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ABSTRACT
Quality of segmentation depends on evaluation method we use. In case of specific images we use specific ways
how to define quality. In general cases we have to use common methods. They differ in complexity as well as in
quality. This article presents some of these methods and shows comparison of their quality on large image set.
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1 INTRODUCTION
Segments in segmentation can be measured for some
specific properties (perimeter, area, curvature) or we
can process or modify image information in each seg-
ment separately. For perfect results, we need high qual-
ity segmentation which is often created by a segmen-
tation algorithm. Therefore, quality of the algorithm
should be measured by an evaluation method and its
quality should be evaluated as well.

2 EVALUATION METHODS
This article includes over 30 evaluation methods. Some
methods needed small modification for evaluation of
segmentations. Methods are divided into 6 categories
which are provided in the following subsections.

2.1 Segment and Intersection Size Based
Methods

Multi-class Error type I and type II by W. A. Yasnoff
et al. [YMB77] use intersection of segments. Final
methods SM1 and SM2 are just weighted sums. Pal and
Bhandari used difference and ratio of size of segments
in their Symmetric Divergence (SY D) [PB93]. D. Mar-
tin et al. [Mar02] used relative size of intersection in
Global (GCE), Local (LCE) and Bidirectional Consis-
tency Error (BCE). I propose Global Bidirectional Con-
sistency Error (GBCE) which comes out of GCE and
BCE. Larsen in L sums maxima of relative intersection
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sizes [LA99]. Q. Huang et al. in normalized Hamming
Distance (HD) used sizes of intersections [HD95]. Van
Dongen proposed metric using maximal intersections
(V D) [VD00]. Meilă and Heckerman used sizes of in-
tersections for predefined correspondence of segments
(MH) [MH01]. Nearly the same was proposed later by
Cardoso and Corte-Real [dSCCR05] as Partition Dis-
tance (PD).

2.2 Methods Using Distance Measure
Yasnoff et al. compute squares of distances of pixels to
corresponding segments (Y D) [YMB77]. Strasters and
Gerbrands used the same approach in F but they nor-
malize it by number of mis-classified pixels and a pa-
rameter [SG91]. Figure of Merit by Pratt [Pra78] uses
similar evaluation expression but evaluates border pix-
els. Necessary natural extension is presented here as
SFOM. Monteiro and Campilho combine linear and
logarithmic distance (MC) [MC06]. Paumard’s Cen-
sored Hausdorff Distance was also extended (SCHD)
[Pau97]. It is based on Hausdorff distance used for sets.
Q. Huang and B. Dom proposed more methods but only
one which uses average of distances is well defined and
usable (H2µ ) [HD95] . Segmentation Difference (SD)
method computes discrepancy in number of segments
and distance of pixels [Sru10, Sv11, Sru11]. For evalu-
ation only distance is used. There are four alternatives
of SD denoted by index.

2.3 Methods Based on Counting of Cou-
ples

If you take two random pixels, they could lie in the
same segment or in different segments in the first or
the second segmentation. Using combination of these
properties we get four types of couples. Number of
couples of each type is used in following methods:
JC by Jaccard [BHEG02], FM by Fowlkes and

WSCG 2013 Conference on Computer Graphics, Visualization and Computer Vision

Poster proceedings 49 ISBN 978-80-86943-76-3



Mallows [FM83], WI by Wallace [Wal83] and M by
Mirkin [Mir96] (which is even a metric) and Rand
index [Ran71]. The latter method was extended by
probability of pixels (PRI) [UPH05].

2.4 Methods with Statistical Approach
Yasnoff and Bacus proposed Object Count Agreement
(OCA) which uses number of segments and sets of seg-
ments [YB84]. Entropy of segments is used in Nor-
malized Mutual Information (NMI) [SGM00]. Another
metric - Variation of Information (V I) was proposed by
Meilă in [Mei03].

2.5 Graph Theory Methods
Method based on graph theory was proposed by Jiang
et al. in [JMIB06]. Segments represent nodes in graph
while their correspondences are vertexes. Result is sum
of all vertexes in its maximum-weight bipartite graph.

2.6 Other Methods
Last method Fragmentation (FRAG) [SG91] uses dif-
ference of number of segments. Result can be tuned by
two parameters.

3 METHODOLOGY OF COMPARI-
SON

All implemented methods are practically tested on im-
age data set consisting of pictures taken by a typical
camera [MFTM01]. They consist of sample images and
their ground truth segmentations.

Comparison of two segmentations results in a num-
ber. In each comparison we know if these segmen-
tations belong to the same image or not. According
to that property results should split into two clusters
(same vs. different segmentations). Typically, result
of segmentations belonging to the same image are low
while results from segmentations from different images
are high. Therefore, we could find optimal threshold
to separate results into the two categories. Still, there
could be results on the wrong side of the threshold. We
will divide their number by size of the whole cluster
and call them false acceptance (FA) or false rejection
(FR) whether they lie on the one or the other side of
the threshold. The threshold can be different for each
method.

4 RESULTS
Methods were implemented and measured. Symmetric
methods evaluated 3138496 couples of segmentations,
while each asymmetric method processed 6276992
couples of segmentations. Results are presented in
figure 1. All methods reaching 50% are practically
unusable. From the results we could see that local
refinement (LCE, SD) is better than intolerance to
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Figure 1: Results of segmentation-segmentation meth-
ods for Berkeley data set.

refinement (BCE) which is better than tolerance to
global refinement GCE. Results can also be put on the
time axis (see figure 2) according to year in which their
methods were published. Last graph (figure 3) shows
statistical quality of each approach corresponding to
categorization of the methods.

5 CONCLUSION
Segmentation evaluation methods have very various
quality. Some of them are focused on a small part of in-
formation from the whole segmentation and the quality
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Figure 2: Review of history of methods and evolution
of quality. Overall quality is shown only. Methods are
stated from left to right. 1971: PRI, 1977: SM2, Y D,
SM1, 1978: SFOM, 1983: FM, W , 1984: OCA, 1991:
F , FRAG, 1993: SY D, 1995: HD, H2µ , 1996: M, 1997:
SCHD, 1999: L, 2000: V D, NMI, 2001: LCE, BCE,
GCE, MH, 2002: JC, 2003: V I, 2005: PD, 2006:
BGM, MC, 2011: SD3, GBCE, SD1, SD4, SD2.
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Figure 3: Overview of quality distribution in groups of
methods. Minimum, maximum, lower and upper quar-
tiles are presented.

is therefore poor. Even some recently proposed meth-
ods do not assure high quality. The best results were
provided by method SD3 which uses grouping of seg-
ments and distance measuring. This quality measure-
ment is one of the biggest according to the size of test
set as well as the number of methods which can ensure
high level of objectivity.
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