniques 28 (New York, NY, USA, 1994),
ACM, pp. 269-277.

[WvG92] Wilhelms J. and Van Gelder A., Octrees for
faster isosurface generation. ACM Trans. Graph.
11, 3 (July 1992), pp. 201-227.

[YT10] Yu J. and Turk G., Reconstructing surfaces
of particle-based fluids using anisotropic ker-
nels. In Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer
Animation (SCA ’10). Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, pp. 217-
225.

[ZB05] Zhu Y. and Bridson R., Animating sand as a
fluid. In SIGGRAPH 2005: ACM SIGGRAPH
2005 Papers (New York, NY, USA, 2005), ACM
Press, pp. 965-972.

[ZGHG11] Zhou K., Gong M., Huang X., and Guo B.,
Data-parallel octrees for surface reconstruction.
IEEE Transactions on Visualization and Com-
puter Graphics 17, 5 (2011), pp. 669-681.

[ZPvBG01] Zwicker M., Pfister H., Van Baar J., Gross
M.: Surface splatting. In SIGGRAPH 2001: Pro-
ceedings of the 28th annual conference on Com-
puter graphics and interactive techniques (New
York, NY, USA, 2001), ACM Press, pp. 371-378.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 204 ISBN 978-80-86943-74-9


	!_2013-WSCG-Full.pdf
	E29-full.pdf


