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Abstract

In this paper, thermal analysis of a thick isotropic rectangular plate is carried out using the hyperbolic shear defor-
mation theory (HYSDT). The displacement field of the theory contains three variables. The hyperbolic sine and
cosine functions are used in the displacement field in-terms of thickness coordinate to represent the effect of shear
deformation. The most important feature of the theory is that, the transverse shear stresses can be obtained directly
from the use of constitutive relations, hence the theory does not need shear correction factor. The theory accounts
for parabolic distribution of transverse shear stresses across the thickness satisfying the stress free boundary con-
ditions at top and bottom surfaces of the plate. Governing differential equations and boundary conditions of the
theory are obtained using the principle of virtual work. The results obtained for bending analysis of isotropic plates
subjected to uniformly distributed thermal load are compared with those obtained by other theories, to validate the
accuracy of the presented theory.
c© 2013 University of West Bohemia. All rights reserved.

Keywords: isotropic plate, shear correction factor, hyperbolic function, transverse shear stress, thermal load

1. Introduction

Isotropic plates are being widely used in structures subjected to severe thermal environment,
which produce an intense thermal stresses on it. In order to describe the correct thermal response
of thick plates including shear deformation effects, refined theories are required.

Classical plate theory (CPT) is inaccurate for thick plates due to neglect of the transverse
shear stress. To overcome limitations of CPT the displacement based first order shear defor-
mation theory (FSDT) is developed by Mindlin [10]. Since transverse shear stress distribution
is constant through the thickness in FSDT, it requires shear correction factor. CPT and FSDT
are inadequate to predict the accurate solutions of a thick isotropic plate hence the higher order
shear deformation theories (HSDT) are developed. Moreover the lot of research is available
on thermal analysis of isotropic plate. Reddy [12] has developed simple higher order shear
deformation theory for analysis of plates. Sayyad and Ghugal [13, 14] have developed an ex-
ponential shear deformation theory (ESDT) for buckling, bending and free vibration analysis
of thick isotropic plates. Ghugal and Kulkarni [3] have used trigonometric shear deformation
theory (TSDT) for thermal analysis of composite plates.

Kapuria and Achary [6] develop a new zig-zag HSDT to study the thermal response of
plates whereas Zhen and Wanji [21] present a global-local higher-order theory for triangular
element under a thermal load. Cho and Oh [8] develop a higher order zig-zag plate theory for
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thermo-mechanical loading. Matsunaga [8] has presented a two-dimensional (2D) higher or-
der deformation theory for the evaluation of displacements and stresses in functionally graded
(FG) plates subjected to thermal and mechanical loadings. Zenkour [20] presented the static
thermo-elastic response of symmetric and anti-symmetric cross-ply laminated plates using the
unified shear deformation theory. Wang et al. [19] studies the response histories and the distri-
bution of dynamic interlaminar stresses in laminated plates with complex boundaries, subjected
to free vibrations and thermal load, based on dynamic differential equations. Matsunaga [7] has
compared 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of
laminated composite. Nguyen and Caron [11] studied the finite element analysis of free-edge
stresses of composite laminates subjected to mechanical and thermal loads. Ali et al. [1] de-
velops a new theory for accurate thermal/mechanical flexural analysis of symmetric laminated
plates.

There exist another class of refined shear deformation theories in which hyperbolic sine and
cosine functions are used in-terms of thickness coordinate to include the effect of transverse
shear deformation. Soldatos [16, 17] has used hyperbolic function first time to include the
effect of shear deformation for the static and dynamic analysis of the plate under mechanical
load. Ghugal and Pawar [4] extended this theory for the buckling and free vibration analysis
of orthotropic plates. Metin [9] also presented bending, buckling and free vibration analysis of
laminated composite plates using hyperbolic shear deformation theory. Sayyad and Ghugal [15]
studied the effect of hyperbolic shear deformation theory on bending analysis of isotropic beams
under mechanical loading.

It is pointed out from the above literature that efficiency of hyperbolic shear deformation
theory for beams and plates has been proved for mechanical load but bending response of plate
under thermal load is not studied by the researchers. Therefore, in the present study, attempt is
made to check the efficiency of hyperbolic shear deformation theory for the flexural analysis of
isotropic plates under the thermal load linear through the thickness.

2. Mathematical modelling

Mathematical modelling of the plate is based on the following kinematical assumptions:

1. The displacements are small and therefore strains involved are infinitesimal.

2. The inplane displacement u in x direction as well as displacement v in y direction consists
of three parts:

(a) Displacement component analogous to the displacement in classical plate theory of
bending.

(b) Displacement component due to shear deformation, which is assumed to be hyper-
bolic in nature with respect to thickness coordinate, such that the maximum shear
stress occurs at neutral axis.

(c) The displacements are small compared to plate thickness.

3. The transverse displacement w in z direction is assumed to be a function of x and y
coordinates only.

4. The body forces are ignored in the analysis.

5. The plate is subjected to thermal load only.
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Using the above assumptions, the theoretical formulation of presented theory for an isotropic
plate can be done. Let us consider a rectangular plate in cartesian coordinate system occuping
the region given by

0 ≤ x ≤ a, 0 ≤ y ≤ b, −h/2 ≤ z ≤ h/2, (1)

where x, y, z are the cartesian coordinates, a and b are the edge lengths in the x and y directions
respectively, and h is the thickness of the plate. The plate is made up of isotropic material which
obeys generalised Hooke’s law.

2.1. Displacement field

Based on the assumptions made in the previous section, hyperbolic shear deformation theory
(HYSDT) proposed by Soldatos [16, 17] is used for the mathematical formulation. The dis-
placement field of presented theory is as follows:

u = −z
∂w

∂x
+

[
z cosh

(
1

2

)
− h sinh

(z

h

)]
φ(x, y),

v = −z
∂w

∂y
+

[
z cosh

(
1

2

)
− h sinh

(z

h

)]
ψ(x, y), (2)

w = w(x, y),

where u and v are the inplane displacement components in the x and y directions respectively,
and w is the transverse displacement in the z direction. The hyperbolic function in terms of
thickness coordinate in both the displacements u and v is associated with the transverse shear
stress distribution through the thickness of the plate and the functions φ(x, y) and ψ(x, y) are
the unknown functions associated with the shear slopes.

2.2. Strain-displacement relationships

Normal and shear strains are obtained within the framework of linear theory of elasticity [18]
using the displacement field given by Eq. (2) is as given in Eq. (3)

εx =
∂u

∂x
, εy =

∂v

∂y
, εz =

∂w

∂z
,

γxy =
∂u

∂y
+

∂v

∂x
, γzx =

∂u

∂z
+

∂w

∂x
, γyz =

∂v

∂z
+

∂w

∂y
. (3)

2.3. Stress-strain relationships

The stress-strain relationships considering thermal effect given by Jones [5] can be expressed
as: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σx

σy

τxy

τyz

τzx

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
E

1 − μ2

⎡
⎢⎢⎢⎢⎣

1 μ 0 0 0
μ 1 0 0 0
0 0 (1 + μ)/2 0 0
0 0 0 (1 + μ)/2 0
0 0 0 0 (1 + μ)/2

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εx − αxT
εy − αyT

γxy

γyz

γzx

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (4)

where (σx, σy, τxy, τyz , τzx) are the stress components, (εx, εy, γxy, γyz, γzx) are the strain com-
ponents, E is the modulus of elasticity, μ is the Poisson’s ratio and αx and αy are the coefficients
of thermal expansion along x and y direction respectively. T is the thermal load. Assuming lin-
ear variation of temprature through the thickness of the plate [3], the value of thermal load is
given as T = zT1(x, y), where, z is the thickness coordinate and T1 is the transverse temperature
load.
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3. Governing equations and boundary conditions

The governing equation of euilibrium can be derived using the principal of virtual displace-
ments. The analytical form of principle of virtual work is as follows:

z=h/2∫
z=−h/2

y=b∫
y=0

x=a∫
x=0

[σxδεx + σyδεy + σzδεz + τyzδγyz + τzxδγzx + τxyδγxy] dx dy dz−

x=a∫
x=0

y=b∫
y=0

q(x, y) δw dx dy = 0, (5)

where the symbol δ denotes the variation operator and q(x, y) represents a transverse mechani-
cal load. Substituting stresses and strains from Eqs. (3) and (4) into the Eq. (5) and employing
Green’s theorem successively, we obtain the coupled Euler-Lagrange equations, which are the
governing differential equations of the plate and the associated boundary conditions of the plate.
The governing differential equations in-terms of stress resultants are as follows:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
+ q = 0,

∂Nsx

∂x
+

∂Nsxy

∂y
− NTcx = 0, (6)

∂Nsy

∂y
+

∂Nsxy

∂x
− NTcy = 0.

The boundary conditions at x = 0 and x = a obtained are of the following form:

Either Vx = 0 or w is prescribed

Either Mx = 0 or ∂w
∂x

is prescribed

Either Nsx = 0 or φ is prescribed

Either Nsxy = 0 or ψ is prescribed

⎞
⎟⎟⎟⎟⎠ . (7)

The boundary conditions at y = 0 and y = b obtained are of the following form:

Either Vy = 0 or w is prescribed

Either My = 0 or ∂w
∂y

is prescribed

Either Nsxy = 0 or φ is prescribed

Either Nsy = 0 or ψ is prescribed

⎞
⎟⎟⎟⎟⎠ . (8)

The reaction at the corners of the plate is of the following form:

Either Mxy = 0 or w is prescribed, (9)

where (Mx, My, Mxy) are the moment resultants associated with the classical plate theory,
(Nsx, Nsy, Nsxy) are the refined moment resultants associated with the shear deformation and
(NTcx, NTcy) are the shear force resultants given as below:
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(Mx, My, Mxy) =

h/2∫
−h/2

(σx, σy, τxy)z dz; (Nsx, Nsy, Nsxy) =

h/2∫
−h/2

(σx, σy, τxy)f(z) dz;

(NTcx, Ntcy) =

h/2∫
−h/2

(τzx, τyz)
df(z)

dz
dz; Vx =

∂Mx

∂x
+ 2

∂Mxy

∂y
; V7 =

∂My

∂y
+ 2

∂Mxy

∂x

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

Substituting Eq. (10) into the Eq. (6), the governing differential equations obtained in-terms
of unknown displacement variables used in the displacement field (w, φ and ψ) are as follows:

δw :

(
D11

∂4w

∂x4
+ (2D12 + 4D66)

∂4w

∂x2∂y2
+ D22

∂4w

∂y4

)
−

(
S11

∂3φ

∂x3
+ S22

∂3ψ

∂y3

)
− (S12 + 2S66)

(
∂3φ

∂x∂y2
+

∂3ψ

∂x2∂y

)
+

(TD11 + TTD12)
∂2T1

∂x2
+ (TD12 + TTD22)

∂2T1

∂y2
= q,

δφ : S11
∂3w

∂x3
+ (S12 + 2S66)

∂3w

∂x∂y2
−

(
SS11

∂2φ

∂x2
+ SS66

∂2φ

∂y2

)
+

C55φ − (SS12 + SS66)
∂2ψ

∂x∂y
+ (TS11 + TTS12)

∂T1

∂x
= 0, (11)

δψ : S22
∂3w

∂y3
+ (S12 + 2S66)

∂3w

∂x2∂y
−

(
SS66

∂2ψ

∂x2
+ SS12

∂2ψ

∂y2

)
+ C44ψ−

(SS12 + SS66)
∂2φ

∂x∂y
+ (TS12 + TTS22)

∂T1

∂y
= 0.

The associated consistent boundary conditions obtained are as below:
Along the edge x = 0 and x = a

−D22
∂3w

∂y3
− (D12 + 4D66)

∂3w

∂y∂x2
+

(
2S66

∂2ψ

∂x2
+ S22

∂2ψ

∂y2

)
+ (S12 + 2S66)

∂2φ

∂x∂y
−

(TD12 + TTD22)
∂T1

∂y
= 0 or w is prescribed,

(
D12

∂2w

∂x2
+ D22

∂2w

∂y2

)
− S12

dφ

dx
− S22

dψ

dy
+

(TD12 + TTD22)T1 = 0 or
∂w

∂x
is prescribed,

SS66

(
dφ

∂y
+

dψ

∂x

)
− 2S66

∂2w

∂y∂x
= 0 or φ is prescribed,

−S12
∂2w

∂x2
+ SS12

∂φ

∂x
− S22

∂2w

∂y2
+ SS22

∂ψ

∂y
−

(TS12 + TTS22)T1 = 0 or ψ is prescribed. (12)
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Along the edge y = 0 and y = b:

−D11
∂3w

∂x3
− (D12 + 4D66)

∂3w

∂x∂y2
+

(
2S66

∂2φ

∂y2
+ S11

∂2φ

∂x2

)
+ (S12 + 2S66)

∂2ψ

∂x∂y
−

(TD11 + TTD12)
∂T1

∂x
= 0 or w is prescribed,(

D11
∂2w

∂x2
+ D12

∂2w

∂y2

)
− S11

dφ

dx
−

S12
dψ

dy
+ (TD12 + TTD11)T1 = 0 or

∂w

∂y
is prescribed,

−
(

S11
∂2w

∂x2
+ S12

∂2w

∂y2

)
+ SS11

dφ

dx
+

SS12
dψ

dy
− (TS11 + TTS12)T1 = 0 or φ is prescribed,

SS66

(
dψ

dx
+

dφ

dy

)
− 2S66

∂2w

∂x∂y
= 0 or ψ is prescribed. (13)

Thus, the variationally consistent governing differential equations and boundary conditions
are obtained. The coefficients appearing in the governing differential equations and boundary
conditions are given in Appendix. The flexural behaviour of the plate is described by the so-
lution satisfying these equations and the associated boundary conditions at each edge of the
plate.

4. Illustrative examples

To assess the performance of the present theory in the prediction of bending response of a plate
under a thermal load, a simply supported isotropic rectangular plate of length a, width b, and
thickness h is considered. The plate is subjected to uniformly distributed thermal load given by
Eq. (14):

T1 =

∞∑
m=1

∞∑
n=1

T1mn sin
(mπx

a

)
sin

(nπy

b

)
, (14)

where T1mn is the coefficients of Fourier expansion

T1mn = 16T0

mnπ2 for m = 1, 3, 5, . . . and n = 1, 3, 5, . . . ,
T1mn = 0 for m = 2, 4, 6, . . . and n = 2, 4, 6, . . .

(15)

Here, T0 is the intensity of thermal load. Following material properties of a steel plate are used
to obtained numerical results:

μ = 0.3, E = 210 GPa, αx = αy. (16)
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4.1. The closed – form solution (Navier Solution)

The following solution form for w(x, y), φ(x, y) and ψ(x, y) is assumed which satisfy the
boundary conditions of simply supported plate.

w(x, y) =

∞∑
m=1

∞∑
n=1

wmn sin
(mπx

a

)
sin

(nπy

b

)
,

φ(x, y) =

∞∑
m=1

∞∑
n=1

φmn cos
(mπx

a

)
sin

(nπy

b

)
, (17)

ψ(x, y) =

∞∑
m=1

∞∑
n=1

ψmn sin
(mπx

a

)
cos

(nπy

b

)
,

where wmn, φmn and ψmn are the unknown coefficients, which can be easily valuated after the
substitution of Eq. (17) and Eq. (14) in the set of three governing differential equations Eq. (11)
and solving the resulting simultaneous equations as,

K11wmn + K12φmn + K13ψmn = f1,

K21wmn + K22φmn + K23ψmn = f2, (18)
K31wmn + K32φmn + K33ψmn = f3,

where

K11 = D11
m4π4

a4
+ 2D12

m2n2π4

a2b2
+ D22

n4π4

b4
+ 4D66

mn2π3

ab2
,

K12 = −S12
m3π3

a3
− (S12 + 2S66)

mn2π3

ab2
,

K13 = −S22
n3π3

b3
− (S12 + 2S66)

m2nπ3

a2b
,

K22 = SS11
m2π2

a2
+ SS66

n2π2

b2
+ C55, (19)

K23 = (SS12 + SS66)
mnπ2

ab
,

K33 = SS22
n2π2

b2
+ SS66

m2π2

a2
+ C44,

F1 = (D12αx + D22αy)
n2π2

b2
+ (D11αx + D12αy)

m2π2

a2
,

F2 = −(S11αx + S12αy)
mπ

a
,

F3 = (S12αx + S22αy)
nπ

b
.

5. Numerical results

In this paper, the displacements and thermal stresses are determined for simply supported
isotropic rectangular plates subjected to uniformly distributed thermal load presented in fol-
lowing non-dimentional form:
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(ū, v̄) =
(u, v)

αxT0b2
, w̄ =

w

αxT0b2h
,

(σ̄x, σ̄y, τ̄xy) =
(σx, σy, τxy)

αxT0Eb2
, (τ̄yz, τ̄xz) =

(τyz, τxz)

αxT0Eb
. (20)

6. Discussion of results

To validate the efficiency of the presented theory HYSDT, numerical results are compared with
those obtained by TSDT of Ghugal and Kulkarni [3], FSDT of Mindlin [10] and CPT. Numerical
results of non-dimensional displacements and stresses are presented in Tables 1–3 and Figs. 1–5.
Examination of Table 1 reveals that the non-dimensional displacements and stresses obtained
by the presented theory are identical with those obtained by TSDT [3] for aspect ratios 5 and
10. It is also pointed out from the numerical results shown in Table 1 that the maximum value
of transverse shear stresses are zero for isotropic plates subjected to thermal load. The through
thickness variation of in-plane displacement shown in Fig. 1 is observed to be linear. The
through thickness variation of in-plane stresses are shown in Figs. 2–3. Table 2 and Fig. 4 show
that, the non-dimensional transverse displacement increases with respect to increasing aspect
ratio (b/h).

Table 1. Comparison of displacements and stresses for the square isotropic plate subjected to uniformly
distributed thermal load

b/h Source Model ū v̄ w̄ σ̄x σ̄y τ̄xy τ̄zx τ̄yz

5 Present HYSDT 0.042 9 0.042 9 0.478 9 0.052 5 0.052 5 0.240 6 0.00 0.00

Ref. [3] TSDT 0.042 9 0.042 9 0.478 9 0.052 5 0.052 5 0.240 6 0.00 0.00

10 Present HYSDT 0.021 5 0.021 5 0.957 9 0.026 2 0.026 2 0.120 3 0.00 0.00

Ref. [3] TSDT 0.021 5 0.021 5 0.957 9 0.026 2 0.026 2 0.120 3 0.00 0.00

Kirchoff CPT 0.021 5 0.021 5 0.957 9 0.026 2 0.026 2 0.120 3 0.00 0.00

Fig. 1. Through thickness variation of in-plane
displacement ū for aspect ratio 10

Fig. 2. Through thickness variation of in-plane
normal stress σ̄x for aspect ratio 10
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Table 2. Comparison of transverse displacements w̄ for the square isotropic plate subjected to uniformly
distributed thermal load with respect to aspect ratio (S)

Source
S = b/h

2 4 5 10 20 100
Present (HYSDT) 0.191 6 0.383 1 0.478 9 0.957 9 1.915 7 9.578 7
Ref. [3] 0.191 6 0.383 1 0.478 9 0.957 9 1.915 7 9.578 7

Fig. 3. Through thickness variation of in-plane
shear stress τ̄xy for aspect ratio 10

Fig. 4. Comparison of transverse displacement w̄
with respect to aspect ratios

Table 3 and Fig. 5 show the comparison of transverse displacement for rectangular plates.
The non-dimensional transverse displacements predicted by the presented theory are identical
with those obtained by TSDT [3] for all (a/b) ratios. It is also observed from Table 3 and Fig. 5
that the values of transverse displacement increases with respect to increase in a/b ratios.

Table 3. Comparison of the transverse displacement w̄ for the rectangular isotropic plates subjected to
uniformly distributed thermal load

Source Model b/h a/b =1 a/b = 1.5 a/b = 2.0 a/b = 2.5 a/b = 3.0

Present HYSDT 5 0.478 9 0.655 1 0.740 3 0.779 7 0.797 7
Ref. [3] TSDT 5 0.478 9 0.655 1 0.740 3 0.779 7 0.797 7
Ref. [3] FSDT 5 0.478 9 0.655 0 0.740 3 0.779 8 0.797 7
Kirchhoff CPT 5 0.478 9 0.660 0 0.740 0 0.780 0 0.800 0
Present HYSDT 10 0.957 9 1.310 2 1.480 6 1.559 3 1.595 4
Ref. [3] TSDT 10 0.957 9 1.310 2 1.480 6 1.559 3 1.595 4
Ref. [3] FSDT 10 0.957 9 1.309 5 1.479 2 1.558 2 1.594 2
Kirchhoff CPT 10 0.957 9 1.310 0 1.480 4 1.560 0 1.595 1
Present HYSDT 20 1.915 7 2.620 5 2.961 2 3.118 6 3.190 7
Ref. [3] TSDT 20 1.915 7 2.620 5 2.961 2 3.118 6 3.190 7
Ref. [3] FSDT 20 1.915 7 2.620 3 2.961 1 3.118 6 3.190 7
Kirchhoff CPT 20 1.915 7 2.620 0 2.961 0 3.120 0 3.190 4
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Fig. 5. Variation of maximum transverse displacement w̄ with respect to a/b ratios for aspect ratio 10

7. Conclusions

In the present study, the hyperbolic shear deformation theory is used to investigate the bending
response of isotropic plates under a uniformly distributed thermal load. Static solutions for sim-
ply supported isotropic rectangular plates are developed using the Navier procedure. From the
numerical results and discussion, it is observed that, in case of isotropic plate, the displacements
and in-plane stresses obtained by the presented theory are in excellent agreement with those of
other refined theories whereas, it is also pointed out that, isotropic plate is subjected to zero
transverse shear stresses due to thermal load.
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Appendix

The coefficients appearing in the governing differential equations and boundary conditions
[Eq. (11–13)] are as follows:

D11 =D22 =
AE

(1 − μ2)
, D12 =

AEμ

(1 − μ2)
, D66 =

AE

2(1 + μ)
,

S11 =S22 =
BE

(1 − μ2)
, S12 =

BEμ

(1 − μ2)
, S66 =

BE

2(1 + μ)
,

SS11 =SS22 =
CE

(1 − μ2)
, SS12 =

CEμ

(1 − μ2)
, SS66 =

CE

2(1 + μ)
,

TD11 =
AE

(1 − μ2)
αx, TD12 =

AEμ

(1 − μ2)
αx, TD22 =

AEμ

(1 − μ2)
αx,

TS11 =
BE

(1 − μ2)
αx, TS12 =

BEμ

(1 − μ2)
αx, TS22 =

BEμ

(1 − μ2)
αx,
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TTD11 =
AE

(1 − μ2)
αy, TTD12 =

AEμ

(1 − μ2)
αy, TTD22 =

AEμ

(1 − μ2)
αy,

TTS11 =
BE

(1 − μ2)
αy, TTS12 =

BEμ

(1 − μ2)
αy, TTS22 =

BEμ

(1 − μ2)
αy,

C55 =
DE

2(1 + μ)
, C44 =

DE

2(1 + μ)
,

(A.1)

where

A =

h/2∫
−h/2

z2 dz, B =

h/2∫
−h/2

zf(z) dz, C =

h/2∫
−h/2

f 2(z) dz, D =

h/2∫
−h/2

[
df(z)

dz

]2

dz, (A.2)

where f(z) = z cosh
(

1
2

)
− h sinh

(
z
h

)
.
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