ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta strojní

Integrace pasivních tlumicích prvků do kompozitních struktur

disertační práce

k získání akademického titulu doktor v doktorském studijním programu: P2301 Strojní inženýrství studijním oboru: Stavba strojů a zařízení

Ing. Josef Vacík

Plzeň 2013

Prohlášení o autorství

Předkládám tímto k posouzení a obhajobě disertační práci, zpracovanou na téma "Integrace pasivních tlumicích prvků do kompozitních struktur".

Prohlašuji, že tuto práci jsem vypracoval samostatně, s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této práce.

V Plzni dne:

podpis autora

Upozornění

Podle Zákona o právu autorském č.35/1965 Sb. (175/1996 Sb. ČR) § 17 a Zákona o vysokých školách č. 111/1998 Sb. je využití a společenské uplatnění výsledků práce, včetně uváděných vědeckých a výrobně-technologických poznatků nebo jakékoliv nakládání s nimi, možné pouze na základě autorské smlouvy za souhlasu autora, autorů citovaných prací a fakulty strojní Západočeské univerzity v Plzni.

Poděkování

Rád bych poděkoval mé školitelce doc. Ing. Václavě Lašové, Ph.D. za zodpovědné vedení v průběhu celého mého studia. Zároveň si velice cením konzultací nejen s mým školitelem specialistou Ing. Radkem Kottnerem, Ph.D., ale i s ostatními výzkumnými pracovníky kateder mechaniky a konstruování strojů při ZČU v Plzni, z nichž se mnozí v průběhu let stali mými dobrými přáteli. Zvláštní dík patří také celé mojí rodině, která se podílela na formování mojí osobnosti, a bez jejíž podpory a zázemí bych se během studia neobešel. Děkuji i mojí snoubence za lásku a trpělivost.

Anotace

Disertační práce se zabývá vytvořením a validací metodiky konstruování strojních dílů z vláknových kompozitů s integrovanými pasivními tlumicími prvky. Práce je založena na maximálním využití nástrojů počítačové podpory inženýrství (CAE) v kombinaci s experimentálními přístupy.

Základní premisou předkládané metodiky je nasazení co možná nejjednodušších postupů při experimentálním získávání potřebných materiálových dat a jejich následném využití v numerických modelech. Bez potřeby zvláštního laboratorního vybavení a speciálních zkušebních vzorků lze navrženou metodiku úspěšně aplikovat i ve výrobním podniku.

V rámci disertační práce byl sestaven optimalizační cyklus vycházející z uváděné metodiky. Cílem optimalizace bylo dosažení maximální dynamické a statické tuhosti vybraných těles. Získané výsledky posloužily k vyvození obecně platných závěrů a doporučení pro konstrukce z hybridních kompozitů.

Podnětem k zahájení výzkumu hybridních kompozitních struktur byla především možnost jejich využití při návrhu nosných dílů obráběcích strojů, u nichž by charakteristické vlastnosti těchto materiálů vedly k vyšší přesnosti obrábění a nižším nárokům na pohonné soustavy strojů. Tato práce vznikla za podpory grantu GA101/08/0299 – "Výzkum inteligentních kompozitových prvků výrobních strojů z ultravysokomodulových vláken a nanočásticemi modifikované matrice", GD101/08/H068 – "Výzkum nových principů mechanických a biomechanických systémů s inteligentním chováním" a dále také projektu TE01020075 – Centrum kompetence – "Strojírenská výrobní technika".

Abstract

The aim of this dissertation thesis is to propose and validate a methodology for designing the machine components made of fibre composites with integrated passive damping elements. The work is based on maximum application of Computer Aided Engineering tools combined with experimental approaches.

The fundametal premise of the methodology is the usage of the simplest procedures for experimental data acquisition of required material properties and their consequent utilization in finite element models. With no or minimal demands on special laboratory equipment and unusual test specimens, the proposed methodology is also suitable for manufacturing concerns.

Within the scope of the thesis, an optimization cycle based on the introduced methodology was created. The goal of the optimization was to achieve the maximum dynamic and static stiffness of selected samples. Obtained results served for induction of generally true conclusions and recommendations for designing of hybrid composites structures.

The impulse for the research of the hybrid composites structures was above all the possibility of their application in carrying components of machine tools. The inherent characteristic properties of hybrid composites could improve the overall machining accuracy and decrease demands on driving systems of machines. The research was supported by the project GA101/08/0299 – *"Research of intelligent composite components of machine tools made of ultrahighmodulus fibers and nanoparticles modified matrix*", project GD101/08/H068 – *"Research of new principle of mechanical sand biomechanical systems with a intelligent behaviour*" and also project TE01020075 – Competence Center – *"Manufacturing Technology*".

Vyjádření nositele a řešitelů projektu

Student je autorem té části práce, kterou předkládá, včetně určení procentuálního podílu studenta na celkovém projektu:

Prof. Ing. Milan Růžička, CSc., ČVUT Praha (nositel) / Prof. Ing. Vladislav Laš, CSc. (koordinátor projektu pro pracoviště Plzeň) - projekt "GD 101/08H08" (2008 – 2011) – problematika předkládaná v DiP je cca 3,5 % obsahem projektu a je 100% vlastní prací autora.

.....

• Doc. Ing. Václava Lašová, Ph.D. - projekt "GA 101/08/0299" (2009 – 2011) – problematika předkládaná v DiP je cca 30 % obsahem projektu a je 100% vlastní prací autora.

.....

 Doc. Ing. Václava Lašová, Ph.D. - projekt "VCSVTT – Projekt 1.2.2 Nekonvenční materiály, grant 1M6840770003" (2008 – 2011) – problematika předkládaná v DiP je cca 10 % obsahem projektu a je 100% vlastní prací autora.

.....

 Doc. Ing. Václava Lašová, Ph.D. - projekt "Centrum kompetence – Strojírenská výrobní technika (č. TE01020075)" (2012-2013) – problematika předkládaná v DiP je cca 5 % obsahem projektu a je 100% vlastní prací autora.

.....

Obsah

1	Úvo	d		1
	1.1	Cíl p	práce	2
2	Apli	kace	tlumicích elementů v konstrukcích, motivace	3
3	Defi	nice	základních pojmů	7
	3.1	Tlur	nicí vrstvy	7
	3.2	Obe	ecná charakteristika materiálů s viskoelastickým chováním	7
	3.3	Mat	tematické modely viskoelastických materiálů, konstitutivní rovnice	9
	3.3.	1	Lineární teorie viskoelasticity	9
	3.3.	2	Nelineární elasticita	10
	3.4	Mat	tematické modely tlumení	13
	3.4.	1	Viskózní tlumení	13
	3.4.	2	Hysterezní tlumení	18
	3.5	Exp	erimentální metody určování tlumicích parametrů	19
	3.5.	1	Určení útlumových charakteristik pomocí transientní odezvy systému	20
	3.5.	2	Určení útlumových charakteristik analýzou frekvenční odezvy systému	20
	3.5.	3	Určení útlumových charakteristik metodou hysterezní smyčky	22
4	Мо	delov	ání hybridních struktur s tlumicími vrstvami	25
	4.1	Ana	lytické metody	25
	4.2	Nur	nerické metody	30
5	Náv	rh a	ověření metodiky konstruování z kompozitních materiálů s integrovanými tlumicími	
vr	stvami	······		33
	5.1	Úvc		33
	5.2	For	nulace základních hypotéz, návrh metodiky	34
	5.3	Vali	dace metodiky	36
	5.3.	1	Hybridní struktura – ploché vzorky	37
	5.3.	2	Hybridní struktura – čtvercový profil I	45
	5.3.	3	Hybridní struktury – čtvercové profily II, III	48
	5.3.	4	Zhodnocení dynamických analýz	53
6	Apli	kace	metodiky	55
	6.1	Ada	ptace metodiky v optimalizačních cyklech	55
	6.1.	1	Optimalizace skladby plochého vzorku	56

	6.1.2	Optimalizace skladby čtvercového profilu	. 63
	6.1.3	Zhodnocení provedených optimalizací	. 67
(5.2 Ir	ndukce obecně platných konstrukčních doporučení	67
(5.3 A	plikace metodiky při návrhu hybridního kompozitního vřeteníku	. 69
7	Míra n	naplnění stanovených cílů disertační práce	71
8	Závěr.		. 73
9	Citova	ná literatura	77
10	Seznar	m literatury publikované autorem	81
11	Přílohy	y	. 85

Seznam obrázků

Obr. 1 – Prototyp aktivnino tiumicino systemu pro kabinu pilota	3
Obr. 2 – Testování lopatek s integrovanými viskoelastickými vrstvami	4
Obr. 3 – Kompozitní desky s integrovanými viskoelastickými vrstvami, testovací zařízení	4
Obr. 4 – Boční panel trupu letadla Boeing 787	5
Obr. 5 – Boční panel trupu letadla Boeing 787, detail spojení příčníku a vnějšího pláště	5
Obr. 6 – Navržený základ CNC hrotové brusky	5
Obr. 7 – Průřez složeným profilem	5
Obr. 8 – Skladba hybridní vyvrtávací tyče	6
Obr. 9 – Zertz technologie Specialized	6
Obr. 10 – Detail tlumicího členu – přední vidlice	6
Obr. 11 – Tlumicí potah	7
Obr. 12 – Tlumicí mezivrstva	7
Obr. 13 – Fázový posun mezi napětím a poměrnou deformací při harmonickém nam	áhání
u viskoelastických materiálů	8
Obr. 14 – Závislost mezi napětím a poměrnou deformací při harmonickém nam	áhání
u viskoelastických materiálů	8
Obr. 15 – Grafické znázornění hlavních protažení	10
Obr. 16 – Závislosti napětí-deformace v jednoosém tahu	12
Obr. 17 – Model jednoduchého tlumeného oscilátoru	13
Obr. 18 – Chování systému v závislosti na poměrném útlumu	15
Obr. 19 – Závislost výchylky na čase pro podtlumený harmonický pohyb	16
Obr. 20 – Podíl koeficientů α , β na celkovém poměrném útlumu	17
Obr. 21 – Hysterezní smyčka při harmonickém zatěžování viskoelastického materiálu	19
Obr. 22 – Rozsahy hodnot reálné složky E' a imaginární složky E" komplexního modulu pruz	žnosti
a činitele vnitřního tlumení $oldsymbol{\eta}$ u některých materiálů	19
Obr. 23 – Transientní odezva tlumeného systému	20
Obr. 24 – Frekvenční odezva systému s jedním stupněm volnosti	20
Obr. 25 – Metoda určení harmonické odezvové funkce	21
Obr. 26 – Hysterezní smyčka během jednoho zatěžovacího cyklu (lineární viskoelasticita)	23
Obr. 27 – Hybridní nosník pro RKU teorii	25
Obr. 28 – Geometrie a souřadný systém	27
Obr. 29 – Složená struktura s tlumicí povrchovou úpravou	28
Obr. 30 – Tlumení čtvercových desek pomocí krycích segmentů	29
Obr. 31 – Čtyřuzlový nosníkový element se dvěma pomocnými uzly	31
Obr. 32 – Vývojový diagram použitého M-skriptu	35
Obr. 33 – Postup validace metodiky	37
Obr. 34 – Geometrie vzorků, uspořádání experimentu	38
Obr. 35 – MKP model vzorku z pryže, okrajové podmínky	38
Obr. 36 – MKP model vzorku z kompozitu, okrajové podmínky	38

Obr. 37 – MKP model ULD vzorku, okrajové podmínky	38
Obr. 38 – MKP model CLD vzorku, okrajové podmínky	38
Obr. 39 – Viskoelastické chování pryže, Mullinsův efekt	39
Obr. 40 – Geometrie hybridního kompozitního profilu, uspořádání experimentu	45
Obr. 41 – MKP model čtvercového profilu I, okrajové podmínky	45
Obr. 42 – Detail vnějšího povrchu hybridního čtvercového profilu	46
Obr. 43 – Upnutí čtvercového profilu I	46
Obr. 44 – Přípravky pro zvýšení tuhosti upnutí vzorků	49
Obr. 45 – MKP model čtvercového profilu II a III, okrajové podmínky pro analýzu jednostrar	۱ně
vetknutého profilu	.49
Obr. 46 – MKP model čtvercového profilu II a III, počáteční okrajové podmínky pro analýzu volné	٤ho
profilu	51
Obr. 47 – Vlastní frekvence a tvary kmitu čtvercového profilu III získané modální analýzou MKP	54
Obr. 48 – Záznam frekvenční odezvové funkce čtvercového profilu III	54
Obr. 49 – Schéma optimalizačního cyklu	55
Obr. 50 – Sekvence jednotlivých MKP simulací	56
Obr. 51 – Geometrie optimalizovaného plochého vzorku	56
Obr. 52 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn	ým
útlumem - detail	58
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn	ým
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem	ým 58
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick	ým 58 cou
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail	ým 58 cou 59
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick	ým 58 cou 59 cou
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí.	ým 58 cou 59 cou 59
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí Obr. 56 – Řez analyzovaným nosníkem	ým 58 cou 59 cou 59 60
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí Obr. 56 – Řez analyzovaným nosníkem Obr. 57 – Příčná zkosení tlumicích vrstev	ým 58 cou 59 cou 59 60 61
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí Obr. 56 – Řez analyzovaným nosníkem Obr. 57 – Příčná zkosení tlumicích vrstev Obr. 58 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy	ým 58 cou 59 cou 59 60 61 62
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí Obr. 56 – Řez analyzovaným nosníkem Obr. 57 – Příčná zkosení tlumicích vrstev Obr. 58 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy	ým 58 (ou 59 (ou 59 60 61 62 62
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí Obr. 56 – Řez analyzovaným nosníkem Obr. 57 – Příčná zkosení tlumicích vrstev Obr. 58 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 59 – Závislost poměrného útlumu nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 60 – Geometrie optimalizovaného čtvercového profilu	ým 58 cou 59 cou 59 60 61 62 62 62 63
 Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail. Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí. Obr. 56 – Řez analyzovaným nosníkem Obr. 57 – Příčná zkosení tlumicích vrstev. Obr. 58 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 59 – Závislost poměrného útlumu nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 60 – Geometrie optimalizovaného čtvercového profilu Obr. 61 – Analyzované návrhy skladby čtvercového profilu, vztah mezi vlastní frekvencí a poměrn 	ým 58 (ou 59 (ou 59 60 61 62 62 63 ým
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí Obr. 56 – Řez analyzovaným nosníkem Obr. 57 – Příčná zkosení tlumicích vrstev Obr. 58 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 59 – Závislost poměrného útlumu nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 60 – Geometrie optimalizovaného čtvercového profilu Obr. 61 – Analyzované návrhy skladby čtvercového profilu, vztah mezi vlastní frekvencí a poměrn útlumem	ým 58 (00 59 (00 59 60 61 62 62 63 63 ým 64
 Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail. Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí. Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí. Obr. 56 – Řez analyzovaným nosníkem Obr. 57 – Příčná zkosení tlumicích vrstev. Obr. 58 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 59 – Závislost poměrného útlumu nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 60 – Geometrie optimalizovaného čtvercového profilu, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 62 – Analyzované návrhy skladby čtvercového profilu, vztah mezi vlastní frekvencí a statick 	ým 58 (0u 59 (0u 59 60 61 62 63 (62 63 ým 64 (0u
 Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí Obr. 56 – Řez analyzovaným nosníkem Obr. 57 – Příčná zkosení tlumicích vrstev	ým 58 (00 59 60 61 62 62 63 ým 64 (00 64
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí Obr. 56 – Řez analyzovaným nosníkem Obr. 57 – Příčná zkosení tlumicích vrstev Obr. 58 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 59 – Závislost poměrného útlumu nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 60 – Geometrie optimalizovaného čtvercového profilu Obr. 61 – Analyzované návrhy skladby čtvercového profilu, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 62 – Analyzované návrhy skladby čtvercového profilu, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail	ým 58 000 59 60 61 62 62 63 ým 64 00 64 64
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí Obr. 56 – Řez analyzovaným nosníkem Obr. 57 – Příčná zkosení tlumicích vrstev Obr. 58 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 59 – Závislost poměrného útlumu nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 61 – Analyzované návrhy skladby čtvercového profilu Obr. 62 – Analyzované návrhy skladby čtvercového profilu, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 63 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 63 – Závislost poměrného útlumu nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 64 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní frekvencí a statick ohybovou tuhostí – detail	ým 58 (00 59 60 61 62 63 62 63 ým 64 64 66 67
Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 55 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statick ohybovou tuhostí Obr. 56 – Řez analyzovaným nosníkem Obr. 57 – Příčná zkosení tlumicích vrstev Obr. 58 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 59 – Závislost poměrného útlumu nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 60 – Geometrie optimalizovaného čtvercového profilu Obr. 61 – Analyzované návrhy skladby čtvercového profilu, vztah mezi vlastní frekvencí a poměrn útlumem Obr. 62 – Analyzované návrhy skladby čtvercového profilu, vztah mezi vlastní frekvencí a statick ohybovou tuhostí – detail Obr. 63 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 63 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní rekvencí a statick ohybovou tuhostí – detail Obr. 63 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 64 – Závislost poměrného útlumu nosníku na tloušťce vnitřní kompozitní vrstvy Obr. 65 – Příklad provedení kompozitního vřeteníku	ým 58 (0u 59 60 61 62 63 ým 64 64 64 66 67 69

Seznam tabulek

Tab. 1 – Použití viskoelastických tlumicích vrstev v automobilovém průmyslu4
Tab. 2 – Seznam běžných viskoelastických polymerů užívaných pro pasivní tlumení
Tab. 3 – Jednoduché pružinové a tlumičové modely9
Tab. 4 – Velikosti poměrných útlumů vybraných konstrukčních materiálů
Tab. 5 – Hodnoty korekčního činitele C_n pro vybrané okrajové podmínky
Tab. 6 – Jednotlivé fáze výzkumu hybridních kompozitních struktur
Tab. 7 – Mechanicko-fyzikální vlastnosti složek uhlíkové laminy hybridního pásku
Tab. 8 – Mechanicko-fyzikální vlastnosti materiálů hybridních pásků
Tab. 9 – Výsledky experimentu a MKP simulace pro vzorek z pryže40
Tab. 10 – Výsledky experimentu a MKP simulace pro vzorek z korkové kompozice41
Tab. 11 – Výsledky experimentu a MKP simulace pro vzorek z kompozitu
Tab. 12 – Výsledky experimentu a MKP simulace pro kompozitní ULD vzorek, 1/3 pryže42
Tab. 13 – Výsledky experimentu a MKP simulace pro kompozitní ULD vzorek, 2/3 pryže42
Tab. 14 – Výsledky experimentu a MKP simulace pro kompozitní ULD vzorek, 3/3 pryže43
Tab. 15 – Výsledky experimentu a MKP simulace pro kompozitní CLD vzorek s pryží,
skladba [c-p-c]43
Tab. 16 – Výsledky experimentu a MKP simulace pro kompozitní CLD vzorek s pryží,
skladba [c-p-c-p-c]44
Tab. 17 – Mechanicko-fyzikální vlastnosti uhlíkových vláken čtvercového profilu I
Tab. 18 – Mechanicko-fyzikální vlastnosti uhlíkové laminy čtvercového profilu I
Tab. 19 – Výsledky experimentu a MKP simulací pro CLD čtvercový profil I47
Tab. 20 – Mechanicko-fyzikální vlastnosti uhlíkových vláken čtvercového profilu II a III
Tab. 21 – Mechanicko-fyzikální vlastnosti uhlíkové laminy čtvercového profilu II a III
Tab. 22 – Výsledky experimentu (transientní odezva systému) a MKP simulací pro CLD čtvercový
profil II
Tab. 23 – Výsledky experimentu (transientní odezva systému) a MKP simulací pro CLD čtvercový
profil III
Tab. 24 – Výsledky experimentu (frekvenční odezva systému) a MKP simulací pro CLD čtvercový
profil II
Tab. 25 – Výsledky experimentu (frekvenční odezva systému) a MKP simulací pro CLD čtvercový
profil III
Tab. 26 – Skladba vybraných analyzovaných návrhů pro plochý vzorek
Tab. 27 – Skladba vybraných analyzovaných návrhů pro čtvercový profil
Tab. 28 – Skladby dodatečně analyzovaných profilů66

Seznam použitého značení

symbol	jednotky	název
b	$rad \cdot s^{-1}$	konstanta doznívání
С	$kg \cdot s^{-1}$	konstanta tlumení
[C]	$kg \cdot s^{-1}$	matice tlumení
E^*	Ра	komplexní modul pružnosti v tahu
E_{1}, E_{2}, E_{3}	Ра	moduly pružnosti v hlavních směrech anizotropie
E_k	J	kinetická energie
E_p	J	potenciální energie
f	Ν	vektor buzení
F	Ν	vnější síla
<i>G</i> *	Ра	komplexní modul pružnosti ve smyku
G_{23}, G_{13}, G_{12}	Ра	moduly pružnosti ve smyku v rovinách rovnoběžných s příslušnou rovinou symetrie elastických vlastností x_2x_3 , x_1x_3 a x_1x_2
h	m	tloušťka laminátu / vrstvy
h_k	m	tloušťka k-té vrstvy laminátu
I_1, I_2, I_3		invarianty hlavních protažení
Ι		jednotkový tensor
k	$kg \cdot s^{-1}$	konstanta tuhosti
[K]	$kg \cdot s^{-1}$	matice tuhosti
l	m	délka
m	kg	hmotnost
[M]	kg	matice hmotnosti
q	m	zobecněná souřadnice, výchylka systému
q	m	vektor zobecněných souřadnic
t	S	čas
Т	S	doba kmitu
W	J	deformační energie
α		konstanta proporcionálního tlumení spojená s maticí hmotnosti
β		konstanta proporcionálního tlumení spojená s maticí tuhosti
δ		logaritmický dekrement
\mathcal{E}_{ij}		složky deformace
3		tensor deformace
ζ		poměrný útlum
η		činitel vnitřního tlumení
$\lambda_1, \lambda_2, \lambda_3$		hlavní protažení
v_{12}, v_{13}, v_{23}		Poissonova čísla, u kterých první index odpovídá směru působícího normálového napětí a druhý směru, při němž vzniká příslušná deformace v příčném směru
ρ	$kg \cdot m^{-3}$	hustota
σ_{ij}	Pa	složky napětí
σ	Ра	tensor napětí
ω	$rad \cdot s^{-1}$	vlastní kruhová frekvence tlumené soustavy
ω_0	$rad \cdot s^{-1}$	vlastní kruhová frekvence netlumené soustavy

1 Úvod

Člověkem zhotovené kompozitní materiály prošly v uplynulém půlstoletí značným vývojem. Jejich nasazení v oblasti automobilového, leteckého, kosmického a sportovního průmyslu se dnes již stalo téměř standardem. Ačkoliv většina kompozitních materiálů poskytuje výborný poměr tuhosti vůči hmotnosti a výrazně lepší tlumicí schopnosti než běžné konstrukční materiály (ocel, litina), není uplatnění kompozitů v oblasti konstrukce výrobních strojů a těžké techniky příliš běžné. V době, kdy vývoj cen surových materiálů má spíše klesající charakter, je tento konzervativní přístup způsoben většinou nedostatkem informací ohledně těchto netradičních materiálů, především absencí jednoduchých konstrukčních doporučení. Je však pravdou, že návrh konstrukce z kompozitních materiálů je velice specifický. Je nutné učinit nejen správnou volbu materiálů tvořících kompozit pro konkrétní aplikaci, ale i zohlednit formu a skladbu vyztužující složky, jež přímo ovlivňuje míru anizotropie celé kompozitní struktury. Dále je nutné při návrhu uvažovat i technologii výroby daného dílce a respektovat z toho plynoucí omezení. Vzhledem k množství faktorů podílejících se na výsledných vlastnostech se návrh konstrukce mnohdy neobejde bez použití progresivních výpočtových metod, jako je např. metoda konečných prvků (MKP) a různé typy optimalizačních metod. Pro získání relevantních výsledků jsou klíčové zejména vstupní parametry úlohy (geometrie, okrajové podmínky, materiálová data, orientace vláken v lamině, atd.).

Jednou z atraktivních vlastností kompozitních materiálů je mj. možnost dosažení tzv. *synergického efektu*¹, kdy lze přímo do základní struktury tvořené vyztužující fází a matricí začlenit ještě další, zcela odlišný materiál, jehož charakteristické vlastnosti se pak promítnou i do vzniklé hybridní struktury. Toho lze s úspěchem využít i při řešení problematiky tlumení nežádoucích vibrací v konstrukcích. V principu existují dva základní přístupy k potlačení nežádoucího chvění. *Aktivní tlumení* neboli *aktivní řídicí systémy*, jejichž podstatou je neustálý monitoring stavu konstrukce. Při jakékoliv nechtěné odchylce systému jsou aplikována příslušná opatření, vedoucí k návratu do žádaného stavu. Tento způsob redukce vibrací je však velice nákladný a nese s sebou i vysoké nároky na řízení komplexního systému senzorů, aktuátorů, napájecího zdroje a kompenzátoru. *Pasivní tlumicí metody* naopak usilují o zlepšení původního tlumení struktury pomocí jednoduchých modifikací konstrukčního řešení, které by vedly k nárůstu přeměny kinetické energie na teplo, tzv. *disipace*. Pasivní tlumení je využitelné v mnoha aplikacích, a to především díky své jednoduchosti, minimálním nákladům, nízké hmotnosti a vlastní stabilitě. Často se obě metody tlumení vzájemně kombinují.

V případě vláknových kompozitů s polymerní matricí z dosud provedených studií vyplývá, že existuje mnoho parametrů, které přímo ovlivňují dosažení zdokonalených tlumicích charakteristik (Finegan, a další, 1999). Na makromechanické úrovni se například jedná o vlastnosti základních vrstev a jejich orientace, interlaminární jevy, efekt "sdruženého tlumení vibrací" (působením matice vazební tuhosti dochází např. u symetrických laminátů ke sdruženému tlumení pro ohybový a torzní tvar kmitu), vliv povrchových potahů a povlaků, atd. Na mikromechanické úrovni byl výzkum zaměřen na orientaci

¹ Efekt společného působení více prvků, který je obvykle větší nebo kvalitativně lepší než prostý součet efektů ze samostatného působení jednotlivých prvků

vláken, poměr délky vůči průměru vlákna, proložení vláken, účinky rozhraní vlákno/matrice, povlaky vláken, vlastnosti matrice a výztuže a vliv křížení vláken.

1.1 Cíl práce

Hlavním cílem disertační práce je návrh a ověření metodiky konstruování z kompozitních materiálů s integrovanými pasivními tlumicími prvky s důrazem na její možnou aplikaci v oboru strojírenství. Práce bude založena na využití principů virtuálního prototypování, podpořených mnoha analytickými i experimentálními přístupy.

Vyvstávající dílčí cíle se vztahují zejména k výběru vhodného numerického modelu hybridních struktur s přihlédnutím k matematickému popisu tlumení, nalezení jednoduché a dostatečně přesné metody pro určení výchozích tlumicích parametrů a jejich zahrnutí do výpočtů metodou konečných prvků. Dále bude využito optimalizačních nástrojů integrovaných v komerčních softwarových produktech (např. optiSLang) a analyzován rozsáhlý soubor variant řešení. Výsledky optimalizace budou shrnuty do podoby obecně platných konstrukčních doporučení, která by umožnila navrhovat díly z hybridních kompozitů i bez potřeby uživatelsky náročných výpočetních programů. Část práce bude věnována možnosti zefektivnění souvisejících výpočtových prací.

2 Aplikace tlumicích elementů v konstrukcích, motivace

Myšlenka dosažení lepších tlumicích vlastností prostřednictvím speciálních vrstev integrovaných do původní nosné struktury není nová – první práce na toto téma byly publikovány již v 50. letech minulého století (Ross, a další, 1959). Praktické aplikace tlumicích vrstev se však stále potýkají s řadou úskalí. U aktivních tlumicích systémů se jedná zejména o vyšší náklady spojené s řízením soustavy a dodávkou energií pro aktuátory. V případě pasivních tlumicích vrstev je výrazněji ovlivněna integrita základní struktury, čímž dochází k oslabení nosné kapacity konstrukce. Další nevýhodou je i nárůst hmotnosti. Rovněž jsou kladeny vyšší nároky na výrobní technologie. Nezanedbatelná je i problematika materiálové kompatibility, provedení dokonalého spojení mezi zcela odlišnými materiály, apod. V současné době konstruktér většinou taktéž postrádá ucelenou znalostní bázi, s jejíž pomocí by byl schopen jednoduše navrhnout konstrukci s modifikovanými tlumicími vlastnostmi dle potřebných parametrů.

Využívání integrovaných tlumicích elementů si nejvíce osvojilo odvětví dopravní techniky, kde je sledováno tlumení nežádoucích vibrací spojených se vznikem hluku. Příkladem může být systém aktivního tlumení kabiny pilota helikoptéry – obr. 1, který byl prezentován v roce 2001 (Carazo, a další, 2001). Prototyp systému byl úspěšně testován na rozsahu frekvencí 10 až 500Hz, které se obvykle vyskytují u leteckých strojů. Zároveň představuje první aplikaci piezoelektrického měniče pro napájení piezoelektrického aktuátoru, a je tedy vhodný i pro stroje, jejichž provoz je závislý na kapacitě baterií.

Obr. 1 – Prototyp aktivního tlumicího systému pro kabinu pilota (Carazo, a další, 2001)

Častým zdrojem vibrací u leteckých strojů bývají vrtulové listy. Byla prezentována řada studií, jako například (Appuhn, 2002). Autor se zabývá integrací viskoelastických vrstev do kompozitních lopatek ventilátoru – obr. 2, aniž by byla snížena jejich tuhost. Podobnou problematikou se zabývá i práce (Mehmed, 1996). Na základě experimentu bylo potvrzeno, že působením odstředivých sil dochází k nárůstu ohybové tuhosti lopatek (obr. 3) a souvisejících vlastních frekvencí, zatímco poměrný útlum klesá. Tento jev je vysvětlen tím, že tak jak se zvyšuje ohybová tuhost lopatky při rotaci, klesá deformační energie v tlumicí vrstvě a tím pádem i poměrný útlum. Během výzkumu byly zároveň odhaleny některé konstrukční nedostatky.

Nejrozsáhlejší použití pasivních tlumicích vrstev je v oboru letectví realizováno u panelů tvořících trup letadla. Dominantním kontinuálním zdrojem hluku je totiž kmitání bočních panelů, jež je způsobeno

turbulentní mezní vrstvou vzduchu. Bylo zjištěno, že hladina hluku v kabině vzrůstá až o 2 dB každých 1500 výškových metrů (Rao, 2002). Konstrukční provedení spojení mezi příčníkem a vnějším potahem je řešeno - viz obr. 5

Obr. 2 – Testování lopatek s integrovanými viskoelastickými vrstvami (Appuhn, 2002)

Obr. 3 – Kompozitní desky s integrovanými viskoelastickými vrstvami, testovací zařízení (Mehmed, 1996)

Rozšířená je aplikace struktur s integrovanými tlumicími vrstvami také v oblasti automobilového průmyslu. Některé klasické případy použití jsou uvedeny v tab. 1

Tab. 1 – Použití viskoelastických tlumicích vrstev v automobilovém průmyslu (Rao, 2002)

Motor a převody	Karoserie	Brzdy a příslušenství
Olejová vana	Výplně přední příčky	Izolace brzd
Kryty ventilů	Dveřní výplně	Kryty brzd
Kryty motorů	Panely podlahy	Ramena řízení
Kryty zdvihacích tyček	Podběhy kol	Zámky dveří
Kryty převodových skříní	Přepážky zavazadlového prostoru	Motorky pohonu oken
Kryty rozvodových řemenů	Střešní výplně	Uložení výfukové soustavy

Obr. 4 – Boční panel trupu letadla Boeing 787

Obr. 5 – Boční panel trupu letadla Boeing 787, detail spojení příčníku a vnějšího pláště

Ačkoliv je aplikace pasivních tlumicích vrstev doménou výše uvedené dopravní techniky, objevilo se i několik zajímavých studií z oblasti výrobních strojů. Příkladem může být práce (Marsh, a další, 1996), která zkoumá dynamické charakteristiky konstrukce základu CNC hrotové brusky (obr. 6). Základ stroje byl tvořen ze složených ocelových profilů vyplněných viskoelastickým materiálem – obr. 7.

Obr. 6 – Navržený základ CNC hrotové brusky

Obr. 7 – Průřez složeným profilem

Smyková deformace viskoelastické vrstvy probíhá na rozhraní vložených "smykových" trubek a epoxidovou výplní. Vnitřkem vložených profilů je rovněž umožněna cirkulace chladícího média, čímž je dosaženo vyšší teplotní stability konstrukce.

Principu složené struktury s integrovaným tlumicím materiálem je využito ve studii kompozitní vyvrtávací tyče s tlumicím jádrem (Lee, a další, 2003). V práci byl analyzován vliv různých druhů materiálů tlumicího jádra na vlastní frekvenci a poměrný útlum tyče – obr. 8.

Obr. 8 – Skladba hybridní vyvrtávací tyče (Lee, a další, 2003)

Pasivní tlumení může proniknout i do oblasti elektrotechniky, jak dokládá např. americký patent číslo US 6 697 213 B2 (Lofstrom, a další, 2004) věnovaný problematice tlumení vibrací pevných disků osobních počítačů.

Poslední uvedenou ukázkou využití pasivních tlumicích členů integrovaných do nosné konstrukce mohou být silniční cyklistické rámy amerického výrobce Specialized, které jsou na vybraných místech osazeny tlumicími členy (obr. 9 zvýrazněno červeně a obr. 10 v detailu). Tuto technologií výrobce nazývá *Zertz* a chrání ji několika patenty. Měření prováděné metodou analýzy frekvenční odezvy potvrzují zvýšené tlumicí schopnosti těchto rámů, aniž by byla ovlivněna torzní tuhost rámů (Schroeder, a další, 2005).

Obr. 9 - Zertz technologie Specialized

Obr. 10 – Detail tlumicího členu – přední vidlice

3 Definice základních pojmů

3.1 Tlumicí vrstvy

Jednou z možností pro dosažení lepších tlumicích charakteristik u konstrukcí je aplikace tlumicích vrstev, nejčastěji z viskoelastických materiálů. Tyto materiály mají schopnost konverze kinetické energie na tepelnou prostřednictvím mechanické deformace. Podle umístění tlumicích vrstev jsou rozeznávány: 1) *tlumicí potahy* (unconstrained layer damping treatment, ULD), kdy je tlumicí vrstva aplikována na povrch existující konstrukce; 2) *tlumicí mezivrstvy*, (constrained layer damping treatment, CLD), kdy je jedna či více tlumicích vrstev vloženo mezi vrstvy o vysoké tahové tuhosti. V případě tlumicích potahů pak při ohýbání konstrukce dochází k prodlužování a zkracování tlumicí vrstvy (obr. 11) míra disipované energie je úměrná osové deformaci. U tlumicích mezivrstev se na tlumení podílí smykové napětí ve viskoelastické vrstvě (obr. 12) vyvolané rozdílnou deformací okolních vrstev struktury.

Obr. 11 – Tlumicí potah (Balkema, 1994)

Obr. 12 – Tlumicí mezivrstva (Balkema, 1994)

3.2 Obecná charakteristika materiálů s viskoelastickým chováním

Materiál s viskoelastickým chováním v sobě sdružuje jak vlastnosti čistě elastického, tak i viskózního materiálu, což znamená, že část vložené mechanické energie při harmonickém namáhání se využije při následném odlehčení a zbytek energie se přemění na tepelnou energii, disipuje. Mezi napětím a deformací je určitý fázový posun, ležícím v intervalu $\delta \in (0, \pi/2)$ – obr. 13. Množství disipované

energie je úměrné ploše hysterezní křivky – obr. 14, udávající závislost mezi napětím a poměrnou deformací v průběhu jednoho cyklu při harmonickém namáhání.

Obr. 13 – Fázový posun mezi napětím a poměrnou deformací při harmonickém namáhání u viskoelastických materiálů

Obr. 14 – Závislost mezi napětím a poměrnou deformací při harmonickém namáhání u viskoelastických materiálů

Většina polymerů vykazuje viskoelastické chování. Některé typické polymerní materiály užívané jako tlumicí prvky jsou uvedeny v tab. 2.

rab. 2 Sezham bezhych viskoelastickych polymeru				
užívaných pro pasivní tlumení (Jones, 2001)				
1	Akrylátový kaučuk	11	Polyetylen	
2	Butadienový kaučuk	12	Polystyren	
3	Butyl kaučuk	13	Polyvinylchlorid	
4	Chloroprénový kaučuk	14	Polymetylmetakrylát	
5	Chlorované polyetyleny	15	Polybutadien	
6	Etylen-Propylen-Dien	16	Polypropylen	
7	Fluorosilikonový kaučuk	17	Polyisobutylen	
8	Fluorouhlíkový kaučuk	18	Polyuretan	
9	Nitrilový kaučuk	19	Polyvinylacetát	
10	Přírodní kaučuk	20	Polyisopren	

Tab. 2 – Seznam běžných viskoelastických polymerů	
užívaných pro pasivní tlumení (Jones, 2001)	

Tuhost a tlumicí vlastnosti těchto materiálů se pohybují v širokém spektru v závislosti na chemickém složení daného polymeru a jeho zpracování (stupeň zesíťování, typ a množství plniv, atd.). Všechny tyto vlastnosti jsou silně teplotně a časově závislé, chování těchto materiálů je nelineární.

3.3 Matematické modely viskoelastických materiálů, konstitutivní rovnice

Pro popis komplikovaného chování viskoelastických materiálů je používáno mnoho matematických modelů. Tato kapitola je věnována výčtu těch nejběžněji používaných, které často bývají implementovány do MKP výpočetních programů. První úrovní při modelování těchto materiálů je aplikace lineární teorie viskoelasticity, jejíž platnost je omezena jen pro určitou míru deformace a rozsah frekvence zatěžování. Širší spektrum zatěžování lépe postihuje nelineární teorie elasticity.

3.3.1 Lineární teorie viskoelasticity

Většina polymerních materiálů vykazuje lineární chování v mnohem širší oblasti, než je tomu u kovů, a proto bývá lineární teorie u polymerů uplatňována častěji (de Bever, 1992).

V počátcích vývoje teorie viskoelasticity byl materiál modelován jako systém pružin a tlumičů v různých kombinacích paralelních a sériových zapojení. Některé typy těchto jednorozměrných modelů a jejich konstitutivní rovnice jsou uvedeny v tab. 3. V uvedených rovnicích označuje σ napětí, E je modul pružnosti a η je viskozita.

Model	Schematické znázornění	Konstitutivní rovnice
Hookeův (elastický)	~~~~~	$\sigma = E\varepsilon$
Newtonův (viskózní)		$\sigma = \eta \dot{\varepsilon}$
Maxwellův (viskoelastický)		$\frac{\sigma}{\eta} + \frac{\dot{\sigma}}{E} = \dot{\varepsilon}$
Voightův (viskoelastický)	-[$\sigma = E\varepsilon + \eta \dot{\varepsilon}$
Standardní lineární těleso	-w[$\left(1 + \frac{E_1}{E_2}\right)\sigma + \frac{\eta}{E_2}\dot{\sigma} = E_1\varepsilon$
Pointing-Thomson		$\frac{\sigma(\eta + E_1)}{\eta} = \frac{(E_1 + E_2)\eta\dot{\varepsilon} + E_1E_2\varepsilon}{\eta}$

Tab. 3 – Jednoduché pružinové a tlumičové modely

Obecnější materiálové modely lze získat kombinací libovolného počtu elementů. Tyto jsou pak nazývány kanonickými modely.

Lineární infinitesimální teorii viskoelasticity pro trojrozměrnou odezvu materiálu publikoval Lockett (Lockett, 1972). Ta předpokládá, že složky napětí σ_{ij} jsou závislé na složkách deformace ε_{ij} , kterým je vyjmutý elementární objem podroben v čase $\tau = (-\infty, t)$, což lze lineární teorií zapsat:

$$\sigma_{ij}(t) = \int_{-\infty}^{t} c_{ijkl}(t-\tau)\dot{\varepsilon}_{kl}d\tau,$$
(3.1)

kde c_{ijkl} jsou funkce relaxace napětí. Ty je nutno určit experimentálně nebo na základě fyzikálních vlastností materiálu.

Rovnici (3.1) lze pro izotropní nestlačitelné materiály zjednodušit:

$$\boldsymbol{\sigma}_{ij} = -p\mathbf{I} + 2\int_{-\infty}^{t} \mu(t-\tau)\dot{\boldsymbol{\varepsilon}}(\tau)d\tau, \qquad (3.2)$$

kde μ je funkce relaxace napětí, p je tlak, σ je tensor napětí, **I** je jednotkový tensor a ε je tensor lineární deformace, definován jako:

$$\varepsilon = \frac{1}{2} \left(\overrightarrow{\nabla_0} \vec{u} + \left(\overrightarrow{\nabla_0} \vec{u} \right)^c \right), \tag{3.3}$$

kde \vec{u} označuje vektor posunutí.

3.3.2 Nelineární elasticita

V této kapitole jsou uvedeny některé základní nelineárně elastické materiálové modely, které jsou charakterizovány různými tvary jejich funkcemi *hustoty deformační energie W*. Použitím těchto funkcí vzniká předpoklad, že materiál je izotropní a elastický. Derivací deformační energie podle deformace lze obdržet napětí.

Funkce deformační energie bývají obvykle vyjádřeny pomocí tzv. *invariantů hlavních protažení*. Tyto tři invarianty jsou popsány jako:

$$I_{1} = \lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2},$$

$$I_{2} = \lambda_{1}^{2}\lambda_{2}^{2} + \lambda_{2}^{2}\lambda_{3}^{2} + \lambda_{3}^{2}\lambda_{1}^{2},$$

$$I_{3} = \lambda_{1}^{2}\lambda_{2}^{2}\lambda_{3}^{2},$$
(3.4)

kde *hlavní protažení* λ (obr. 15) jsou definována:

$$\lambda_i = \left(\frac{L_i + \Delta L_i}{L_i}\right) = 1 + \varepsilon_i, \qquad i = 1, 2, 3, \tag{3.5}$$

přičemž *poměrné prodloužení ɛ* je dáno:

$$\varepsilon_i = \frac{\Delta L_i}{L_i}.$$
(3.6)

V případě dokonale nestlačitelných materiálů je třetí invariant $I_3 = 1$.

Obr. 15 – Grafické znázornění hlavních protažení

Neo-Hookeův model

Tento nejjednodušší model využívá předpokladů statistické mechaniky a je založen na molekulární stavbě materiálu. Jeho deformační energie je vyjádřena ve tvaru:

$$W = \frac{G}{2}(I_1 - 3), \tag{3.7}$$

kde

$$G = NkT = \frac{\rho RT}{M_c},$$
(3.8)

přičemž T je absolutní teplota, N je počet molekulárních řetězců na jednotku objemu, M_c je střední molekulární hmotnost řetězce, ρ je hustota, k označuje Boltzmannovu konstantu a R je plynová konstanta (de Bever, 1992).

Tento model uvažuje konstantní modul pružnosti ve smyku a poskytuje dobrou korelaci s výsledky experimentů až do 40% deformace při jednoosém tahu a až 90% deformace v jednoduchém smyku.

Zobecněný Rivlinův model (polynomiální hyperelastický model)

Tento model se řadí mezi modely založené na fenomenologické teorii. Deformační energie je pro nestlačitelný materiál vyjádřena jako:

$$W = \sum_{i,j=0}^{\infty} C_{ijk} (I_1 - 3)^i (I_2 - 3)^j , \qquad (3.9)$$

kde *C_{ii}* jsou materiálové konstanty (de Bever, 1992).

V závislosti na stupni rozvoje polynomu vyjadřujícím hustotu deformační energie jsou odvozeny některé další materiálové modely, jako např.: Mooneyův model, trojčlenný Mooney-Rivlinův model (*Three term Mooney-Rivlin*), Signioriniho model, model invariantu třetího řádu (*Third Order Invariant*), Yeohův model, model deformace třetího řádu (*Third Order Deformation*) neboli James-Green-Simpsonův model.

Všechny zmíněné materiálové modely uvažují nekonstantní modul pružnosti ve smyku. Literatura však upozorňuje, že je třeba zohlednit vliv členů vyšších řádů, které mohou vést k výstupům neodpovídajícím naměřeným datům.

Arruda-Boyce model

Tento model je výjimečný tím, že na základě naměřených dat z tahové zkoušky je schopen poskytnout dostatečnou přesnost pro různé typy deformací všech úrovní. Model je inspirován fyzikálními vlastnostmi pryže s uhlíkovým plnivem a je někdy také označován jako 8-řetězcový model, neboť byl odvozen idealizací polymeru na úroveň osmi elastických vláken uvnitř krychle. Materiál je uvažován jako nestlačitelný.

Hustota deformační energie je pak vyjádřena vztahem:

$$W = C_1 \left[\frac{1}{2} (I_1 - 3) + \frac{1}{20N} (I_1^2 - 9) + \frac{11}{1050N^2} (I_1^3 - 27) + \frac{19}{7000N^3} (I_1^4 - 81) + \frac{519}{673750N^4} (I_1^5 - 243) \right],$$
(3.10)

kde C_1 je materiálová konstanta a N vyjadřuje počet řetězců v reprezentativním elementárním objemu (MSC Software Corp., 2010).

Ogdenův model

Ogden navrhl vyjádření deformační energie jako oddělené funkce hlavních protažení. Pro nestlačitelný materiál má funkce deformační energie tvar:

$$W = \sum_{n=1}^{N} \frac{\mu_n}{\alpha_n} \left(\lambda_1^{\alpha_n} + \lambda_2^{\alpha_n} + \lambda_3^{\alpha_n} - 3 \right), \qquad (3.11)$$

kde N, μ_n , α_n jsou materiálové konstanty (MSC Software Corp., 2010).

Lze dokázat, že Neo-Hookeův a Mooney-Rivlinův model může být odvozen jako speciální případ Ogdenovo modelu. Ogdenův model předpokládá nekonstantní modul pružnosti ve smyku a poskytuje dobrou shodu s výsledky jednoduché tahové zkoušky až do deformace 700%.

Porovnání průběhu závislosti napětí-deformace pro některé z uvedených materiálových modelů je znázorněno na obr. 16.

Obr. 16 – Závislosti napětí-deformace v jednoosém tahu

3.4 Matematické modely tlumení

Jak již bylo zmíněno, tlumení kmitajících soustav je založeno na disipace energie. V tomto kontextu je termín *disipace* užíván pro přeměnu energie z jedné její formy do druhé. Druh energie, do které se transformuje vložená mechanická energie, je závislá na typu systému a fyzikálních mechanismech, jež způsobují disipaci. U většiny systémů je značná část energie přeměněna na teplo. Fyzikální mechanismy podílející se na tlumení struktur jsou velice komplikované procesy a jejich podstata zatím stále není plně pochopena. Proto jsou jakákoliv matematická vyjádření mechanismu tlumení kmitajících soustav pouhým zobecněním a aproximací skutečného fyzikálního jevu.

Literatura uvádí několik typů modelů tlumení – viskózní, Coulombovo a hysterezní modely tlumení. Podle typu soustav lze tlumení rozdělit na tři případy:

- a) tlumení soustav s jedním stupněm volnosti,
- b) tlumení spojitých systémů,
- c) tlumení soustav s více stupni volnosti.

Následující text bude omezen pouze na soustavy s jedním stupněm volnosti, neboť je názorný a lze na něm demonstrovat základní vlastnosti kmitavých pohybů. V oblasti strojírenství se objevuje řada částí strojů (vrtací tyče, vřeteníky, pinoly,...), které lze převést na problematiku jednostranně vetknutého nosníku. Matematický popis výchylky volného konce takového nosníku v rovině lze zjednodušeně vysvětlit právě na příkladu soustavy s jedním stupněm volnosti.

3.4.1 Viskózní tlumení

Při sestavování matematického modelu kmitání lineární soustavy s jedním stupněm volnosti (Obr. 17) lze vyjít z Lagrangeových rovnic druhého druhu pro zobecněnou souřadnici $q_i(t)$ ve tvaru:

$$\frac{d}{dt}\left(\frac{\partial E_k}{\partial \dot{q}}\right) - \frac{\partial E_k}{\partial q} = Q(q, \dot{q}, t), \qquad (3.12)$$

kde E_k je kinetická energie, q je zobecněná souřadnice a t je čas (Zeman, a další, 2004).

Obr. 17 – Model jednoduchého tlumeného oscilátoru

Kinetická energie je kvadratickou funkcí zobecněné rychlosti:

$$E_k = E_{k0} + a\dot{q} + \frac{1}{2}m\dot{q}^2 , \qquad (3.13)$$

kde E_{k0} , *a* jsou konstanty a *m* je zobecněná hmotnost soustavy. Zobecněná síla $Q(a, \dot{a}, t)$ lze vyjádřit ve tvaru součtu tří sil:

$$Q(q,q,t)$$
 ize vyjaunit ve tvaru součtu tri sii:

$$Q = Q^{P}(q) + Q^{D}(\dot{q}) + F(t), \qquad (3.14)$$

kde F(t)je zobecněná budicí síla. Zobecněnou konzervativní (potenciální) sílu Q^P lze odvodit z potenciální energie $E_p(q)$ závislé jen na zobecněných souřadnicích:

$$Q^{P}(q) = -\frac{\partial E_{P}}{\partial q}.$$
(3.15)

Zobecněnou tlumicí (disipační) sílu $Q^{D}(\dot{q})$ lze vyjádřit z tzv. *Rayleighovy disipační funkce* $R(\dot{q})$ závislé jen na zobecněné rychlosti:

$$Q^{D}(\dot{q}) = -\frac{\partial R}{\partial \dot{q}}.$$
(3.16)

Disipační funkce představuje polovinu výkonu tlumicích sil. Potenciální energii a disipační funkci lze vyjádřit pomocí konstant tuhosti k a viskózního tlumení c ve tvaru:

$$E_P = E_{P0} + \frac{1}{2}kq^2, \qquad R = R_0 + \frac{1}{2}c\dot{q}^2,$$
 (3.17)

kde E_P je potenciální energie a R_0 je disipační funkce ve statické rovnovážné poloze pro $q = 0, \dot{q} = 0$. Lagrangeovu rovnici (3.12) lze pomocí (3.13) až (3.16) přepsat do tvaru:

$$\frac{d}{dt}\left(\frac{\partial E_k}{\partial \dot{q}}\right) + \frac{\partial E_p}{\partial q} + \frac{\partial R}{\partial \dot{q}} = F(t)$$
(3.18)

Vyjádříme-li E_k, E_p a R v (3.18) podle (3.13) a (3.17) dostaneme pohybovou rovnici pro soustavu s jedním stupněm volnosti ve tvaru:

$$m\ddot{q}(t) + c\dot{q}(t) + kq(t) = F(t)$$
. (3.19)

Obdobně lze vyjádřit pohybovou rovnici i pro soustavy s více stupni volnosti:

$$\mathbf{M}\ddot{\mathbf{q}} + \mathbf{C}\dot{\mathbf{q}} + \mathbf{K}\mathbf{q} = \mathbf{f}(t), \qquad (3.20)$$

kde $\mathbf{q}(t) = [q_1(t), q_2(t), ..., q_n(t)]^T$ je vektor zobecněných souřadnic, $\mathbf{f}(t) = [F_1(t), F_2(t), ..., F_n(t)]^T$ je vektor buzení, $\mathbf{M} = [m_{ij}]$ je reálná konstantní a symetrická matice hmotnosti, $\mathbf{C} = [c_{ij}]$ je matice tlumení a $\mathbf{K} = [k_{ij}]$ je matice tuhosti.

V případě volných kmitů soustavy s jedním stupněm volnosti lze rovnici (3.19) přepsat do tvaru:

$$\ddot{q} + 2\zeta\omega_0\dot{q} + \omega_0^2 q = 0$$
, (3.21)

kde poměrný útlum ζ a vlastní úhlová rychlost netlumené soustavy ω_0 jsou definovány následovně:

$$\zeta = \frac{c}{2\sqrt{mk}}, \qquad \omega_0 = \sqrt{\frac{k}{m}} \tag{3.22}$$

V závislosti na velikosti *poměrného útlumu* ζ rozlišujeme tři možné stavy systému - obr. 18:

- Systém *přetlumený* ($\zeta > 1$)
- Systém *kriticky tlumený* $(\zeta = 1)$
- Systém *podtlumený* $(0 < \zeta < 1)$

Obr. 18 – Chování systému v závislosti na poměrném útlumu

Dále bude uvažován pouze podtlumený systém. V tomto případě lze nalézt řešení pohybové rovnice (3.21) pro výchylku soustavy ve tvaru:

$$q(t) = Ce^{-\zeta\omega_0 t} \sin(\omega t + \varphi_0), \qquad (3.23)$$

kde C je integrační konstanta určená z počátečních podmínek, ω označuje vlastní úhlovou rychlost tlumené soustavy a φ_0 je fázový posun, přičemž platí:

$$\omega = \omega_0 \sqrt{1 - \zeta^2} \,, \tag{3.24}$$

a také:

$$\omega = \frac{2\pi}{T},\tag{3.25}$$

kde T je doba kmitu, viz obr. 19.

Obr. 19 – Závislost výchylky na čase pro podtlumený harmonický pohyb

Jak je patrné z obr. 19, amplituda kmitání klesá s časem exponenciálně. Rovnice této exponenciály je vyjádřena právě vztahem:

$$y(t) = Ce^{-\zeta\omega_0 t} = Ce^{-bt},$$
 (3.26)

kde b se nazývá konstanta doznívání (útlumu).

Poměrný útlum lze mimo jiné také určit pomocí *logaritmického dekrementu* δ , který je definován jako přirozený logaritmus poměrů dvou amplitud:

$$\delta = \frac{1}{n} \ln \frac{q_0}{q_n} = \ln e^{\zeta \omega_0 T} = \zeta \omega_0 T = bT = \frac{2\pi\zeta}{\sqrt{1-\zeta^2}},$$
(3.27)

kde *n* je počet period mezi uvažovanými amplitudami.

Poměrný útlum lze pak z logaritmického dekrementu určit takto:

$$\zeta = \frac{\delta}{\sqrt{4\pi^2 + \delta^2}}.$$
(3.28)

Poměrný útlum je možno posléze využít dle vztahu (3.24) k určení netlumené kruhové frekvence systému ω_0 .

V tab. 4 jsou uvedeny poměrné útlumy vybraných materiálů a konstrukcí (Adams, a další, 1996).

Tab. 4 – Velikosti poměrných útlumů vybraných konstrukčních materiálů		
Systém	Poměrný útlum ζ	
Kovy obecně (do meze elasticity)	<0,01	
Kovové konstrukce bez spojů	0,02 ÷ 0,04	
Kovové konstrukce se spoji	0,03 ÷ 0,07	
Ocel	0,001 ÷ 0,002	
Kompozit	0,002 ÷ 0,003	
Guma	≈ 0,05	
Předepnutý beton (bez trhlin)	0,04 ÷ 0,07	
Proporcionální tlumení (Rayleighovo tlumení)

Zvláštním případem viskózního tlumení je tzv. *proporcionální tlumení* také známé jako *Rayleighovo tlumení*. U tohoto modelu tlumení je matice tlumení **C** vyjádřena jako lineární kombinace matice hmotnosti a tuhosti v tomto tvaru:

$$[\mathbf{C}] = \alpha[\mathbf{M}] + \beta[\mathbf{K}], \qquad (3.29)$$

kde α , β jsou konstanty Rayleighovo tlumení. Proporcionální tlumení je vhodné pro systémy s více stupni volnosti. Pomocí ortogonální transformace lze pro systém s n stupni volnosti matici tlumení redukovat na n nezávislých rovnic (Chowdhury, 2003):

$$2\zeta_i \omega_i = \alpha + \beta \omega_i^2 \,, \tag{3.30}$$

což po zjednodušení vede k:

$$\zeta_i = \frac{\alpha}{2\omega_i} + \frac{\beta\omega_i}{2} . \tag{3.31}$$

Z rovnice (3.31) vyplývá, že poměrný útlum je dle tohoto modelu závislý na vlastní frekvenci systému. Příklad průběhu této závislosti je znázorněn na obr. 20 – modrá křivka součtu.

Z rovnice (3.31) je dále zřejmé, že pro nízké vlastní frekvence je dominantní člen $\frac{\alpha}{2\omega_i}$ a křivka závislosti $\zeta = \zeta(\omega)$ je nelineární. Naopak s rostoucími vlastními frekvencemi začne převládat vliv členu $\frac{\beta\omega}{2}$ a uvažovaná závislost má lineární charakter, což je patrné z obr. 20.

Obr. 20 – Podíl koeficientů α, β na celkovém poměrném útlumu (ANSYS, 2009)

Podíl modální hmotnosti se s rostoucími módy snižuje, např. pro první mód je podíl hmotnosti 45%, pro druhý mód je 20%, pro třetí mód 10%, atd. U systémů s více stupni volnosti je jen několik prvních

módů (3 až 15), které významným způsobem přispívají k dynamickému chování struktury (Chowdhury, 2003).

Většina MKP programů (MSC Marc, Ansys, atd.) umožňují modelovat tlumení struktur mj. pomocí Rayleighovo tlumicích parametrů. Určení hodnot α a β je však poměrně obtížné. Na určitém rozsahu frekvencí lze poměrný útlum ζ vyjádřený pomocí koeficientů α a β považovat za téměř konstantní (obr. 20). Pro konkrétní hodnotu ζ a rozsah frekvencí ω_i a ω_j je možno neznámé α a β určit řešením soustavy rovnic:

$$\zeta = \frac{\alpha}{2\omega_i} + \frac{\beta\omega_i}{2},$$

$$\zeta = \frac{\alpha}{2\omega_i} + \frac{\beta\omega_j}{2}.$$
(3.32)

V mnoha případech bývají též voleny určité zjednodušující předpoklady. Například je možné ignorovat složku tlumení spojenou s maticí hmotnosti **M**, a sice položením $\alpha = 0$. Pak může být hodnota β dopočtena ze známých hodnot ζ_i a ω_i jako:

$$\beta = \frac{2\zeta_i}{\omega_i}.$$
(3.33)

3.4.2 Hysterezní tlumení

V případě *hysterezního (strukturního) modelu tlumení* byl nejvíce rozpracován přístup založený na kmitočtové doméně. Někteří autoři (Chen, a další, 1994) řešili tuto problematiku i v časové doméně pro systémy s jedním stupněm volnosti. Pojem hysterezního tlumení byl poprvé definován v roce 1975 (Clough, a další, 1995).

Tlumicí síla je úměrná velikosti výchylky a je fázově posunutá oproti rychlosti. Pohybová rovnice nabývá tvaru:

$$m\ddot{q} + hqi + kq = F(t), \qquad (3.34)$$

kde q je zobecněná souřadnice výchylky, m je hmotnost, h je koeficient hysterezního tlumení, i označuje imaginární jednotku, k je tuhost a F(t)je zobecněná budicí síla. Rovnice (3.34) však bývá častěji uváděna ve formě:

$$m\ddot{q} + k(1+i\eta)q = F(t)$$
, (3.35)

kde součin $k(1 + i\eta)$ bývá označován jako komplexní tuhost k^* a $\eta = \frac{h}{k}$ je činitel vnitřního tlumení. Činitel vnitřního tlumení je poměr mezi energií disipovanou během jednoho cyklu při harmonickém zatěžování ΔW k maximu vložené deformační energie během cyklu U_m :

$$\eta = \frac{1}{2\pi} \frac{\Delta W}{U_m}.$$
(3.36)

Disipovaná energie ΔW je vyjádřena plochou omezenou hysterezní smyčkou - obr. 21. Činitel vnitřního tlumení umožňuje porovnávat tlumicí schopnosti dvou rozdílných materiálů. Dále pro slabé tlumení přibližně platí:

$$2\zeta = \eta. \tag{3.37}$$

Komplexní modul pružnosti v tahu a smyku

Chování viskoelastických materiálů bývá často popisováno pomocí tzv. komplexních modulů pružnosti v tahu a ve smyku, které jsou dány vztahy:

$$E^* = E' + iE'' = E'(1 + i\eta), \qquad (3.38)$$

$$G^* = G' + iG'' = G'(1 + i\eta), \qquad (3.39)$$

Tyto moduly pružnosti se obdobně jako v případě komplexní tuhosti skládají z reálné složky E' resp. G' (*storage modulus*) a imaginární složky E'' resp. G'' (*loss modulus*). Reálná složka poskytuje informaci o tuhosti materiálu a imaginární složka charakterizuje jeho tlumicí schopnosti. Obě složky modulů pružnosti jsou závislé na teplotě, frekvenci zatěžování, velikosti deformace a také jsou citlivé na vlivy prostředí (Jones, 2001).

Na obrázku obr. 22 jsou pro ilustraci uvedeny rozsahy hodnot reálné složky E' a imaginární složky E'' komplexního modulu pružnosti a činitele vnitřního tlumení vybraných druhů materiálů.

Obr. 22 – Rozsahy hodnot reálné složky E' a imaginární složky E" komplexního modulu pružnosti a činitele vnitřního tlumení η u některých materiálů (Ponížil, 2009)

3.5 Experimentální metody určování tlumicích parametrů

Při experimentálním určování dynamických charakteristik materiálů s nelineárním chováním je nutno zdůraznit, že tyto nelinearity jsou silně závislé na amplitudě zatěžování a počtu zatěžujících cyklů. Značný je též vliv předepnutí vzorku. Je proto třeba přesně specifikovat průběh zkoušek a všechna

dynamická měření provádět minimálně po čtvrtém zatěžujícím cyklu. To umožní, aby došlo k vyrovnání vnitřních strukturních změn, a získané výsledky jsou pak reprodukovatelné.

V literatuře je uvedena řada metod určování dynamických charakteristik, v této kapitole jsou zmíněny některé nejběžněji užívané. Podrobnými požadavky pro dynamické zkoušení elastomerů se zabývá norma ISO 4664-1 (ISO 4664-1:2005, 2005).

3.5.1 Určení útlumových charakteristik pomocí transientní odezvy systému

Tato metoda je založena na vyhodnocení záznamu transientní odezvy systému s jedním stupněm volnosti v časové doméně - obr. 23. Vychází se z teoretického základu podaného v kap. 3.4.1

Obr. 23 – Transientní odezva tlumeného systému

Hodnota logaritmického dekrementu δ se pak určí jako:

$$\delta = \frac{1}{m} \ln \frac{q_n}{q_{n+m}} \,. \tag{3.40}$$

Následně je možno dopočítat i velikost poměrného útlumu ζ pomocí vztahu (3.28).

3.5.2 Určení útlumových charakteristik analýzou frekvenční odezvy systému

Viskózně tlumený systém s jedním stupněm volnosti popsaný rovnicí (3.41) vykazuje frekvenční odezvu dle obr. 24.

$$m\ddot{q}(t) + k^*q(t) = F(t)$$
, (3.41)

kde $k^* = k(1 + \eta i)$ je komplexní tuhost.

Obr. 24 – Frekvenční odezva systému s jedním stupněm volnosti

Na základě frekvenční odezvy lze určit velikost činitele vnitřního tlumení jako poměr mezi $\Delta \omega$ a ω_0 , přičemž $\Delta \omega$ je dána šířkou pásma při určitém poměrném zeslabení výkonu vůči rezonanční hodnotě A_{max} .

$$\eta = K \frac{\Delta \omega}{\omega_0},\tag{3.42}$$

 $\mathsf{kde} \ K = \frac{1}{\sqrt{n^2 - 1}} \,.$

Při polovičním snížení výkonu $(n = \sqrt{2})$ nabývá konstanta K hodnoty 1. Pokud se na svislou osu grafu (obr. 24) vynášejí hodnoty v decibelech, pak poloviční snížení výkonu představuje pokles o 3 dB. V tomto případě a pro slabě tlumené systémy zároveň platí:

 $\omega_2 - \omega_1 = 2 \cdot \zeta \cdot \omega_0 , \qquad (3.43)$

odkud lze snadno vyjádřit velikost poměrného útlumu ζ .

Tato metoda je nejběžněji realizována pomocí měřící aparatury s modálním kladívkem a akcelerometrem a lze ji aplikovat i na systémy s více stupni volnosti. Na Obr. 25 je tato metoda schematicky popsána a je uveden způsob určení frekvenční odezvové funkce. Pro přechod mezi kmitočtovou a časovou doménou lze recipročně využít rychlou Fourierovu transformaci (FFT).

Obr. 25 – Metoda určení harmonické odezvové funkce (Brüel and Kjaer, 2004)

3.5.3 Určení útlumových charakteristik metodou hysterezní smyčky

Při této metodě je vzorek podroben cyklickému zatěžování o určité konstantní frekvenci. Frekvence zatěžování se z praktických důvodů pohybuje v rozmezí 10⁻⁴ až 10³ Hz. Nižší frekvence je obtížné dosáhnout a při vyšších se začíná projevovat vliv setrvačnosti. Nezáleží na tom, zda zatěžování probíhá na konstantní hodnotu napětí, nebo deformace.

U viskoelastických materiálů se při této zkoušce projeví fázový posun φ mezi frekvencí deformace a napětí (de Bever, 1992):

$$\sigma(t) = \sigma_0 e^{[i(\omega t + \varphi)]} \tag{3.44}$$

$$\varepsilon(t) = \varepsilon_0 e^{i\omega t} . \tag{3.45}$$

Komplexní modul pružnosti v tahu je následně definován jako poměr napětí vůči deformaci:

$$E^* = \frac{\sigma_0}{\varepsilon_0} e^{i\varphi}.$$
(3.46)

Při uvažování reálné složky E' a imaginární složky E'' komplexního modulu pružnosti lze určit velikost činitele vnitřního tlumení:

$$\eta = \operatorname{tg} \varphi = \frac{E^{\prime\prime}}{E^{\prime}}.$$
(3.47)

U viskoelastických materiálů je pro zjištění komplexního modulu pružnosti nejčastěji užívaná zkouška prostým smykem. Analogicky k (3.46) je definován komplexní modul pružnosti ve smyku:

$$G^* = \frac{\tau(t)}{\gamma(t)},\tag{3.48}$$

kde $\tau(t)$ je dynamické smykové napětí a $\gamma(t)$ je dynamická smyková deformace (zkos). Vyhodnocením záznamu závislosti napětí-deformace během jednoho zatěžovacího cyklu (obr. 26) lze určit hodnoty fázového posunu φ a reálnou i imaginární složku komplexního modulu pružnosti ve smyku:

$$\sin\varphi = \frac{B_{\gamma}}{A_{\gamma}} \tag{3.49}$$

а

$$G' = \frac{BC}{AC}\cos\varphi, \qquad G'' = \frac{BC}{AC}\sin\varphi.$$
 (3.50)

Většina tlumicích materiálů však nevykazuje lineární chování, jaké je znázorněno na obr. 26. Zatěžování deformací sinusového charakteru může vést k takovému napětí, u nějž se začne projevovat vliv vyšších harmonických. Hysterezní smyčka je na rozdíl od obr. 26 zdeformovaná. Jak je uvedeno v literatuře (Harris, 1987), velikost disipované energie během jednoho cyklu je shodná jak pro lineární, tak i pro nelineární chování materiálu.

Obr. 26 – Hysterezní smyčka během jednoho zatěžovacího cyklu (lineární viskoelasticita) (de Bever, 1992)

4 Modelování hybridních struktur s tlumicími vrstvami

Počátky výzkumu hybridních struktur s integrovanými tlumicími vrstvami sahají do 50. let minulého století. Jedny z nejznámějších prací založených na analytickém způsobu predikce dynamické odezvy struktury tvořené třemi vrstvami pocházejí od Rosse, Kerwina a Ungara (Ross, a další, 1959). Společným předpokladem těchto prací je sinusoidní průběh tvarů kmitů a uvažování sil v tlumicích vrstvách, které působí rovnoběžně s neutrální osou nosníku (příčný pohyb nosníku vychází ze smykové deformace tlumicí vrstvy). Později byla teorie některými autory rozšířena o vliv vyšších řádů a odlišných okrajových podmínek (DiTaranto, 1965), (Mead, a další, 1969), (Yan, a další, 1972). Základem těchto pojednání je buď Euler-Bernoulliova nosníková teorie, nebo princip virtuálních prací, což obvykle vede k lineárním homogenním diferenciálním rovnicím šestého řádu. Zkoumány byly i efekty částečného pokrytí tlumicími vrstvami a jejich dělení (Plunkett, a další, 1970), (Torvik, a další, 1972). Nedostatkem výše uvedených analytických metod je však jejich určení pouze pro specifické okrajové podmínky a omezení z hlediska složitosti zkoumané geometrie.

S nástupem a následným rychlým rozvojem metody konečných prvků (MKP) došlo k výraznému zpřesnění odhadu dynamické odezvy tlumených struktur. Současné MKP výpočetní programy poskytují možnost predikce dynamického chování struktur s komplexnější geometrií a obecnějšími okrajovými podmínkami.

4.1 Analytické metody

Ross-Kerwin-Ungar

Ross, Kerwin a Ungar se jako jedni z prvních ve svých studiích zabývali pasivním tlumením třívrstvé sendvičové struktury pomocí viskoelastické mezivrstvy (Ross, a další, 1959). Jejich výzkum byl zaměřen na tlumení izotropních materiálů (kovů). Na obr. 27 je znázorněna nosníková struktura libovolného obdélníkového průřezu, na níž lze aplikovat rovnice odvozené Rossem, Kerwinem a Ungarem (tzv. RKU rovnice).

Obr. 27 – Hybridní nosník pro RKU teorii

Ve svých pracích autoři vycházeli z následujících předpokladů:

- V rámci průřezu celé hybridní struktury existuje neutrální osa, jejíž poloha se mění v závislosti na frekvenci kmitání
- Mezi elastickými a viskoelastickými vrstvami nedochází k žádnému prokluzu spoj je dokonalý
- Největší vliv na celkové tlumení má smyková deformace ve vrstvě viskoelastického materiálu, který je popsán pomocí komplexního modulu pružnosti
- Elastické vrstvy se v příčném směru posouvají o stejnou vzdálenost
- Nosník má nekonečnou délku a tudíž mohou být zanedbány vlivy volných konců

Teorie vykazuje dobrou shodu s výsledky experimentu na běžném rozsahu frekvencí a teplot. Činitel vnitřního tlumení hybridního nosníku η je vypočítán jako funkce frekvence, teploty a tlouštěk tlumicí a krycí vrstvy. V navazující práci Kerwin určil i optimální tloušťku tlumicí vrstvy. Model je popsán pomocí komplexní ohybové tuhosti $(EI)^*$:

$$(EI)^{*} = EI(1 + i\eta)$$

$$= \frac{E_{s}h_{s}^{3}}{12} + \frac{E_{v}^{*}h_{v}^{3}}{12} + \frac{E_{c}h_{c}^{3}}{12} - \frac{\frac{E_{v}h_{c}^{2}}{12}(d - D)}{(1 + g_{v}^{*})} + E_{s}h_{s}D^{2}$$

$$+ E_{v}^{*}h_{v}(h_{vs} - D)^{2}$$

$$+ E_{c}h_{c}(d - D)^{2} - \left[\frac{E_{v}^{*}h_{v}(h_{vs} - D)}{2} + E_{c}h_{c}(d - D)\right] \left[\frac{(d - D)}{(1 + g_{v}^{*})}\right],$$
(4.1)

kde *D* je vzdálenost neutrální osy celé hybridní struktury od neutrální osy základní struktury a je určena následovně:

$$D = \frac{E_{v}^{*}h_{v}\left(h_{vs} - \frac{d}{2}\right) + g_{v}^{*}(E_{v}^{*}h_{v}h_{vs} + E_{c}h_{c}d)}{E_{s}h_{s} + \frac{E_{v}^{*}h_{v}}{2} + g_{v}^{*}(E_{s}h_{s} + E_{v}^{*}h_{s} + E_{c}h_{c})},$$
(4.2)

přičemž:

$$h_{\nu s} = \frac{h_s + h_\nu}{2},\tag{4.3}$$

$$g_{v}^{*} = \frac{G_{v}^{*}}{E_{c}h_{c}h_{v}p_{1}^{2}},$$
(4.4)

$$d = h_{\nu} + \frac{h_s + h_c}{2}.$$
 (4.5)

Ve výše uvedených rovnicích (4.1), (4.2) a (4.3) označují indexy $(\cdot)_s$, $(\cdot)_v$ a $(\cdot)_c$ po řadě základní strukturu, viskoelastickou vrstvu a krycí vrstvu. Horní index $(\cdot)^*$ označuje komplexní hodnotu. *E*, *G* jsou moduly pružnosti v tahu a ve smyku, *h* jsou tloušťky vrstev. Veličina g_v^* je tzv. smykový parametr, jehož velikost závisí na komplexním modulu pružnosti viskoelastické vrstvy. Symbol *p* značí vlnové číslo (vlnočet).

Smykový parametr může být vyjádřen pomocí vlastních frekvencí:

$$g_{\nu}^{*} = \frac{G_{\nu}^{*}L^{2}}{E_{c}h_{c}h_{\nu}\xi_{n}^{2}\sqrt{C_{n}}},$$

$$\xi_{n}^{4} = \frac{\rho_{s}bh_{s}\omega_{n}^{2}L^{4}}{E_{s}I_{s}},$$
(4.6)

kde ω_n je n-tá vlastní kruhová frekvence a C_n je korekční činitel, jehož hodnoty jsou uvedeny v tab. 5.

Tab. 5 – Hodnoty korekčního činitele C _n pro vybrané okrajové podmínky			
Okrajové nadmínky	Korekční činitel		
Okrajove podminky	Mód 1	Mód 2+	
Podepřeno - podepřeno	1	1	
Vetknuto - vetknuto	1,4	1	
Vetknuto - podepřeno	1	1	
Vetknuto - volně	0,9	1	
Volně – volně	1	1	

RKU rovnice je možné aplikovat i na komplexnější struktury. V tomto případě však tato metoda nelze použít pro kvantitativní určení tlumicích parametrů, ale pouze pro kvalitativní zhodnocení trendů jejich vývoje pro různé skladby zkoumané struktury. Cílem je určit optimální výběr materiálu tlumicí a krycí vrstvy a jejich tloušťky pro dosažení požadovaných útlumových charakteristik.

DiTaranto

DiTaranto ve své práci (DiTaranto, 1965) rozšířil Kerwinovu teorii odstraněním předpokladu okrajových podmínek odpovídajících nosníku na dvou podporách. Odvodil lineární homogenní diferenciální pohybové rovnice 6. řádu pro volné kmity nosníku v podélných posunutích *u*, které lze použít i pro obecnější okrajové podmínky. Zjistil, že hodnoty činitele vnitřního tlumení a frekvence kmitání nezávisí na okrajových podmínkách, pokud nedochází k disipaci energie na rozhraních.

Mead a Markus

Mead a Markus také navázali na Kerwinovu práci a odvodili diferenciální pohybové rovnice šestého řádu v příčných posunutích *w* sendvičového nosníku podrobenému příčnému zatížení q(x, t) (Mead, a další, 1969). Geometrie sendviče a uvažovaný souřadný systém je znázorněn na obr. 28.

Obr. 28 – Geometrie a souřadný systém (Mead, a další, 1969)

Tlumicí vrstva byla modelována jako lineární viskoelastický materiál s komplexním modulem pružnosti ve smyku G^* . Také se zabývali kořeny charakteristické rovnice a zjistili, že tyto nabývají komplexních hodnot pro jiné, než jednoduše podepřené okrajové podmínky. Dále zmiňují fakt, že frekvence, na nichž vnitřní činitel tlumení dosahuje maxima, jsou citlivé na okrajové podmínky, avšak velikost tohoto maxima se příliš nemění.

Yan a Dowell

Yan a Dowell doplnili model Meada a Markuse o vlivy setrvačností a smykových deformací v jádře i v potahových vrstvách. Ve svých pojednáních (Yan, a další, 1972) předpokládají rovnoměrné rozložení smykových napětí v jádru a potahových vrstvách a odvodili tak zjednodušené diferenciální rovnice čtvrtého řádu.

Plunkett a Lee

Plunkett a Lee jako první rozpracovali problematiku částečného pokrytí tlumicími vrstvami a jejich dělení (obr. 29). Zabývali se tlumením nosníků a desek s jednou i více částečnými tlumicími vrstvami (Plunkett, a další, 1970).

Obr. 29 – Složená struktura s tlumicí povrchovou úpravou (Plunkett, a další, 1970)

Představili metodu zvýšení míry disipované energie umístěním dělených krycích vrstev izotropního materiálu na nosník s viskoelastickým potahem. Dokázali, že pro optimální délku krycí vrstvy závisí velikost disipované energie přímo na tuhosti krycí vrstvy a samotném tlumení viskoelastické vrstvy a pouze nepřímo na smykovém modulu této vrstvy.

Pro dosažení maximálního tlumení určili optimální délku dělených krycích vrstev *L*_c:

$$L_{c} = 3,28 \left(\frac{h_{v}h_{c}E_{c}}{G\sqrt{1+\eta^{2}}}\right)^{1/2},$$
(4.7)

kde h_v , h_c jsou tloušťky viskoelastické a krycí vrstvy (viz obr. 27) a E_c je modul pružnosti v tahu krycí vrstvy.

Torvik a Strickland

Torvik a Strickland navázali na práci (Plunkett, a další, 1970) analýzou čtvercových desek s částečnými krycími vrstvami (Torvik, a další, 1972), viz obr. 30.

Obr. 30 – Tlumení čtvercových desek pomocí krycích segmentů (Torvik, a další, 1972)

Tato metoda je určena pro střídavě vrstvené segmenty tlumicích a krycích vrstev. Ty jsou aplikovány pouze na jednu stranu tlumené desky. Takto predikované hodnoty tlumicích parametrů vykazovali dobrou shodu s experimentálními daty. Bylo zaznamenáno zvýšení hodnoty logaritmického dekrementu o 0,11 pro případ jednoduše podepřené desky, zatímco nárůst hmotnosti desky činil pouze 3% a celková tloušťka se zvětšila o 15%.

Barrett

Barrett odvozuje obecné analytické řešení pro hybridní trubku složenou ze vzájemně střídajících vrstev elastického a viskoelastického materiálu (Barrett, 1989). Pro konkrétní výběr materiálů a geometrie určuje optimální skladbu hybridní struktury. Dále pozoruje vliv orientace vláken v jednotlivých vrstvách potahů na tlumení torzních, osových a ohybových kmitů.

Ve své další práci (Barrett, 1992) popisuje teorii pro analýzu tlumených anizotropních desek. Uvažované desky se skládaly ze dvou vrstvených potahů a jediného tlumicího jádra. Pro sestavení pohybových rovnic bylo použito variačního principu a řešení bylo provedeno pro odezvu v ustáleném stavu jednoduše podepřené desky. Tato analýza je určena pro vyšetřování vlivu sdružování napětí a poddajných tlumicích vrstev u konstrukcí namáhaných na ohyb.

Saravanos

Saravanos se zabýval poloanalytickým určením dynamických vlastností laminátových desek s tlumicími vrstvami (Saravanos, a další, 1992). Přesnost metody dokazuje na odezvě systému tvořeného kompozitem s uhlíkovými vlákny a epoxidovou matricí. Vyšetřuje také vliv poměrů tlouštěk jednotlivých vrstev kompozitních potahů, objemového podílu vláken a matrice, a vliv tloušťky tlumicí vrstvy.

4.2 Numerické metody

Johnson a Kienholz

Ve své práci posuzují několik přístupů ke konstrukci tlumených struktur za pomoci konečnoprvkových algoritmů (Johnson, a další, 1982). Konkrétně se jedná o metodu přímé frekvenční odezvy, metodu komplexních vlastních hodnot a metodu modální deformační energie. Pro aplikaci na konstrukce reálných měřítek je zdůrazněna metoda modální deformační energie, která je založena na principu, že poměr činitele vnitřního tlumení celé hybridní struktury k činiteli vnitřního tlumení viskoelastické vrstvy pro konkrétní tvar kmitu lze určit jako poměr elastické deformační energie ve viskoelastické vrstvě vůči celkové elastické deformační energii celé struktury, když se zdeformuje do daného tvaru kmitu:

$$\frac{\eta_s^{(r)}}{\eta_v} = \frac{V_v^{(r)}}{V_s^{(r)}},$$
(4.8)

kde $\eta_s^{(r)}$ je činitel vnitřního tlumení pro r-tý mód hybridní struktury, η_v je činitel vnitřního tlumení viskoelastického materiálu, $V_v^{(r)}$ je elastická deformační energie uložená ve viskoelastickém materiálu při deformaci do r-tého tvaru kmitu, $V_s^{(r)}$ je elastická deformační energie celé hybridní struktury pro r-tý tvar kmitu.

Bai a Sun

Bai a Sun vyvinuli novou teorii pro sendvičový nosník (Bai, a další, 1995). Uvažovali potahy jako běžné Eulerovské nosníky, které mají osovou i ohybovou tuhost a materiál jádra modelovali jako frekvenčně závislý viskoelastický materiál. Dále uvažovali pole smykových deformací druhého řádu a jejich rovnice zahrnují vlivy příčných, podélných i rotačních setrvačností.

Maddox

Maddox představil konečnoprvkový model využívající teorie sendvičového nosníku, která byla odvozena pro tlusté tlumicí vrstvy (Maddox, 1996). Na základě použitých předpokladů bylo možno eliminovat všechny proměnné vztahující se k jádru a chování elementu popsat pomocí posuvů uzlů v potazích.

Baber a další

Baber definoval element určený pro viskoelastickou vrstvu, který lze použít v kombinaci se standardními nosníkovými elementy pro modelování odezvy sendvičových struktur (Baber, a další, 1998). Tento model je dostatečně přesný pro tenké a středně tlusté viskoelastické vrstvy. Výpočet je rychlejší než při použití rovinných elementů.

Chen a Chan

Chen a Chan vyvinuli čtyři typy hybridních elementů pro určení kmitání a tlumicích charakteristik nosníků, desek a skořepin s tlumicími mezivrstvami (Chen, a další, 2000).

Zapfe a Lesieutre

Zapfe a Lesieutre vytvořili vrstevnatý prvek pro dynamické analýzy hybridních kompozitních nosníků (Zapfe, a další, 1998). Element v sobě zahrnuje vlivy příčných a rotačních setrvačností a zaručuje spojitost posuvů na rozhraní vrstev.

Austin a Inman

Austin a Inman vyšetřovali problémy, jež mohou vzniknout při přílišném zjednodušení výpočtových modelů sendvičových nosníků (Austin, a další, 2000). Porovnávali dynamické charakteristiky získané metodou modální deformační energie pro zjednodušené modely nosníků s konečnoprvkovými modely vyšších řádů.

Siala a další

Siala a další použili metodu konečných prvků pro výzkum volných kmitů a tlumicích charakteristik sendvičových desek, tvořených elastickými potahy a viskoelastickým jádrem (Siala, a další, 2008). Zavedli předpoklad lineárního průběhu deformací v rovině desky pro její potahy a kvadratický průběh pro jádro.

Araújo a další

Autoři vytvořili model hybridní sendvičové struktury s viskoelastickým jádrem a vrstevnatými anizotropními potahy (Araújo, a další, 2008). Pro popis deformačního pole jádra je použita smyková deformační teorie vyššího řádu a pro popis deformačního pole potahů je použita smyková deformační teorie prvního řádu. Viskoelastické chování materiálu jádra je vyjádřeno pomocí komplexního modulu pružnosti. Současně provedli optimalizaci jednoduše podepřené nosníkové struktury pro dosažení maximálního tlumení. Vstupními parametry optimalizace byly tloušťky vrstev a orientace vláken ve vrstvách kompozitních potahů. Dále zavedli omezení maximální možné hmotnosti struktury a jejího maximálního průhybu.

Moreira a další

Moreira a další se věnovali zkoumáním vlivu vrstev z korkových směsí na tlumení kompozitních nosníků (Moreira, a další, 2009). Pro tyto účely vyvinuli vrstevnatý nosníkový element, v němž je každá z jeho vrstev reprezentovaná čtyřuzlovým 2D elementem s rovinnou napjatostí. Tento element má definované podélné stupně volnosti u_1, u_2, u_3, u_4 (obr. 31). Dále jsou určeny dva doplňující příčné stupně volnosti w_i, w_i , které jsou umístěny do dvou pomocných uzlů *i* a *j*.

Obr. 31 – Čtyřuzlový nosníkový element se dvěma pomocnými uzly

Návrh a ověření metodiky konstruování z kompozitních materiálů 5 s integrovanými tlumicími vrstvami

5.1 Úvod

Vlastní výzkum hybridních kompozitních struktur probíhal ve spolupráci s Katedrou mechaniky při Západočeské univerzitě v Plzni, jež po technické stránce zajišťovala provedení experimentů a dále s firmami CompoTech PLUS spol. s r.o. a LA composite spol. s r.o., které dodaly potřebné polotovary a materiál pro zhotovení vzorků. Základním materiálem testovacích vzorků byl kompozit s epoxidovou matricí vyztužený uhlíkovými vlákny s integrovanými tlumicími vrstvami pryže, případně korkové kompozice. Výzkum byl zahájen na jednoduchých strukturách (ploché tyče, čtvercový trubkový profil), avšak s důrazem na pozdější možné využití při návrhu konkrétního strojního dílce. Zde se například nabízí aplikace těchto hybridních struktur v konstrukci dílů typu vřeteník, pinola, nebo vyvrtávací tyč. Společným znakem těchto strojních částí, resp. nástrojů je vysoký poměr délky vůči charakteristickému rozměru průřezu. Dynamicky se tyto konstrukce projevují dominantním ohybovým tvarem kmitu, jenž se pak může nepříznivě odrazit ve výsledné kvalitě obráběného povrchu. Ačkoliv jsou nosné části obráběcích strojů během provozu buzeny silami v celém spektru frekvencí (Buda, a další, 1977), vedl by rychlý útlum dominantních vlastních frekvencí k výrazné stabilizaci obráběcího procesu.

Provedený výzkum hybridních kompozitů lze rozdělit do dvou základních fází, a sice na teoretickou část a praktickou část. Teoretická část věnovaná samotnému návrhu metodiky konstruování z hybridních kompozitů je charakterizována zejména výběrem vhodného konečnoprvkového modelu, s nímž úzce souvisí i volba matematického modelu tlumení. Zároveň je zapotřebí s ohledem na zvolené modelovací techniky stanovit adekvátní experimentální metody pro určení vstupních parametrů numerických modelů. V navazující, praktické části je navrhovaná metodika validována prostřednictvím srovnání výsledků numerických simulací a experimentálních měření na reálných zkušebních tělesech. Praktická část je rozšířena o ukázky adaptace nové metodiky do optimalizačních cyklů, jejichž rozborem bylo posléze možno stanovit obecně platná konstrukční doporučení. Jednotlivé fáze výzkumu jsou shrnuty v tab. 6.

Tab. 6 – Jednotlivé fáze	výzku	ımu hybridních kompozitních struktur		
Teoretická část	•	Formulace základních hypotéz	- - -	Výběr konečnoprvkového modelu Výběr matematického modelu tlumení Volba experimentálních metod pro určení vstupních parametrů Stanovení elementárních předpokladů
Praktická část	•	Validace metodiky	- - -	Příprava vzorků, provedení experimentů Vytvoření modelu, výpočet Porovnání výsledků
	•	Aplikace metodiky	-	Adaptace metodiky do optimalizačního cyklu Vyvození obecně platných závěrů

5.2 Formulace základních hypotéz, návrh metodiky

Správnost a přesnost numerických analýz je bezesporu limitována kvalitou a mírou idealizace konečnoprvkového modelu. Z tohoto důvodu byla úvodní fáze výzkumu orientována na nalezení vhodného numerického modelu reprezentujícího hybridní kompozitní strukturu. Jak dokazují mnohé práce v tomto oboru sendvičových struktur (Odvárka, 2007), (Zemčík, a další, 2008), stejně jako vlastní výzkum provedený na hybridních kompozitních vzorcích podrobených tříbodovému ohybu (Vacík, a další, 2010), jsou pro simulace statického i dynamického chování hybridních struktur nejvhodnější modely, u nichž jsou nosné i tlumicí vrstvy modelovány pomocí samostatných vrstev 3D elementů typu *brick.*

Veškeré numerické simulace v rámci výzkumu byly provedeny v prostředí programu MSC Marc 2010. Tento všestranný programový systém založený na metodě konečných prvků je určen pro řešení rozsáhlých lineárních a nelineárních, strukturálních, teplotních, elektromagnetických, akustických a sdružených úloh. Parametricky tvořené konečnoprvkové modely hybridních struktur byly generovány v modulu preprocesoru MSC Mentat na základě skriptů psaných pomocí programu Matlab.

Výpočetní systém MSC Marc, stejně jako většina konkurenčních produktů umožňuje zadat dva typy tlumení u transientních úloh: tzv. *modální tlumení* a *proporcionální (Rayleighovo) tlumení*. Modální tlumení je užíváno pro metodu modální superpozice a proporcionální tlumení pro metodu přímé integrace. Pro případ modální superpozice lze zahrnout tlumení pro každý mód zvlášť.

Tlumení na úrovni elementů používá koeficienty pro matice elementu a je popsáno rovnicí:

$$C = \sum_{i=1}^{n} \left\{ \alpha_{i} M_{i} + \left(\beta_{i} + \gamma_{i} \frac{\Delta t}{\pi} \right) K_{i} \right\},$$
(5.1)

kde **C** je matice tlumení, **M**_i je matice hmotnosti i-tého elementu, **K**_i je matice tuhosti i-tého elementu, α_i je hmotnostní koeficient tlumení i-tého elementu, β_i je tuhostní koeficient tlumení i-tého elementu, γ_i je koeficient numerického tlumení i-tého elementu a Δt je časový krok (MSC.Software Corp., 2008).

Pokud jsou pro všechny elementy struktury použity stejné koeficienty a je uvažován nulový koeficient numerického tlumení, je rovnice (5.1) shodná s rovnicí (3.29) matice tlumení pro Rayleighovo model tlumení.

Pro numerické simulace dynamického chování zkoumaných hybridních struktur byl zvolen právě proporcionální (Rayleighovo) tlumicí model, z důvodu možnosti zadání tlumicích charakteristik na úrovni elementu pro každou složku hybridní struktury zvlášť.

Jak již bylo uvedeno v kap. 3.4.1, jsou koeficienty α a β závislé na vlastní frekvenci systému. Z tohoto důvodu nejsou v literatuře uváděny konkrétní hodnoty těchto parametrů a ani nejsou standardizovány experimentální metody pro jejich přímé určení. Předkládaná metodika využívá vzájemné relace mezi koeficienty α , resp. β a poměrným útlumem ζ dle vztahu (3.31). Poměrný útlum lze poměrně snadno experimentálně stanovit metodami uvedenými v kap. 3.5. Tato práce se opírá zejména o vyhodnocení pomocí transientní odezvy systému. K získání závislosti výchylky systému ve sledovaném směru na čase bylo využito bezkontaktního laserového měřicího systému optoNCDT. Tato měřicí metoda je velice dostupná, nenáročná, co se přípravy a vyhodnocení experimentu týče, a je tedy vhodná i pro nasazení takříkajíc *in situ*, přímo na výrobní hale, nebo běžně vybavené zkušebně. Zároveň je tento způsob měření vhodný i pro vzorky z materiálů tvořících tlumicí vrstvy, u nichž by zjišťování dynamických vlastností pomocí aparatury s modálním kladívkem bylo prakticky nemožné.

V průběhu experimentů byly jednostranně upnuté vzorky vybuzeny lehkým úderem na jejich volný konec a pomocí systému optoNCDT byla snímána a zaznamenávána výchylka. Záznamy byly dále zpracovány pomocí skriptu (obr. 32) vytvořeného v programu Matlab. Nejprve byla určena hodnota konstanty doznívání *b* proložením jednotlivých vrcholů časového zázněje exponenciální funkcí (3.26) metodou nejmenších čtverců. Následně byl na základě teorie (kap. 3.4.1) dopočten logaritmický dekrement δ a poměrný útlum ζ .

Obr. 32 – Vývojový diagram použitého M-skriptu

Na základě znalosti hodnot poměrných útlumů je možné zjistit hodnoty koeficientů α a β pro proporcionální model tlumení. V případě čistých materiálů (pryž, korková kompozice, kompozit) byl zaveden předpoklad, že jednotlivé koeficienty α_r , α_k a α_c jsou nulové a poměrné útlumy ζ_r , ζ_k a ζ_c jsou na uvažovaném rozsahu frekvencí konstantní.

Chybějící koeficienty β_r , β_k a β_c byly pak dopočítány dle vztahu:

$$\beta_i = \frac{2 \cdot \zeta_i}{\omega_{1i_EXP}},\tag{5.2}$$

kde ω_{1i_EXP} je vlastní tlumená kruhová frekvence ohybového tvaru kmitu pro jednotlivé materiály zjištěná z experimentu, pro niž platí:

$$\omega_{1i_EXP} = 2 \cdot \pi \cdot f_{1i_EXP} , \qquad (5.3)$$

přičemž i = r pro pryž, i = k pro korek a i = c pro kompozit.

Pro hybridní kompozitní struktury byly opět uvažovány dílčí koeficienty jednotlivých složek hybridů $\alpha_{h,r}$, $\alpha_{h,k}$ a $\alpha_{h,c}$ nulové a dílčí koeficienty $\beta_{h,r}$, $\beta_{h,k}$ a $\beta_{h,c}$ byly pak počítány dle vztahu:

$$\beta_{h_{-}i} = \frac{2 \cdot \zeta_i}{\omega_{1h_{-}EXP}},\tag{5.4}$$

kde ω_{1h_EXP} je vlastní tlumená kruhová frekvence ohybového tvaru kmitu hybridní struktury zjištěná

z experimentu, přičemž platí:

$$\omega_{1h_EXP} = 2 \cdot \pi \cdot f_{1h_EXP} . \tag{5.5}$$

Získané koeficienty β mohou následně být přiřazeny elementům konečnoprvkového modelu reprezentujícím odpovídající materiál. Pokud nejsou k dispozici experimentálně zjištěné hodnoty vlastních tlumených kruhových frekvencí $\omega_{1h_{EXP}}$, lze tyto nahradit hodnotami netlumených kruhových frekvencí získanými například modální analýzou MKP. Dle vztahu (3.24) lze odvodit, že při velikosti poměrného útlumu $\zeta \leq 0,05$ (rozsah odpovídající zkoumaným hybridním strukturám), je rozdíl mezi tlumenými a netlumenými kruhovými frekvencemi zanedbatelný.

5.3 Validace metodiky

Před možným zavedením metodiky konstruování z hybridního kompozitu do praxe je bezpodmínečně nutné ověřit její platnost. Postup při validaci metodiky probíhal dle schématu, znázorněného na obr. 33. Byly porovnávány vlastní ohybové frekvence a poměrné útlumy získané experimentálně s výsledky numerických simulací metodou konečných prvků.

Z uvedeného schématu vyplývá, že nová metodika konstruování z hybridního kompozitu může být zatížena jednak chybami měření, chybami vzniklými při zpracování dat, chybami souvisejícími s akceptováním určitých zjednodušujících předpokladů při výpočtu koeficientů proporcionálního tlumení, ale také mírou idealizace a kvalitou konečnoprvkového modelu a samotných simulací. Dále je nutno vzít v potaz, že velikost poměrného útlumu není ve skutečnosti konstantní, nýbrž závisí na vlastní frekvenci, velikosti amplitudy kmitu, atd. I při větších odchylkách mezi experimentálními a numerickými simulacemi získanými veličinami by bylo možné použít metodiku nikoliv pro kvantitativní, ale pro kvalitativní porovnání více variant skladby hybridní kompozitní struktury.

Obr. 33 – Postup validace metodiky

Za účelem validace byly svépomocí, případně spoluprací s externími společnostmi, zhotoveny kompozitní vzorky s integrovanými vrstvami z tlumicího materiálu. Experimentální validaci metodiky na vybraných vzorcích jsou věnovány následující kapitoly 5.3.1 až 5.3.4.

5.3.1 Hybridní struktura – ploché vzorky

Prvními zkoumanými strukturami sloužícími k ověření metodiky byly jednoduché tyče obdélníkového průřezu z jednosměrového kompozitu uhlík/epoxid (vlákna 913C-HTS, výrobce Tenax), pryže (Rubena 46809), korkové kompozice (ACM 87^{FR}) a dále také hybridní ploché tyče tvořené vrstvami uvedeného kompozitu a pryže. Tyto ploché tyče byly řešeny jednak jako struktury s tlumicími potahy (částečnými, plnými) – ULD, a dále také jako struktury s tlumicími mezivrstvami – CLD. Spojení jednotlivých vrstev bylo provedeno lepidlem Loctite 480. Uspořádání experimentů a popis geometrie vzorků je schematicky znázorněn na obr. 34.

Na základě uspořádání experimentů a geometrie vzorků byla problematika nasimulována v programu MSC Marc 2010. Byly vytvořeny konečnoprvkové modely, pro něž byly použity 8mi-uzlové izoparametrické elementy prvního řádu (Element 7). Vzhledem k časové náročnosti transientních úloh je vhodné maximálně redukovat celkový počet elementů tvořících model. Z tohoto důvodu byly jednotlivé složky hybridní struktury reprezentovány pouze jedinou vrstvou elementů ve směru tloušťky. Pro zajištění lepšího chování zvolených lineárních elementů při ohybovém zatížení byla zapnuta volba alternativních interpolačních funkcí (Assumed strain). Na vetknuté části vzorku byl definován zákaz posuvů v patřičných směrech. Počáteční výchylka volného konce byla vyvozena časově závislým silovým zatížením. Modely plochých vzorků včetně zadaných okrajových podmínek jsou patrné z obr. 35 až obr. 38.

Obr. 34 – Geometrie vzorků, uspořádání experimentu:

a) pro vzorek z jediného materiálu (kompozit, guma, korek) b) pro kompozitní vzorek s částečným tlumicím potahem (ULD) c) pro kompozitní vzorek s tlumicí mezivrstvou (CLD)

Obr. 35 – MKP model vzorku z pryže, okrajové podmínky

Obr. 37 – MKP model ULD vzorku, okrajové podmínky

Obr. 36 – MKP model vzorku z kompozitu, okrajové podmínky

Obr. 38 – MKP model CLD vzorku, okrajové podmínky

Ačkoliv vykazují pryž i korková kompozice viskoelastické chování, byl pro jejich modelování zaveden zjednodušující předpoklad lineárně elastické odezvy při uvažování deformace do 10%. Mechanické vlastnosti použité pryže a korkové kompozice byly stanoveny pomocí tahových a tlakových zkoušek. Zkušební vzorky byly opakovaně zatěžovány rychlostí 10 mm·s⁻¹ do určité velikosti deformace. Pro potlačení vlivu tzv. *Mullinsova efektu* (pokles síly potřebné k vyvození konkrétní deformace při opakovaném zatěžování, obr. 39) byly pro proložení lineární závislostí použity záznamy ze čtvrtých cyklů.

Obr. 39 – Viskoelastické chování pryže, Mullinsův efekt

Mechanické vlastnosti kompozitu byly určeny na základě znalosti vlastností vlákna a matrice (udáno jednotlivými výrobci – viz tab. 7). Použito bylo tzv. *"směšovací pravidlo"* s předpokladem příčně izotropního materiálu (Laš, 2008), (Berthelot, 1999). Takto získané materiálové vlastnosti (tab. 8) byly přiřazeny odpovídajícím elementům konečnoprvkových modelů.

Tab. 7 – Mechanicko-Tyzikanni vlastnosti siożek unikove laninny nybrunino pasku					
Materiál (výrobce)	Mechanicko-fyzikální vlastnosti				
	Modul pružnosti v tahu v podélném směru	E _{1f}	188	[GPa]	
	Modul pružnosti v tahu v příčném směru	E _{2f}	15	[GPa]	
	Smykový modul pružnosti v podélně-příčném směru	G_{12f}	50	[GPa]	
(Tenax)	Poissonovo číslo	V12	0,3		
	Hustota	$ ho_{f}$	1780	[kg/m³]	
	Modul pružnosti v tahu	Em	2,8	[GPa]	
Matrice epoxid lx137 (5M)	Smykový modul pružnosti	Gm	1	[GPa]	
	Poissonovo číslo	Vm	0,4		
	Hustota	$ ho_m$	1230	[kg/m³]	

Tab. 7 – Mechanicko-fyzikální vlastnosti složek uhlíkové laminy hybridního pásku

Materiál	Parametr				Poznámka
- X 42222	Modul pružnosti v tahu	Er	10	[MPa]	/
Pryz 46809 (Pubopa)	Poissonovo číslo	Vr	0,49		Izotropni matoriál
(Rubella)	Hustota	$ ho_r$	1170	[kg.m ⁻³]	material
	Youngův modul pružnosti	E _k	2,5	[MPa]	/
Korek ACM 87™ (Amorim)	Poissonovo číslo	V_k	0,3		Izotropni materiál
	Hustota	$ ho_k$	740	[kg.m ⁻³]	material
	Objemový podíl vláken	Vf	0,6		
	3, Směr tloušťky	E1	113,92	[GPa]	
Jednosměrový kompozit (913C-HTS)	ěrový t (S) 2, Příčný směr	E2	5,47	[GPa]	Příčně
		G12	2,43	[GPa]	izotropní
		V 12	0,34		materiál
	1, Podélný směr	V23	0,3		
	Hustota	$ ho_c$	1560	[kg.m ⁻³]	

Tab. 8 – Mechanicko-fyzikální vlastnosti materiálů hybridních pásků

Výchylky volného konce zkoumaného systému bylo docíleno pomocí silového impulsu aplikovaného na vybrané uzly konečnoprvkového modelu. Postprocesorem programu MSC Marc byly vygenerovány záznamy přechodových dějů od vybuzení (čas t = 0) do určité reálné hodnoty času t. Záznamy byly zpracovány stejným skriptem, jež byl použit i k vyhodnocení experimentů (kap. 5.2).

Rozměry vzorků a uspořádání experimentů, záznamy přechodových dějů, vlastní frekvence pro ohybový tvar kmitu a hodnoty poměrných útlumů z experimentu a MKP simulací jsou shrnuty v tab. 9 až tab. 16 pro jejich vzájemné porovnání.

Tab. 10 – Výsledky experimentu a MKP simulace pro vzorek z korkové kompozice

Tab. 12 – Výsledky experimentu a MKP simulace pro kompozitní ULD vzorek, 1/3 pryže

Tab. 13 – Výsledky experimentu a MKP simulace pro kompozitní ULD vzorek, 2/3 pryže

Tab. 14 – Výsledky experimentu a MKP simulace pro kompozitní ULD vzorek, 3/3 pryže

Tab. 16 – Výsledky experimentu a MKP simulace pro kompozitní CLD vzorek s pryží, skladba [c-p-c-p-c]

V případě vzorků z čisté pryže (vzorek 1) a jednosměrového kompozitu (vzorek 3) bylo dosaženo dobrého souladu mezi experimentálními a vypočtenými hodnotami vlastních frekvencí a poměrných útlumů (rozdíl méně než 10%).

U vzorku z korkové kompozice (vzorek 2) byla problematická jeho nízká vlastní frekvence – v časovém záznamu přechodového děje se ve sledovaném časovém úseku objevil pouze malý počet amplitud, zřejmě nedostatečný pro použitý způsob vyhodnocování. Proto se u korkové kompozice rozcházejí výsledky experimentu s numerickou simulací.

Experimentální vlastní ohybové frekvence ULD vzorků s částečným (vzorek 4, 5), resp. plným tlumicím potahem (vzorek 6) opět dobře korespondovaly s vypočtenými hodnotami. U takto koncipovaných hybridních struktur je vliv pryžových potahů na výsledný poměrný útlum velice malý, což dokládají experimenty i numerické simulace.

Tlumicí mezivrstvy CLD vzorků (vzorek 7, 8) prokazatelně ovlivňují schopnost tlumení i ohybovou vlastní frekvenci vzorků. Mezi naměřenými i vypočtenými hodnotami obou veličin bylo dosaženo uspokojivé shody (do 12%).

Porovnáním výsledků experimentů a numerických simulací dynamického chování plochých vzorků byla potvrzena vzájemná korelace mezi oběma přístupy a lze předpokládat, že metodika je založena na platných předpokladech.

5.3.2 Hybridní struktura – čtvercový profil I

Další hybridní strukturou podrobenou výzkumu byl čtvercový trubkový profil se zaintegrovanou tlumicí mezivrstvou z korkové kompozice Amorim ACM87. Zkušební těleso bylo vyrobeno firmou CompoTECH Plus spol. s r.o. Vzorek byl zhotoven technologií přesného navíjení uhlíkových vláken (K63712, výrobce Mitsubishi) prosycených epoxidovou pryskyřicí (lx137, 5M). Geometrie tělesa a schematické uspořádání experimentu je zobrazeno na obr. 40.

Obr. 40 – Geometrie hybridního kompozitního profilu, uspořádání experimentu

Parametrický model vzorku byl opět vytvořen v programu MSC Marc 2010. V případě elementů reprezentujících kompozitní vrstvy byly použity 8-mi uzlové izoparametrické vrstevnaté prvky typu *brick* (Element 149), pro modelování korkové vrstvy byly použity stejné elementy, jako v případě hybridních pásků (Element 7). Model a zadané okrajové podmínky jsou patrné z obr. 41

Obr. 41 – MKP model čtvercového profilu I, okrajové podmínky

Mechanické vlastnosti jednotlivých vrstev kompozitu byly opět určeny na základě vlastností vláken a matrice a jejich vzájemných objemových podílů (udáno výrobci, tab. 17). Vzhledem ke zjištěným nedokonalostem reálného vzorku (nedostatečné prosycení vláken, mezery mezi svazky a nekonstantní tloušťka vrstev kompozitu, obr. 42) byl však výrobcem udaný objemový podíl snížen tak, aby došlo ke

shodě vlastních frekvencí získaných experimentálně na volném vzorku pomocí modálního kladívka a akcelerometru s vlastními frekvencemi vypočítaných numerickou simulací.

Obr. 42 – Detail vnějšího povrchu hybridního čtvercového profilu

Obr. 43 – Upnutí čtvercového profilu I

Ačkoliv při použité technologii navíjení vznikla proplétaná kompozitní struktura, nebylo v provedených simulacích zohledněno křížení svazků vláken, které částečně ovlivňuje výsledné mechanické vlastnosti kompozitu (Janda, a další, 2011). Opět bylo použito *"směšovací pravidlo"* s předpokladem příčně izotropního materiálu.

Tab. 17 – Mechanicko-fyzikální vlastnosti uhlíkových vláken čtvercového profilu I

Materiál (výrobce)	Mechanicko-fyzikální vlastnosti			
Vlákno K63712 (Mitsubishi)	Modul pružnosti v tahu v podélném směru		640	[GPa]
	Modul pružnosti v tahu v příčném směru		5	[GPa]
	Smykový modul pružnosti v podélně-příčném směru	G_{12f}	20	[GPa]
	Poissonovo číslo	V 12	0,35	
	Hustota	$ ho_{f}$	1780	[kg/m³]

Tloušťky jednotlivých vrstev a orientace vláken byly odečteny z materiálových listů (Příloha I). Výsledné mechanické vlastnosti laminy jsou uvedeny v tab. 18. Korková kompozice použitá jako tlumič byla totožná jako v případě hybridních pásků. Získané materiálové vlastnosti byly přiřazeny odpovídajícím elementům konečnoprvkových modelů.

Materiál (výrobce)	Parametr				Poznámka
Uhlíková lamina K63712	Objemový podíl vláken	V _f	0,435		
	3, Směr tloušťky	E1	279,98	[GPa]	
		E2	3,46	[GPa]	Příčně
		G12	1,70	[GPa]	izotropní
		V 12	0,38		materiál
	1, Podélný směr	V23	0,38		
	Hustota	$ ho_c$	1469	[kg.m ⁻³]	

Tab. 18 – Mechanicko-fyzikální vlastnosti uhlíkové laminy čtvercového profilu l

Rozměry vzorku a uspořádání experimentu, záznam přechodového děje, vlastní frekvence pro ohybový tvar kmitu a hodnota poměrného útlumu z experimentu a MKP simulace je uvedena v tab. 19 pro vzájemné porovnání.

Tab. 19 – Výsledky experimentu a MKP simulací pro CLD čtvercový profil I

Během přípravy a vyhodnocení numerických simulací byl zjištěno, že způsob namodelování okrajových podmínek vetknutí má stejně jako v případě reálného vetknutí vzorku (obr. 43) zcela zásadní vliv na výslednou vlastní frekvenci ohybového tvaru kmitu a odpovídající poměrný útlum (tab. 19). Existují analogické studie věnované problematice způsobu upnutí nástroje a jeho vlivu na celkovou dynamickou tuhost obráběcích strojů. V rámci zmíněných prací byl mj. vyšetřován vliv velikosti upínací síly a kvality povrchu upínací stopky nástroje pro soustružení (Marui, a další, 1993), tak i počet, umístění, velikost a způsob utahování fixačních šroubů nástrojového držáku vyvrtávací tyče (Åkesson, a další, 2009). Tyto práce víceméně potvrzují zjištěný jev.

Bylo řešeno několik variant způsobu vetknutí MKP modelu – od téměř dokonale tuhého vetknutí styčných ploch (varianta A) až po částečně poddajné vetknutí (varianta B). Jako optimální byla vyhodnocena varianta B, kdy bylo dosaženo nejlepší shody ve vlastních frekvencích experimentálního vzorku a numerického modelu. Nicméně nedokonalosti reálného upnutí vzorku, jako například poddajnost upínacích šroubů a příložek, možnost prokluzu mezi vzorkem a upínacím blokem, atd., ovlivňující míru celkové disipované energie, lze jen stěží postihnout nástroji numerických analýz.

Z tohoto důvodu bylo tlumení získané experimentálně vyšší, než predikované pomocí simulace v programu MSC Marc pro variantu upnutí B.

5.3.3 Hybridní struktury – čtvercové profily II, III

Na základě zkušeností a poznatků získaných při studiu čtvercového profilu I byla s kooperující společností CompoTECH Plus spol. s r.o. dohodnuta výroba nové sady vzorků. Tyto vzorky byly vyrobeny stejnou technologií a měly totožné charakteristické vnitřní rozměry jako v případě prvního zkušebního tělesa, avšak do struktury byly zaintegrovány dvě tlumicí vrstvy. U těchto vzorků byl použit jiný typ vláken (cn-60-a2s, výrobce Nippon), jejichž materiálové vlastnosti jsou uvedeny v tab. 20. Jako materiál matrice byla opět použita epoxidová pryskyřice lx137 a tlumičem byla korková kompozice Amorim ACM87.

Tab. 20 – Mechanicko-fyzikální vlastnosti uhlíkových vláken čtvercového profilu II a III

Materiál (výrobce)	Mechanicko-fyzikální vlastnosti			
Vlákno cn-60-a2s (Nippon)	Modul pružnosti v tahu v podélném směru		620	[GPa]
	Modul pružnosti v tahu v příčném směru		5	[GPa]
	Smykový modul pružnosti v podélně-příčném směru	G_{12f}	20	[GPa]
	Poissonovo číslo	V 12	0,35	
	Hustota	$ ho_{f}$	2120	[kg/m³]

Opět byly *směšovacím pravidlem* stanoveny mechanické vlastnosti výsledné laminy (tab. 21). Vzhledem k tomu, že výrobce profilu byl schopen zdokonalit technologii navíjení, nebylo nutné u MKP modelů nových vzorků uměle snižovat objemový podíl vláken. Skladba struktur numerických modelů (úhly návinu, tloušťky jednotlivých vrstev) plně odpovídala materiálovým listům poskytnutých výrobcem (viz Příloha II a Příloha III).

Materiál (výrobce)	Parametr		Profil II	Profil III		Poznámka
	Objemový podíl vláken	Vf	0,55	0,56		
	3, Směr tloušťky	E1	342,26	348,43	[GPa]	
Uhlíková lamina K63712		E2	3,69	3,72	[GPa]	Příčně
		G12	2,09	2,14	[GPa]	izotropní
	2, Příčný směr	V 12	0,37	0,37		materiál
	1, Podělný směr	V 23	0,37	0,37		
	Hustota	$ ho_c$	1720	1728	[kg.m ⁻³]	

Tab. 21 – Mechanicko-fyzikální vlastnosti uhlíkové laminy čtvercového profilu II a III

Aby byly eliminovány nedostatky původního způsobu upnutí vzorků během experimentu, byly vyrobeny speciální přípravky (obr. 44), které měly především zvýšit tuhost samotného upnutí. Přípravky byly koncipovány jako tlustostěnné ocelové profily s betonovou výplní, opatřené třemi průchozími otvory. Zkušební vzorky byly prostřednictvím těchto přípravků upínány k masivnímu základu obráběcího stroje. Novému způsobu upínání byly následně přizpůsobeny i okrajové podmínky v numerických simulacích (obr. 45).

Obr. 44 – Přípravky pro zvýšení tuhosti upnutí vzorků

Obr. 45 – MKP model čtvercového profilu II a III, okrajové podmínky pro analýzu jednostranně vetknutého profilu

Rozměry vzorků a uspořádání experimentů, záznamy přechodových dějů, vlastní frekvence pro ohybové tvary kmitu a hodnoty poměrných útlumů z experimentů a MKP simulací jsou uvedeny v tab. 22, resp. tab. 23, přičemž charakteristické rozměry vzorků a uspořádání experimentů vycházejí ze stejného schématu, jako v případě profilu I.

Tab. 22 – Výsledky experimentu (transientní odezva systému) a MKP simulací pro CLD čtvercový profil II

Vzhledem k přetrvávajícím rozdílům mezi poměrnými útlumy čtvercových profilů II a III získanými experimentálně pomocí transientní odezvy systému a numerickými simulacemi (viz tab. 22 a tab. 23), byla k validaci využita ještě experimentální metoda založená na analýze frekvenční odezvy systému. Profily II a III byly během měření volně zavěšeny na pružných lanech tak, aby docházelo k co nejmenšímu ovlivnění výsledných veličin. Analýza byla realizována prostřednictvím aparatury Bruël&Kjær (modální kladívko B&K 8202, akcelerometrický snímač B&K 4506 B, software ME'Scope 40060). Změna okrajových podmínek (způsob uchycení, buzení) se promítla i do numerického modelu (obr. 46). Celé těleso bylo na počátku simulace podepřeno v krajních bodech a vnější zatížení definovaným posunutím bylo aplikováno na střed profilu. Následně byly tyto okrajové podmínky odejmuty a byly zaznamenány volné kmity jednoho z konců tělesa.

Další inovací bylo zefektivnění vyhodnocování záznamů získaných numerickými simulacemi. Vyhodnocovací skript byl upraven tak, aby byly pomocí metody nejmenších čtverců hledány přímo parametry rovnice výchylky soustavy (3.23) a nikoliv rovnicí exponenciály procházející amplitudami kmitu. Díky této změně bylo možné značně zkrátit časový úsek transientní úlohy, neboť k dostatečně přesné aproximaci postačil záznam několika málo kmitů. Výsledkem byla více než 50% úspora výpočetního času, což je velice žádoucí pro případnou implementaci do optimalizačních cyklů. Dynamické charakteristiky profilů získaných analýzou frekvenční odezvy systému a MKP analýzami jsou shrnuty v tab. 24 a tab. 25.

Obr. 46 – MKP model čtvercového profilu II a III, počáteční okrajové podmínky pro analýzu volného profilu

Tab. 24 – Výsledky experimentu (frekvenční odezva systému) a MKP simulací pro CLD čtvercový profil II

*) Jednotlivé tloušťky určeny z materiálových listů spol. CompoTECH PLUS (Příloha III)

 $\zeta_{h_{EXP}}$

0,0037

*f*1h_МКР [Hz]

167,8

 ζ_{h_MKP}

0,0062

f_{1h_EXP} [Hz]

172,8
5.3.4 Zhodnocení dynamických analýz

Validace předkládané metodiky byla založena na srovnání dynamických vlastností získaných experimentálně na reálných vzorcích a výpočtem pomocí metody konečných prvků na odpovídajících numerických modelech. Experimentální práce se opírala zejména o analýzu transientní odezvy systému, jež byla posléze ještě doplněna o analýzu frekvenční odezvy systému. Zkoumány byly různé druhy struktur – od jednoduchých plochých vzorků z jednoho materiálu (kompozit, korek, pryž), plochých kompozitních vzorků s tlumicími potahy a mezivrstvami z pryže, až po komplexnější navíjené kompozitní profily se zaintegrovanými korkovými tlumicími mezivrstvami.

Souběžně byly vytvořeny MKP modely v systému MSC Marc 2010, kde bylo tlumení struktury zohledněno pomocí proporcionálního modelu tlumení. Vstupní tlumicí parametry α a β byly odvozeny na základě navržené metodiky – viz. kap. 5.2. Pro vyhodnocení záznamů transientní odezvy reálného i virtuálního systému byl sestaven vlastní skript v programu Matlab.

Nejprve byly experimentálně určeny útlumové charakteristiky čistých materiálů, z nichž byly později vyrobeny hybridní struktury. Mezi naměřenými hodnotami a výsledky numerických simulací (tab. 9 až tab. 11) byla dosažena dobrá shoda a získané poměrné útlumy dílčích materiálů byly dále použity pro určení koeficientů β pro komponenty hybridní struktury dle vztahu (5.4).

V případě tlumicích vrstev řešených jako potahy (ULD vzorky, tab. 12 až tab. 14) nebyl jejich vliv na celkové výsledné tlumení struktury prokazatelný. Přidané vrstvy pryže vzhledem ke své tloušťce výrazně zvýšily celkovou hmotnost struktury a s rostoucí délkou pryžového potahu klesala vlastní frekvence pro ohybový tvar kmitu. Mezi výsledky experimentů a numerických simulací byla opět dobrá shoda.

Ploché CLD vzorky s pryžovými mezivrstvami vykazovaly zlepšené tlumicí charakteristiky (tab. 15, tab. 16), a to zcela ve shodě s výsledky výpočtů MKP. Tento fenomén lze zdůvodnit tím, že v tlumicích mezivrstvách dochází k vyšším smykovým deformacím, jež se přímo podílí na pohlcování energie kmitání.

Obdobný jev byl očekáván i u CLD čtvercových profilů, kde však výzkum narazil na problematiku fixace vzorku, která zásadním způsobem ovlivňuje výsledné chování systému, jak dokládají mnohé studie. Nedokonalosti původního upnutí čtvercového profilu I se negativně odrazily na naměřených hodnotách vlastní frekvence a poměrného útlumu, které zcela nekorespondovaly s výsledky numerických simulací. Ve snaze o eliminaci tohoto nedostatku byla druhá generace vzorků (čtvercové profily II a III) upínána pomocí speciálního přípravku. Ačkoliv došlo v tomto případě ke sjednocení vlastních frekvencí z experimentu a výpočtu, stále přetrvával rozpor v poměrných útlumech. Tlumení reálného vzorku bylo zřejmě stále posíleno možností mikroposuvů mezi vzorkem a upínacím přípravkem, resp. příložkou.

Vzhledem k přetrvávajícím obtížím s dosažením rovnocenných podmínek upnutí reálného a virtuálního vzorku, byly výsledky měření transientní odezvy jednostranně vetknutého vzorku konfrontovány s měřením frekvenční odezvy volného zkušebního tělesa. Během experimentů bylo zkušební těleso zavěšeno na pružných závěsech, což minimalizovalo ovlivnění celkového tlumení vzorku. V případě čtvercového profilu II bylo dosaženo téměř dokonalé shody mezi experimentem a simulací, a to vzhledem k vlastní frekvenci i poměrnému útlumu. Naproti tomu čtvercový profil III vykazoval rozdílné hodnoty poměrných útlumů. Jak bylo zjištěno při podrobnějším zkoumání vzniklé situace, tento rozdíl

byl zapříčiněn nevhodnou metodou analýzy experimentálních dat, jež je adaptována ve vyhodnocovacím programu ME'Scope 40060. U konkrétní konfigurace skladby čtvercového profilu III se totiž objevily první tři vlastní frekvence s rozdílnými charakteristickými tvary kmitu na velmi úzkém frekvenčním rozsahu. Tento jev byl potvrzen nejen při modální analýze MKP (obr. 47), ale i při experimentu, kdy se v grafu frekvenční odezvové funkce objevily dva (resp. tři) sdružené vrcholy (obr. 48). Vzhledem k tomu, že velikost poměrného útlumu je programem stanovována pomocí metody 3dB poklesu zesílení (viz kap. 3.5.2), představují sdružené vrcholy odezvové funkce jisté úskalí. Při použití zmíněného vyhodnocovacího software ME'Scope 40060 není získaná hodnota poměrného útlumu zcela důvěryhodná.

Provedením série experimentů na vybraných vzorcích z hybridních kompozitů byla víceméně úspěšně ověřena platnost předpokladů, na nichž je založena předkládaná metodika konstruování z kompozitních materiálů s integrovanými tlumicími vrstvami. Experimentální výsledky mimo jiné poukázaly na vysoký vliv způsobu vetknutí zkušebních těles na jejich výsledné dynamické chování, což vedlo k modifikaci zkušební metody i vyhodnocovacího skriptu. Nicméně pro absolutní věrohodnost metodiky a její případnou aplikaci v průmyslové praxi by bylo bezpodmínečně nutné provést i její další testování na vzorcích s jinou skladbou a geometrií. V současné době lze metodiku s jistotou využít pro kvalitativní posouzení tlumicích schopností různých variant skladby hybridního kompozitu s obdobnými průřezy jako u analyzovaných vzorků.

Obr. 47 – Vlastní frekvence a tvary kmitu čtvercového profilu III získané modální analýzou MKP: a) f_{1h} = 167,7 Hz; b) f_{2h} = 172,4 Hz; c) f_{3h} = 172,4 Hz

Obr. 48 – Záznam frekvenční odezvové funkce čtvercového profilu III

6 Aplikace metodiky

V aktuální podobě je předkládaná metodika určena pro predikci útlumových parametrů při takových vlastních frekvencích struktury, pro něž je charakteristický ohybový tvar kmitu. Nicméně vhodnou změnou metody měření vstupních tlumicích vlastností jednotlivých komponent hybridní struktury a při zachování základních principů a předpokladů uvedených v kap. 5.2, bude teoreticky možné modifikovat tuto metodiku i pro další vlastní frekvence a tvary kmitu. Předpokládanou univerzálnost metodiky by bylo nutné podložit dalším výzkumem a měřeními. V následujících kapitolách je demonstrována aplikace metodiky v optimalizačních cyklech, jež je posléze využito k formulaci obecně platných doporučení pro konstruování kompozitních dílů s integrovanými tlumicími vrstvami.

6.1 Adaptace metodiky v optimalizačních cyklech

V disertační práci je řešena možnost adaptace navržené metodiky v optimalizačních cyklech. Spojením prostředků numerických simulací metodou konečných prvků a optimalizačních algoritmů vznikne robustní nástroj pro návrh ideální struktury z hlediska statické i dynamické tuhosti pro konkrétní aplikaci. K tomuto účelu byly využity programové balíky MSC Marc 2010 a optiSLang 3.0.0. Blokové schéma použitého optimalizačního cyklu je znázorněno na obr. 49. V této obecné podobě je cyklus vhodný pro optimalizaci teoreticky jakéhokoliv strukturálního parametru konstrukce z hybridního kompozitu (počet, tloušťka a umístění tlumicích vrstev; tloušťka a úhel návinu kompozitních vrstev, vlastnosti materiálů; atp.).

Obr. 49 – Schéma optimalizačního cyklu

Detailní schéma popisující jednotlivé sekvence numerických simulací, v nichž je implementována navržená metodika, je patrný z obr. 50. Během jednoho průchodu optimalizačním cyklem bylo nutno provést tři dílčí numerické výpočty metodou konečných prvků. Nejprve byla řešena modální analýza pro stanovení netlumené vlastní frekvence pro ohybový tvar kmitu. Následně byly dopočteny koeficienty β jednotlivých komponent hybridní struktury dle vztahu (5.4). Ty pak byly dodány

konečnoprvkovému modelu a byla řešena statická úloha, při níž byla určena statická ohybová tuhost vzorku. Transientní úlohou byl získán časový záznam přechodového děje po zadané počáteční výchylce systému. K vyhodnocení záznamu byl použit totožný skript jako u CLD čtvercového profilu III.

Cílem provedených optimalizací bylo nalezení vhodné skladby struktury pro dosažení maximálního poměrného útlumu, maximální vlastní frekvence pro ohybový tvar kmitu a maximální statické ohybové tuhosti. Vzhledem k tomu, že hodnota vlastní frekvence, resp. statické ohybové tuhosti a poměrného útlumu jsou dva protichůdné parametry, byl v práci nasazen genetický algoritmus s využitím tzv. *Paretovy množiny* (fronty).

Během výzkumu byly optimalizovány dva typy struktur s ohledem na již provedená měření – optimalizace plochého vzorku a čtvercového profilu. V této práci jsou pro názornost popsány pouze dvě varianty nastavení vstupních parametrů optimalizace. Další provedené optimalizace jsou zřejmé z vlastních publikací (Vacík, a další, 2011) (Lašová, a další, 2012) (Kottner, a další, 2010).

Obr. 50 – Sekvence jednotlivých MKP simulací

6.1.1 Optimalizace skladby plochého vzorku

Optimalizace byla provedena na tělesech vybraných s ohledem na dosud provedená měření na reálných vzorcích. První strukturou byla jednoduchá plochá tyč, geometricky vycházející z CLD vzorku 8, viz kap.5.3.1. Struktura byla složena celkově ze 14 vrstev, uložených symetricky kolem středové roviny. Vrstvy byly tvořeny jednosměrovým uhlíkovým kompozitem (vlákna 913C-HTS, směr vláken totožný s podélnou osou vzorku) nebo pryží (Rubena 46809). Materiálové vlastnosti obou materiálů byly uvažovány totožné jako u CLD vzorku 8 – viz tab. 8. Tloušťka jednotlivých vrstev byla 1mm. Ostatní rozměry a způsob vetknutí vzorku je patrný z obr. 51.

Obr. 51 – Geometrie optimalizovaného plochého vzorku

Vzhledem k podobnosti s CLD vzorkem 8 bylo možné pro potřeby numerických výpočtů využít již existující modifikované konečnoprvkové modely. Během vlastní optimalizace byl respektován předpoklad, že výsledná struktura musí obsahovat alespoň jednu vrstvu kompozitu. Výsledkem optimalizace byly grafy vzájemných relací mezi vlastní frekvencí a poměrným útlumem (obr. 53, obr. 52), respektive mezi vlastní frekvencí a statickou tuhostí (obr. 54, obr. 55) jednotlivých návrhů (designů).

Skladba vybraných analyzovaných návrhů je uvedena v tab. 26. Ze sestavených výsledků je zřejmý vztah mezi vlastní frekvencí struktury a velikostí statické tuhosti; s rostoucí vlastní frekvencí se zvyšuje i statická tuhost. Skladby všech analyzovaných návrhů jsou shrnuty v Příloze IV.

Návrh			Vrs	tva (ori	ientace	/tlumi	č ^{*)})			Parametr											
		1	2	3	Д	5	6	7		ζ·10⁻²	f	Cs									
		-			-		Ű	,		[-]	[Hz]	[N·mm]									
D1	[0°	R	R	R	R	R	R]s	5,48	29,4	1,69									
D2]	0°	R	0°	R	R	R	R]s	5,45	31,9	2,03									
D3	1	0°	R	0°	R	0°	R	R]s	5,26	34,7	2,45									
D4]	0°	R	R	0°	R	0°	R]s	5,16	34,7	2,46									
D5]	0°	0°	R	R	0°	R	R]s	5,08	35,6	2,52									
D6	1	0°	0°	R	0°	R	R	R]s	5,04	35,87	2,52									
D7]	0°	0°	R	0°	R	0°	R]s	4,98	39,1	3,13									
D8]	0°	R	0°	R	0°	R	0°]s	4,86	39,7	3,25									
D9]	0°	0°	R	R	0°	0°	R]s	4,70	40,3	3,24									
D10	1	0°	0°	0°	R	R	0°	R]s	4,52	40,9	3,19									
D11	[0°	0°	R	0°	0°	R	0°]s	4,49	46,3	4,37									
D12	[0°	0°	0°	R	0°	0°	R]s	4,26	46,6	4,25									
D13	[0°	0°	R	0°	0°	0°	R]s	4,12	47,8	4,47									
D14	[0°	0°	R	0°	R	0°	0°]s	3,98	49,3	4,74									
D15	[0°	R	0°	0°	R	0°	0°]s	3,72	50,5	4,95									
D16	[0°	R	0°	0°	0°	0°	R]s	3,49	50,7	4,79									
D17	1	0°	0°	0°	0°	R	0°	0°]s	3,40	59,2	6,72									
D18	[0°	0°	0°	R	0°	0°	0°]s	2,94	63,3	7,56									
D19	[0°	0°	R	0°	0°	0°	0°]s	2,08	69,8	8,88									
D20	[0°	R	0°	0°	0°	0°	0°]s	1,07	76,0	10,2									
D21	[R	R	R	R	R	R	0°]s	0,74	6,3	0,06									
D22	[R	R	R	R	R	0°	0°]s	0,6	16,3	0,40									
D23	[R	R	R	0°	0°	0°	0°]s	0,38	43,0	3,0									
D24	[R	R	0°	0°	0°	0°	0°]s	0,36	59,0	5,85									
D25	[R	0°	0°	0°	0°	0°	0°]s	0,33	76,5	10,2									
DX	[0°	0°	0°	0°	0°	0°	0°]s	0,2	95,5	16,3									
*) ACM	= K	orkov	á komp	ozice A	morim	ACM87	7	-		-		-									
R	= Pi	ryž Ru	bena 4	6809							R = Pryž Rubena 46809										

Tab. 26 – Skladba vybraných analyzovaných návrhů pro plochý vzorek

Obr. 52 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrným útlumem - detail

Obr. 53 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a poměrným útlumem

Obr. 54 – Analyzované návrhy skladby plochého CLD vzorku, vztah mezi vlastní frekvencí a statickou ohybovou tuhostí – detail

Z hlediska velikosti vlastní frekvence (a tedy i statické ohybové tuhosti) existují dva extrémní případy skladby. Jedná se o návrh tvořený jedinou dvojicí kompozitních vrstev umístěných kolem středové roviny (D21) a celo-kompozitní strukturu (DX). Návrh DX vykazuje přibližně 15ti násobně vyšší vlastní frekvenci a 270krát vyšší hodnotu ohybové tuhosti než návrh D21. Podobně se z hlediska velikosti poměrného útlumu projevují limitní návrhy DX a D1 (v podstatě sendvičová struktura s kompozitními potahy a pryžovým jádrem), lišící se téměř 30ti násobně. Návrh D17, který je určitým kompromisem pro dosažení optimálního poměrného útlumu a vlastní frekvence zároveň. Tento návrh je charakterizován dvěma tlumicími vrstvami uložených symetricky ve vnějších třetinách vzorku. Návrh D17 stejně jako i další návrhy obsahující pouze dvě tlumicí vrstvy – D18, D19 a D20 leží na Pareto frontě na poměrně úzkém rozsahu vlastních frekvencí (59 – 76 Hz), nicméně zde panuje značný rozdíl v jejich poměrných útlumech, kdy návrh D20 vykazuje více než třetinový poměrný útlum v porovnání s návrhem D17. K zajímavému jevu dochází u zmiňovaných návrhů D17 až D20 z pohledu statické tuhosti, resp. vlastní frekvence. Při posouvání tlumicí vrstvy směrem k vnějším okrajům nosníku se zvyšuje jeho ohybová tuhost, což odporuje klasické laminátové teorii (Berthelot, 1999). Tomuto efektu byla věnována větší pozornost. Použitím laminátové teorie bez uvažování vlivu příčného smyku by ohybová tuhost analyzovaného nosníku (obr. 56) byla definována jako:

$$c_L = E_c \cdot \frac{bh_1^3}{12} + 2 \cdot E_r \cdot \left(\frac{bt^3}{12} + bta_r^2\right) + 2 \cdot E_c \left(\frac{bh_2^3}{12} + bh_2a_2^2\right)$$
(6.1)

kde charakteristické rozměry odpovídají schematu na obr. 56:

<i>E_c</i> , <i>E_r</i>		modul pružnosti kompozitu, pryže									
t		tloušťka tlumicí vrstvy									
h _c		celková tloušťka nosníku									
h_1		tloušťka vnitřního kompozitního "jádra"									
$h_2 = \frac{(h_c - h_1 - 2t)}{2}$		tloušťka vnějších kompozitních "potahů"									
$a_2 = \frac{h_1}{2} + t + \frac{h_2}{2}$		vzdálenost těžiště průřezu vnějšího potahu od centrální osy nosníku									
$a_r = \frac{h_1}{2} + \frac{t_2}{2}$		vzdálenost těžiště průřezu tlumicí vrstvy od centrální osy nosníku									
	he										
		→ → →									

Obr. 56 – Řez analyzovaným nosníkem

Po dosazení parametrů nosníku uvažovaných při optimalizaci do vztahu (6.1) a vyšetřením průběhu funkce: $c_L = c_L(h_1)$ lze zjistit, že tato závislost má skutečně klesající charakter. Laminátová teorie je však mj. založena na předpokladu, že velikosti příčných zkosení jsou zanedbatelná $\gamma_{xz} = \gamma_{yz} \doteq 0$, a proto zůstanou kolmice ke středové ploše kolmé i po deformaci a budou přímkové. Mechanické vlastnosti pryže jsou však o několik řádů nižší než vlastnosti základního kompozitu a jejich příčná zkosení jsou značná – obr. 57.

Obr. 57 – Příčná zkosení tlumicích vrstev

Nabízí se tedy přístup, kdy jsou vrstvy struktury analyzovány jako systém paralelně řazených pružin. Mezi vrstvami neexistuje žádná vazba smykových deformací a jednotlivé vrstvy se ohýbají okolo svých neutrálních os. Ohybová tuhost takového systému by pak byla vyjádřena:

$$c_P = E_c \cdot \frac{bh_1^3}{12} + 2 \cdot E_r \frac{bt^3}{12} + 2 \cdot E_c \frac{bh_2^3}{12}$$
(6.2)

Lze dokázat, že závislost $c_P = c_P(h_1)$ je konvexní funkce a nalezením kořenů rovnice $\frac{dc_P}{dh_1} = 0$ lze určit její minimum:

$$\frac{dc_P}{dh_1} = E_c \cdot \frac{bh_1^2}{4} - E_c \cdot \frac{b \cdot (h_1 - h_c + 2t)^2}{16} = 0$$
(6.3)

Po dosazení konkrétních parametrů lze stanovit, že svého minima dosahuje funkce $c_P = c_P(h_1)$ pro tloušťku kompozitního "jádra" $h_1 = 4 mm$.

Na obr. 58 je provedeno porovnání tuhostí získaných uvedeným analytickým přístupem a výpočtem MKP. Průběh i hodnoty tuhosti c_P dle vztahu (6.2) vykazují větší podobnost s výsledky simulací než tuhost c_L podle klasické laminátové teorie (6.1). Na výsledcích MKP analýz je však evidentní částečné zvýšení ohybové tuhosti, způsobené nárůstem kvadratického moment průřezů jednotlivých vrstev v souladu s platností tzv. Steinerovy věty. Tím je vysvětlen růst statické ohybové tuhosti návrhů D18, D19 a D20.

Obr. 58 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy

Na obr. 59 je znázorněna závislost velikosti poměrného útlumu na tloušťce vnitřní kompozitní vrstvy, jehož maximum náleží opět tloušťce $h_1 = 4 mm$.

Obr. 59 – Závislost poměrného útlumu nosníku na tloušťce vnitřní kompozitní vrstvy

Návrhy D2 až D6 obsahují 8 různě umístěných tlumicích vrstev. Vzhledem k jejich nízkým ohybovým tuhostem, resp. vlastním frekvencím a vysokým poměrným útlumům by tyto struktury nalezly praktické uplatnění spíše jako mechanické tlumiče nárazu, než jako nosné konstrukce. Podobné chování lze sledovat i u dalších návrhů D7 až D10 se šesti pryžovými vrstvami. Návrhy D11 až D16 obsahující 4 tlumicí vrstvy si stále zachovávají relativně vysoké poměrné útlumy, nicméně jejich tuhost je téměř dvojnásobná v porovnání s nejlepším návrhem s 8 tlumicími vrstvami – D6. Tyto návrhy by již byly využitelné, například jako podlahové desky prostředků hromadné dopravy. Jejich nevýhodou by však mohla být jejich vyšší hmotnost související s použitím pryže jako tlumiče. Ostatní návrhy D21 až D25 mají pryžové vrstvy umístěné vně struktury, což komplikuje jejich spojování do konstrukčních celků, navíc jejich tlumení je nízké, srovnatelné s celokompozitní strukturou DX.

6.1.2 Optimalizace skladby čtvercového profilu

Dalším optimalizovaným tělesem byl čtvercový nosník (obr. 60) geometricky totožný s CLD čtvercovými profily II a III viz kap.5.3.3.

Obr. 60 – Geometrie optimalizovaného čtvercového profilu

Struktura byla tvořena 8 vrstvami, v nichž se nahodile střídaly nosné vrstvy z vinutého kompozitu (vlákna cn-60-a2s) s tlumicími vrstvami korkové kompozice (ACM87) – materiálové vlastnosti viz tab. 8 a tab. 18.

V průběhu optimalizace byly respektovány následující předpoklady:

- Vnější vrstvy profilu jsou kompozitní s orientací vláken ±45° vzhledem k podélné ose profilu.
- Tloušťka vnějších kompozitních vrstev je 0,5mm
- Každá vnitřní kompozitní vrstva je z poloviny tvořena vlákny orientovanými kladně vůči podélné ose profilu a z poloviny vlákny orientovanými záporně (nevztahuje se na vrstvy s orientací 0° a 90°)
- Orientace vláken vnitřních kompozitních vrstev byla s ohledem na výrobní technologii variována mezi hodnotami 0°, ±15°, ±25°, ±35°, ±45°, ±55°, ±65°, ±75°, 90°
- Tloušťky vnitřních vrstev jsou 1mm
- Každý návrh musí obsahovat minimálně jednu a maximálně tři tlumicí vrstvy pro zachování dostatečné ohybové tuhosti
- Každý návrh musí obsahovat nejméně jednu kompozitní vrstvu s orientací vláken 0°
- V jednotlivých návrzích se nesmí vyskytovat tři kompozitní vrstvy s orientací vláken 0° v těsném sousedství

Při výpočtech byly využity stávající modely vytvořené pro simulace volného kmitání čtvercových profilů II a III. Výsledkem optimalizace byly grafy relací vlastních frekvencí a poměrných útlumů (obr. 61), respektive vlastních frekvencí a statických tuhostí (obr. 62). Pro srovnání je v grafech vyznačena i poloha celokompozitní struktury, která se vymyká předpokladům optimalizace. Jelikož již byl prokázán vztah ohybové tuhosti a vlastní frekvence při ohybovém tvaru kmitu, nejsou na Pareto frontě závislosti vlastní frekvence – statická tuhost (obr. 62) označeny konkrétní analyzované návrhy, pouze pásma návrhů lišící se počtem tlumicích vrstev.

Obr. 61 – Analyzované návrhy skladby čtvercového profilu, vztah mezi vlastní frekvencí a poměrným útlumem

Obr. 62 – Analyzované návrhy skladby čtvercového profilu, vztah mezi vlastní frekvencí a statickou ohybovou tuhostí – detail

Skladby vybraných analyzovaných návrhů jsou shrnuty v tab. 27, přičemž číselné označení vrstev je uvažováno od vnitřní stěny profilu směrem k vnější. Skladby všech analyzovaných návrhů jsou shrnuty v Příloze V.

	Vrstva (orientace/tlumič ^{*)})										
Návrh	1	2	3	4	5	6	7	8	ζ·10 ⁻²	f [H-1	Cs [Numm]
D1	[+45°		0°		0°	0°		+45° 1	1 00	125.8	
01	[<u>+</u> 45		0 1⊑°		0°	0		±45]	1 71	125.0	720.2
	[<u>1</u> 45				0	0		145 J	1,71	126.6	730,5
D3	[±45			0	0	0		±45]	1,07	127.1	752,5
	[<u>1</u> 45	122			0			145 J	1,01	1/1 0	790,0 964 E
					0			±45]	1,57	145,0	004,5
D6	[±45	±25	ACIVI	0	0	0	ACIVI	±45]	1,48	143,3	875,1
D7	$\begin{bmatrix} \pm 45^{\circ} \\ - 45^{\circ} \end{bmatrix}$	±15°	ACIVI	0	0	0		±45']	1,36	150,5	973,4
D8	$[\pm 45]$		ACIVI	0	0		ACIVI	±45°]	1,29	154,7	1033,0
D9	[±45°	ACM	0°	0°	0°	ACM	0°	±45°]	1,18	15/,/	1078,3
D10	[±45°	±15°	ACM	0°	0°	ACM	0°	±45°]	1,02	157,1	1088,7
D11	[±45°	0°	ACM	0°	0°	ACM	0°	±45°]	1,02	162,0	1149,6
D12	[±45°	ACM	0°	0°	ACM	0°	0°	±45°]	0,86	164,2	1167,0
D13	[±45°	0°	ACM	0°	ACM	0°	±15°	±45°]	0,63	164,5	1163,1
D14	[±45°	0°	ACM	0°	ACM	0°	0°	±45°]	0,61	168,6	1228,5
D15	[±45°	ACM	0°	ACM	0°	0°	0°	±45°]	0,53	169,8	1227,8
D16	[±45°	±35°	±15°	ACM	0°	0°	0°	±45°]	0,37	164,3	1241,7
D17	[±45°	±25°	±15°	ACM	0°	0°	0°	±45°]	0,37	168,8	1312,0
D18	[±45°	0°	0°	ACM	ACM	0°	0°	±45°]	0,36	171,6	1251,5
D19	[±45°	±25°	0°	ACM	0°	0°	0°	±45°]	0,36	174,1	1398,5
D20	[±45°	±15°	±15°	ACM	0°	0°	0°	±45°]	0,36	175,1	1414,8
D21	[±45°	±15°	0°	ACM	0°	0°	0°	±45°]	0,35	179,5	1489,3
D22	[±45°	±15°	0°	0°	ACM	0°	0°	±45°]	0,33	180,0	1492,1
D23	[±45°	0°	ACM	±15°	0°	0°	0°	±45°]	0,32	181,0	1504,8
DX	[±45°	0°	0°	0°	0°	0°	0°	±45°]	0,29	192,2	1825,7
*) ACM	= Korkov	á komp	ozice A	morim	ACM8	7			·	•	
R	R = Pryž Rubena 46809										

Tab. 27 – Skladba vybraných analyzovaných návrhů pro čtvercový profil

Z pohledu poměrného útlumu lze u analyzovaných návrhů sledovat dva limitní případy – návrh D1 s maximálním tlumením a celo-kompozitní návrh DX s tlumením téměř 7mi násobně nižším. Naopak poměr statické ohybové tuhosti (resp. vlastní ohybové frekvence) návrhu DX vůči návrhu D1 činí skoro 2,5násobek (resp. 1,5násobek). Při použitých nastaveních optimalizačního cyklu je u všech návrhů Pareto fronty patrná snaha o maximalizaci počtu vrstev s nulovou orientací v kompozitních vrstvách. Tyto vrstvy jsou nutné pro dosažení vysoké ohybové tuhosti. Nicméně s ohledem na reálné uplatnění těchto nosníků a též technologická omezení při jejich výrobě by do struktury bylo vhodné začlenit i určitý počet vrstev s orientací ±45° pro zajištění torzní tuhosti, ale také vrstvy s orientací 90°, které by zabraňovaly borcení profilu při působení vnějších sil na jeho plášť (např. při upínání/spojování do sestav), což dokládá i provedená studie (Kroupa, a další, 2009). Návrhy D1 až D3 a D5 obsahují tři tlumicí vrstvy a hodnoty jejich poměrných útlumů jsou vysoké. Naopak vzhledem k nízkému počtu nosných vrstev patří tyto návrhy k nejslabším. Návrhy D6 až D15 náleží do skupiny struktur s dvěma vrstvami

korku. Díky rozdílné skladbě lze u těchto návrhů pozorovat značné rozpětí hodnot poměrných útlumů i ohybových tuhostí (resp. vlastních frekvencí); poloha tlumicích vrstev stejně jako orientace vláken v kompozitních vrstvách tedy silně ovlivňuje výsledné tlumení struktury a její statickou i dynamickou tuhost. Ideální skladbu z hlediska tlumení i tuhosti představuje návrh D11, jehož dvě tlumicí vrstvy uložené v krajních třetinách tloušťky profilu jsou obklopeny kompozitními vrstvami s výhradně 0° orientací vláken. Další analyzované návrhy D16 až D23 obsahují pouze jedinou tlumicí vrstvu (kromě návrhu D18). Pro tyto návrhy je charakteristická vysoká ohybová tuhost (vlastní frekvence), přičemž míra tlumení je pouze nepatrně lepší, než u celo-kompozitního návrhu. U těchto návrhů lze také pozorovat pravidelný výskyt tlumiče ve 4. vrstvě, nebo v těsném sousedství této vrstvy. Byly proto provedeny dodatečné analýzy tuhosti profilů s pouze jedinou tlumicí vrstvou a nulovou orientací vnitřních vrstev laminy – viz tab. 28. Z grafu závislosti ohybové tuhosti na poloze tlumicí vrstvy (obr. 63) je zřejmé, že při posouvání tlumiče od vnitřní stěny profilu až do čtvrté vrstvy tuhost nejprve roste. Pokud je ovšem tlumič uložen v některé z následujících vrstev, ohybová tuhost profilu opět klesá. Po určitém počtu průchodů optimalizačním cyklem je pro dosažení maximální ohybové tuhosti patrná snaha o lokalizaci tlumiče do čtvrté vrstvy struktury. Průběh závislosti poměrného útlumu na poloze tlumicí vrstvy má složitější charakter - obr. 64.

Tab. 28 – Skladby dodatečně analyzovaných profilů

Delehe		,										
tlumiče	:	l	2	3	4	5	6	7	8		ζ·10⁻² [-]	C₅ [N∙mm]
1	[±4	5°	ACM	0°	0°	0°	0°	0°	±45°]	0,37	1495,7
2	[±4	5°	0°	ACM	0°	0°	0°	0°	±45°]	0,35	1530,7
3	[±4	5°	0°	0°	ACM	0°	0°	0°	±45°]	0,34	1542,3
4	[±4	5°	0°	0°	0°	ACM	0°	0°	±45°]	0,33	1532,9
5	[±4	5°	0°	0°	0°	0°	ACM	0°	±45°]	0,33	1499,5
6	[±4	5°	0°	0°	0°	0°	0°	ACM	±45°]	0,37	1433,2

Obr. 63 – Závislost ohybové tuhosti nosníku na tloušťce vnitřní kompozitní vrstvy

Obr. 64 – Závislost poměrného útlumu nosníku na tloušťce vnitřní kompozitní vrstvy

6.1.3 Zhodnocení provedených optimalizací

Provedené optimalizace dvou vybraných charakteristických těles demonstrují možnost využití navržené metodiky při konstrukci dílů z hybridních kompozitů. Získané výsledky (grafy Pareto fronty, tabulky skladby analyzovaných profilů) mohou být dobrým vodítkem pro optimální volbu hybridní struktury při uvažovaném způsobu namáhání. Ze shrnutých výsledků dále vyplývají některá zajímavá konstrukční doporučení, jimž se věnuje následující kapitola 6.2. Na základě získaných zkušeností je možné modifikovat stávající nastavení optimalizovaných parametrů i pro další numerické modely a přizpůsobit tak celý cyklus konkrétní aplikaci daného dílu.

6.2 Indukce obecně platných konstrukčních doporučení

Při experimentálním výzkumu vzorků z hybridních kompozitů, stejně jako při rozboru dat získaných jejich následnou optimalizací využívající nové metodiky konstruování byly zjištěny zajímavé skutečnosti. Vzájemnou konfrontací experimentálních výsledků s výsledky numerických simulací lze předpokládat jejich obecnou platnost.

Bez ohledu na ostatní geometrie lze u vzorků s charakterem nosníku usuzovat:

- 1. Integrace pasivních tlumicích vrstev do kompozitních struktur má pozitivní vliv na míru tlumení; naopak jejich ohybová tuhost se snižuje
- 2. Efekt tlumicích vrstev řešených jako potahy (ULD struktury) je nižší než v případě tlumicích mezivrstev (CLD struktury)
- Jako tlumiče je vhodné vybírat materiály, které mají vysoký poměrný útlum v kombinaci s nízkou měrnou hmotností; analyzovaná korková kompozice Amorim ACM87 vykazovala v tomto ohledu lepší vlastnosti než pryž Rubena 46809
- 4. K výraznému ovlivnění tlumení stačí jedna až dvě tlumicí vrstvy
- 5. Pro udržení dostatečné tuhosti není vhodné zvyšovat tloušťku tlumicích vrstev na úkor vrstev nosných (kompozitních); i vhodně umístěné tenké vrstvy výrazně zvýší tlumení, aniž by se příliš snížila tuhost
- Orientace vláken v nosných kompozitních vrstvách je třeba volit s ohledem na předpokládané zatěžování; namáhání v ohybu nejlépe odolávají vrstvy s vlákny uloženými rovnoběžně

s podélnou osou nosníku, pro namáhání krutem jsou vhodné vrstvy s orientací ±45° a při namáhání stěn nosníku tlakem se nejvíce uplatní vrstvy s orientací "téměř" 90° (dáno omezeními uvažované technologie výroby – navíjení)

Dále byly pozorovány některé souvislosti, jež byly podmíněny geometricky, nebo způsobem zatěžování. V případě součástí s charakterem jednostranně vetknutého nosníku a s čtvercovým (obdélníkovým) průřezem s vrstvami uloženými v rovině kolmé na směr zatěžování je prokázáno:

- Vzhledem ke smyslu zatěžování a charakteru tělesa je vhodné volit symetrické uspořádání skladby vůči k neutrální rovině nosníku
- 2. V případě čistě ohybového zatěžování je ideální začlenit maximální počet kompozitních vrstev s orientací 0° vzhledem k podélné ose nosníku
- K dostatečnému posílení tlumicích schopností struktury (až 20ti násobnému) postačují pouhé dvě tlumicí vrstvy
- 4. V případě použití dvou tlumicích vrstev je optimální jejich symetrické uložení ve vnějších třetinách tloušťky struktury – bylo dokázáno, že při posouvání tlumicích vrstev dochází k růstu ohybové tuhosti
- 5. Použití více než dvou tlumicích vrstev je vhodné pouze pro případy, kdy je upřednostňováno docílení vyšších poměrných útlumů, a i tehdy se doporučuje ukládat tlumicí vrstvy do těsného sousedství s nosnými vrstvami s vysokou ohybovou tuhostí (orientace vláken 0°)

U nosníků s charakterem čtvercového trubkového profilu zatěžovaného obecně ohybem bylo zjištěno:

- Vzhledem k vysokému kvadratickému průřezu těchto nosníků je jejich ohybová tuhost vysoká (vliv bočních stěn); dochází k malým smykovým deformacím tlumicích vrstev, které se nejvýznamněji podílí na disipaci kinetické energie – vliv tlumicích vrstev je tedy nižší, než v případě plochých nosníků
- 2. V případě čistě ohybového zatěžování je ideální začlenit maximální počet kompozitních vrstev s orientací 0° vzhledem k podélné ose nosníku
- 3. Z důvodu použité technologie výroby (navíjení na šablonu) a také pokud je nosník podroben i dalším způsobům namáhání, je žádoucí do struktury začlenit kompozitní vrstvy s orientací vláken ±45°, resp. 90°
- 4. Jestliže je ve struktuře integrována pouze jedna tlumicí vrstva, je pro dosažení maximálního tlumicího efektu optimální její poloha v první třetině tloušťky od vnitřních stěn profilu při posouvání tlumicí vrstvy směrem ven poměrný útlum nosníku klesá
- Poloha jediné tlumicí vrstvy také ovlivňuje ohybovou tuhost nosníku; tlumič uložený ve vnitřní třetině tloušťky stěny profilu vede k dosažení maximální ohybové tuhosti – přesouváním polohy tlumicí vrstvy do obou směrů tloušťky tuhost klesá
- 6. Při použití dvou tlumicích vrstev je vhodné jejich umístění do vnitřní a vnější třetiny tloušťky stěny profilu
- Integrace více než dvou tlumicích vrstev snižuje ohybovou tuhost nosníku až na 30% původní tuhosti celokompozitní struktury

6.3 Aplikace metodiky při návrhu hybridního kompozitního vřeteníku

Poznatky získané při rešerši a samostatném výzkumu je možné úspěšně aplikovat například při návrhu hybridního komůrkového kompozitního vřeteníku. V tomto ohledu bude možné navázat na výsledky projektů GA101/08/0299 – "Výzkum inteligentních kompozitových prvků výrobních strojů z ultravysokomodulových vláken a nanočásticemi modifikované matrice" a TE01020075 – Centrum kompetence – "Strojírenská výrobní technika". Za přispění těchto projektů a spoluprací se společností CompoTech PLUS spol. s r.o. již byla řešena optimalizace kompozitního vřeteníku (obr. 65) z hlediska rozměrových parametrů, počtu a skladby jednotlivých vrstev. Rovněž byl vyroben prototyp komůrkového vřeteníku s tlumicími výplněmi z polyuretanové pěny (obr. 66).

Obr. 65 – Příklad provedení kompozitního vřeteníku

Obr. 66 – Náhled řezu komůrkového kompozitního vřeteníku s tlumicími výplněmi z PU

Experimentálním měřením statických i dynamických charakteristik tohoto vřeteníku se ujala fakulta strojní při ČVUT v Praze a jejich výsledky budou publikovány v Závěrečné zprávě projektu TE01020075 – Centrum kompetence – *"Strojírenská výrobní technika"*, pracovní balíček WP7. Integrace pasivních tlumicích vrstev do takové strojní části by vedla k dosažení lepší dynamické stability a vyšší přesnosti obrábění.

V následující generaci prototypu vřeteníku by již mohly být integrovány tlumicí vrstvy. Prostřednictvím postupů, zevrubně popsaných v této disertační práci na případech jednodušších geometrií, je možné vystavět rozsáhlé optimalizační cykly, jež by řešily např. vhodný počet, rozmístění a tloušťky tlumicích vrstev, případně i nejvhodnější mechanické vlastnosti materiálu tlumiče. Zachování vysoké tuhosti komůrkového kompozitního vřeteníku při současném navýšení tlumicích schopností struktury by značně stabilizovalo samotný proces obrábění, což by v důsledku vedlo k dosažení vyšší produktivity práce a kvalitě obráběných ploch.

7 Míra naplnění stanovených cílů disertační práce

Cílem předkládané disertační práce byl návrh metodiky konstruování z kompozitních materiálů s integrovanými tlumicími vrstvami a taktéž praktické ověření její platnosti na vybraných reálných tělesech. Výzkum byl od počátku orientován na potlačování vlastních frekvencí u konstrukcí s dominantním ohybovým tvarem kmitu. Konstrukce takového charakteru se poměrně často vyskytují ve strojírenství, kde jakékoliv kmitání většinou bývá spíše nežádoucím jevem.

Na začátku studia hybridních kompozitů byla vypracována rozsáhlá rešerše v dané oblasti. Analýzou získaných poznatků byla odvozena samotná strukturalizace disertační práce a zároveň byly stanoveny potřebné dílčí úkony. Jelikož byla práce postavena na extenzivním využívání nástrojů virtuálního prototypování (zvláště pak metody konečných prvků), bylo nutné vybrat adekvátní numerický model pro reprezentaci hybridních kompozitních struktur, vyznačujících se značnou heterogenitou. Mechanické vlastnosti se totiž mění skokově nejen na přechodu nosných vrstev (v tomto případě lamin) a tlumicích vrstev (pryž, resp. korková kompozice), ale i v samotných nosných vrstvách na přechodu vlákno – matrice. S ohledem na možnosti komerčních konečnoprvkových řešičů a související fyzikální vlastností elementů zvolených numerických modelů byl vybrán vhodný způsob matematického popisu strukturálního tlumení, tzv. proporcionální (Rayleighův) model tlumení. Teprve pak bylo možno přistoupit k formulaci fundamentálních předpokladů metodiky. V tomto směru lze jako stěžejní považovat způsob určení tlumicích parametrů jednotlivých komponentů hybridní kompozitní struktury. Zde byl uplatněn experimentální přístup doplněný o pomocné numerické výpočty metodou konečných prvků. Řešení této problematiky prezentované v disertační práci je zcela nové, ačkoliv vychází z již publikovaných poznatků a známých vztahů. Platnost metodiky byla úspěšně ověřena opět experimentálně na řadě reálných vzorků.

Součástí disertační práce byla rovněž praktická ukázka využití navržené metodiky. Byly provedeny optimalizace skladby dvou těles pro dosažení maximálního tlumení a maximální vlastní frekvence pro ohybový tvar kmitu při současném zachování maximální statické ohybové tuhosti. Díky nástrojům integrovaným v optimalizačním programu optiSLang 3.0.0 bylo možné analyzovat široké spektrum složení hybridních kompozitních struktur. Takto byly odhaleny některé opakující se zákonitosti, jež byly posléze shrnuty do podoby obecně platných konstrukčních doporučení.

Závěrem této kapitoly lze konstatovat, že veškeré vytyčené cíle disertační práce byly beze zbytku naplněny.

8 Závěr

Cílem předkládané disertační práce byl návrh a ověření metodiky konstruování z kompozitních materiálů s integrovanými pasivními tlumicími prvky. Základním pilířem práce byla rozsáhlá rešerše věnující se obecně problematice strukturálního tlumení. Podnětem k zahájení výzkumu byla řada nalezených zajímavých praktických aplikací pasivních tlumicích elementů doplněná o mnoho teoretických studií, publikovaných zejména v posledních dvou desetiletích. V tomto ohledu dominuje zejména odvětví dopravní techniky, kde posílení tlumicích schopností konstrukcí výrazně zvyšuje komfort přepravovaných osob. Výrobci sportovních potřeb rovněž často integrují pasivní tlumiče přímo do struktury svých produktů. V konstrukci výrobních strojů a zařízení panuje spíše konzervativní přístup (stejně jako u aplikace čistých kompozitních materiálů), nicméně i v této oblasti se pomalu začínají prosazovat různé nekonvenční materiály.

Z prostudovaných informačních zdrojů vyplývá, že na dynamické chování hybridních kompozitů mají vliv jednak vlastnosti samotné vláknové kompozitní struktury, a dále samozřejmě vlastnosti přidaných tlumicích vrstev, jež mohou být řešeny jako potahy, resp. jako mezivrstvy.

Dokument ve své rešeršní části dále obsahuje přehled viskoelastických materiálů nejčastěji užívaných pro pasivní tlumicí vrstvy a také matematické modely popisující chování těchto materiálů. Uveden je i výčet matematických modelů tlumení z důvodu vysvětlení používané terminologie. V práci jsou popsány také experimentální metody pro určení tlumicích charakteristik.

Rešerše se rovněž věnuje analytickým a numerickým metodám modelování hybridních struktur. Je evidentní, že analytický přístup se musí vypořádávat s řadou omezení plynoucích především z míry idealizace výpočetních modelů a jsou aplikovatelné pouze na úzký rozsah geometrií (ploché tyče, trubky, desky, ...) a vlastní skladbu hybridních struktur (počet a řazení vrstev, míra anizotropie potahů, ...) Společným znakem většiny analytických metod je fakt, že vedou k řešení diferenciálních rovnic vyšších řádů, což mnohdy ztěžuje jejich použití v technické praxi. Numerické metody podpořené rostoucím výkonem výpočetní techniky umožňují detailnější propracování hybridní struktury. Samotná příprava numerických modelů struktur z hybridních vláknových kompozitů je zvláště v případě tvarově složitějších dílců časově náročná a při řešení například transientních úloh jsou i výpočetní časy velmi vysoké, což značně omezuje užití optimalizačních cyklů. Tato skutečnost byla potvrzena i během praktické části výzkumu hybridních kompozitů.

Veškerá činnost v rámci vlastního výzkumu byla úzce spjata se samotným návrhem nové metodiky konstruování z kompozitů s integrovanými pasivními tlumicími vrstvami. Nejprve byly formulovány základní metodické pokyny pro stanovení dílčích koeficientů proporcionálního modelu tlumení, které lze využít v řadě komerčních výpočetních programů pro analýzy metodou konečných prvků. Platnost předpokladů, na nichž je metodika založena, byla ověřena pomocí experimentálních měření na reálných zkušebních tělesech. Experimentu bylo rovněž využito pro stanovení tlumicích charakteristik použitých materiálů, sloužících jako vstupní data pro numerické simulace. Byla provedena série měření na vzorcích z uhlíkového kompozitu, pryže, korkové kompozice a také na hybridních strukturách s tlumicími potahy (ULD), resp. mezivrstvami (CLD), vzniklých kombinací uvedených materiálů. Tyto struktury se lišily jak průřezem (ploché tyče, trubkový čtvercový profil), tak i technologií jejich vzniku (vlepování tlumicích vrstev, příp. ovíjení). Většina experimentů byla založena na transientní odezvě

systému, kdy byla pomocí laserového snímače polohy sledována výchylka volného konce jednostranně vetknutého vzorku. Tento způsob měření by byl vhodný i pro použití v běžných výrobních podnicích a vyžadoval by minimum pořizovacích nákladů. K vyhodnocení výsledků byl navržen vlastní skript v programu Matlab. Jako klíčový se v této fázi výzkumu projevil vliv upnutí vzorku a způsob jeho modelování. Velikost celkového tlumení je silně závislá na míře energie, která je disipovaná ve vetknutí prostřednictvím tření mezi vzorkem, podkladem a upínkami. Z tohoto důvodu bylo pro validaci metodiky použito ještě měření pomocí aparatury s modálním kladívkem a akcelerometrem. Takto byly získány hodnoty poměrných útlumů a vlastních frekvencí pro ohybový tvar kmitu, který se projevuje jako první mód u dlouhých štíhlých jednostranně vetknutých nosníků. Ve strojírenské praxi lze na problematiku vetknutého nosníku převést řadu částí obráběcích strojů, jako například jsou pinoly, vřeteníky, vyvrtávací tyče, apod.

Porovnáním hodnot vlastních frekvencí a poměrných útlumů stanovenými numerickými simulacemi s výsledky experimentu bylo zjištěno, že navržená metodika je vhodná pro kvalitativní porovnání dynamických vlastností různých variant skladby téže konstrukce z hybridního kompozitu při ohybovém namáhání. Aby bylo možné metodiku použít i k predikci vlastní frekvence a poměrného útlumu (přičemž poměrný útlum je u reálných součástí funkcí frekvence, velikosti výchylky, atd.), bylo by nutné vykonat mnohem větší počet měření na tělesech s jinou skladbou i geometrií. Zároveň se nabízí možnost rozšíření platnosti metodiky i pro další vlastní frekvence a charakteristické tvary kmitu, které by muselo být opět podloženo další sadou měření.

Praktické využití metodiky ke kvalitativnímu posouzení konstrukce bylo prezentováno na optimalizaci dvou různých hybridních strukturách – ploché tyče a tyče s čtvercovým trubkovým profilem. Za tímto účelem byl sestaven cyklus využívající programy Matlab, MSC Marc a optiSLang, který na základě evolučního algoritmu Paretovy množiny hledal optimální skladbu struktury pro dosažení maximální ohybové tuhosti, maximální vlastní frekvence pro ohybový tvar kmitu a maximálního poměrného útlumu. Rozborem výsledků byla potvrzena přímá souvislost mezi statickou ohybovou tuhostí a vlastní frekvencí pro ohybový tvar kmitu. Dále byly pozorovány jisté zákonitosti dynamického chování analyzovaných hybridních struktur související s jejich skladbou. Tyto poznatky byly shrnuty do podoby obecně platných konstrukčních doporučení. Bylo zjištěno, že z hlediska únosnosti je pro ohybové namáhání nosníku vhodné do struktury zařadit maximální počet nosných kompozitních vrstev s orientací vláken rovnoběžnou s podélnou osou nosníku. Často je však nutné, aby struktura obsahovala i nosné kompozitní vrstvy s jinými orientacemi, což může být dáno jednak výrobní technologií, ale i kombinací způsobů zatížení, které ve skutečnosti na konstrukci působí. Pro namáhání krutem se obecně doporučují vrstvy s orientací ±45° a pro svěrné zatížení vrstvy s orientací 90° vůči podélné ose. Přidání tlumicích vrstev ve formě potahů sice nijak nesnižuje statickou ohybovou tuhost původní konstrukce, nicméně zvyšuje částečně její hmotnost a její vliv na celkový poměrný útlum analyzovaných vzorků nebyl prokázán. Tlumicí potahy však mohou účinně chránit kompozitní konstrukce před lokálním poškozením při nárazu cizího tělesa. Naopak použitím tlumicích mezivrstev, jejichž mechanické vlastnosti jsou o několik řádů nižší než vlastnosti kompozitů, je výrazně snížena statická ohybová tuhost výsledné hybridní konstrukce. Na příkladu analyzovaných CLD pásků bylo dokázáno, že tyto hybridní struktury se při ohybovém namáhání chovají spíše jako samostatná kompozitní souvrství, ohýbající se okolo svých vlastních neutrálních rovin (analogie s paralelně řazenými pružinami). Z tohoto důvodu je tedy nejvhodnější do struktury vkládat co nejnižší počet tlumicích mezivrstev s minimální tloušťkou. U analyzovaných struktur se jako optimální z hlediska statické ohybové tuhosti a poměrného útlumu projevily dvě tlumicí mezivrstvy. Umístěním těchto tlumicích mezivrstev symetricky do vnějších třetin tloušťky struktury lze v případě hybridních CLD pásku docílit při konstantní celkové tloušťce až 15ti násobného nárůstu poměrného útlumu při zachování 50% původní statické ohybové tuhosti. V případě trubkového profilu bylo dosaženo až trojnásobného zesílení poměrného útlumu a 60% statické ohybové tuhosti. Konstrukce obráběcích strojů bývají naštěstí běžně předimenzovány, čímž by byl případný úbytek tuhosti vlivem přidaných tlumicích vrstev dostatečně kompenzován.

Je možné učinit zajímavé srovnání získaných poznatků se závěry disertační práce, jež byla shodou okolností publikována v letošním roce (2012) na ETH Zürich (Lepoittevin, 2012). Tato práce se zabývala zejména vlivem dělených tlumicích mezivrstev na výsledné tlumení hybridní kompozitní struktury. Publikované výsledky poukazují mj. na fakt, že předěly mezi jednotlivými tlumicími mezivrstvami by se pro dosažení maximálního tlumicího efektu měly nacházet v místech maximálních zakřivení struktury při rezonanční frekvenci (tj. v místě tzv. *kmiten*). Dále se autor věnoval optimálnímu umístění tlumicích mezivrstev s rozdílnými moduly pružnosti ve smyku.

Výzvami pro navazující výzkum stále zůstává ověření metodiky i na tělesech s jinou geometrií, použití různých typů materiálů pro tlumicí vrstvy, stejně jako rozšíření její platnosti pro další způsoby dynamického zatěžování a s nimi související vlastní frekvence a vlastní tvary kmitu.

9 Citovaná literatura

Adams, V. a Askenazi, A. 1996. Building Better Products with Finite Element Analysis. místo neznámé : OnWord Press, 1996. ISBN 156690160X.

Åkesson, H., Smirnova, T. a Håkansson, L. 2009. Analysis of dynamic properties of boring bars concerning different clamping conditions. *Mechanical Systems and Signal Processing.* 2009, Sv. 23, 8, stránky 2629-2647.

ANSYS. 2009. Help System. 2009. Release 12.

Appuhn, Geoffrey. 2002. *Integrally Damped 1st Stage Composite Fan Blades.* San Diego : University of California San Diego, 2002. Disertační práce.

Araújo, A.L., a další. 2008. Damping Optimization of Viscoelastic Laminated Sandwich Composite Structures. *International Conference on Engineering Optimization.* 2008.

Austin, E.M. a Inman, D.J. 2000. Some Pitfalls of Simplified Modeling for Viscoelastic Sandwich Beams. *ASME Journal of Vibration and Acoustics.* 2000, Sv. 122, 1, stránky 1-16.

Baber, T.T., Maddox, R.A. a Orozco, C.E. 1998. Finite element model for harmonically excited viscoelastic sandwich beams. *Computers and Structures.* 1998, Sv. 66, 1, stránky 105-113.

Bai, J.M. a Sun, C.T. 1995. The Effect of Viscoelastic Adhesive Layers on Structural Damping of Sandwich Beams. *Mechanics of Structures and Machines.* 1995, Sv. 23, 1, stránky 1-16.

Balkema, Kimberly J. 1994. *Design and Analysis of Constrained Layer Damping Treatments for Bending and Torsion, Ph.D Thesis.* Ohio : Air Force Institute of Technology, 1994.

Barrett, D.J. 1989. A Design for Improving the Structural Damping Properties of Axial Members. *Proceedings of Damping '89.* 1989.

-. **1992.** An Anisotropic Laminated Damped Plate Theory. *Journal of Sound and Vibration.* 1992, 154, stránky 453-465.

Berthelot, J. M. 1999. *Composite Materials: Mechanical Behaviour and Structural Analysis.* New York : Springer-Verlag, 1999.

Brüel and Kjaer. 2004. Introduction to Modal Testing. *Theory and Application Handbook BA 7679-16.* 2004.

Buda, J. a Békés, J. 1977. Teoretické základy obrábania kovov. Bratislava : Alfa, 1977.

Carazo, Alfredo Vázquez a Uchino, Kenji. 2001. *Novel Piezoelectric-Based Power Supply for Driving Piezoelectric Actuators Designed for Active Vibration Damping Applications.* místo neznámé : Kluwer Academic Publishers, 2001. ISSN 1385-3449.

Clough, R. W. a Penzien, J. 1995. *Dynamics of Structures.* Berkeley, USA : Computers & Structures, Inc., 1995.

de Bever, Anniek. 1992. *Dynamic Behaviour of Rubber and Rubberlike Materials.* Eindhoven : WFW-report, 1992. 92.006.

DiTaranto, R.A. 1965. Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beams. *Journal of Applied Mechanics.* 1965, 87, stránky 881-886.

Finegan, Ioana C. a Gibson, Ronald F. 1999. Recent Research on Enhancement of Damping in Polymer Composites. *Composite Structures.* 1999, Sv. 44, 2-3, stránky 89 - 98.

Harris, J.A. 1987. Rubber, Chemistry and Technology. *Dynamic Testing under Nonsinusoidal Conditions and the Consequences of Nonlinearity for Service Performance*. 1987.

Chen, L. Y., a další. 1994. Free Vibration of a SDOF System with Hysteretic Damping. [autor knihy] B. A. Boley. [editor] B. A. Boley. *Mechanics Research Communications.* místo neznámé : Elsevier, 1994, Sv. 21.

Chen, Q. a Chan, Y.W. 2000. Integral Finite Element Method for Dynamical Analysis of Elasticviscoelastic Composite Structures. *Computers and Structures*. 2000, Sv. 74, 1, stránky 51-64.

Chowdhury, Indrajit. 2003. Computation of Rayleigh Damping Coefficients for Large Systems. *The Electronic Journal of Geotechnical Engineering.* Volume 8, 2003, Sv. C.

ISO 4664-1:2005. 2005. *Rubber, vulcanized or thermoplastic -- Determination of dynamic properties --Part 1: General guidance.* 2005.

Janda, Petr, Kroupa, Tomáš a Lašová, Václava. 2011. Comparison of the Young's Modulus of Lamina nad Textile Composites. *Bulletin of Applied Mechanics.* 7, 2011, stránky 46-49.

Johnson, C.D. a Kienholz, D.A. 1982. Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers. *AIAA Journal*. 1982, Sv. 20, 9, stránky 1284-1290.

Jones, David I. G. 2001. *Viscoelastic Vibration Damping*. Chichester : John Wiley and Sons Ltd., 2001. ISBN 0-471-49248-5.

Kottner, R., Vacík, J. a Zemčík, R. 2010. Improvement of Damping Properties of Carbon Fibre Reinforced Laminated Plastics Using Damping Layers. *Materials and Technology.* 2010. V recenzním řízení.

Kroupa, T., a další. 2009. Pareto Optimization of Composite Seat Post for Cycle-ball Bicycle Frame. *Mechanika kompozitních konstrukcí 2009.* 2009, stránky 90-97. ISBN 978-80-7043-782-7.

Kung, S.W. a Singh, R. 1998. Vibration Analysis of Beams with Multiple Constrained Layers Damping Patches. *Journal of Sound and Vibration.* 1998, Sv. 212, 5, stránky 781-805.

Laš, V. 2008. *Mechanika kompozitních materiálů*. Plzeň : Západočeská univerzita v Plzni, 2008. 978-80-7043-689-9.

Lašová, V., Vacík, J. a Kottner, R. 2012. Investigation of Dynamic properties of hybrid laminate structure. *Procedia Engineering*. 2012, Sv. 48, stránky 358-366.

Lee, Dai Gil, Hwang, Hui Yun a Kim, Jin Kook. 2003. Design and Manufacture of a Carbon Fiber Epoxy Rotating Boring Bar. *Composite Structures.* 2003, 60, stránky 115-124.

Lepoittevin, Grégoire. 2012. *Composite Laminates with Integrated Vibration Damping Treatments.* Zürich : ETH Zürich, 2012.

Lockett, F.J. 1972. Nonlinear Viscoelastic Solids. New York : Academic Press London, 1972. 0124543502

Lofstrom, Paul D., a další. 2004. Cover Including Multiple Cover Plates with Damped Layers. US 6 697 213 B2 USA, 24. únor 2004.

Maddox, R. 1996. A Finite Element Model for Harmonic Response of a Viscoelastic Sandwich Beam. Charlottesville, VA : Dept. of Civil Engineering, University of Virginia, 1996.

Marsh, Eric R. a Slocum, Alexander H. 1996. An Integrated Approach to Structural Damping. *Precision Engineering*. 1996, 18, stránky 103-109.

Marui, E., Hashimoto, M. a Kato, S. 1993. Damping Capacity of Turning Tools, Part 1: Effect of Clamping Conditions and Optimum Clamping Load. *Journal of Engineering for Industry.* 1993, stránky 362-366.

Mead, D.J. a Markus, S. 1969. The Forced Vibration of a Three-Layer Damped Sandwich Beam with Arbitrary Boundary Conditions. *Journal of Sound and Vibration*. 1969, 10, stránky 163-175.

Mehmed, Oral. 1996. Damping Experiment of Spinning Composite Plates With Embedded Viscoelastic Material. [autor knihy] George L. Stefko. *Machine Dynamics Branch Research and Accomplishmentsfor FY 1996.* Cleveland : National Aeronautics and Space Administration, 1996.

Moreira, R.A.S., de Melo, F.J.Q. a Dias Rodrigues, J.F. 2009. Static and Dynamic Characterization of Composition Cork for Sandwich Beam Cores. *Journal of Material Science*. 2009, Sv. 45, stránky 3350-3366.

MSC Software Corp. 2010. *Whitepaper - Nonlinear Finite Element Analysis of Elastomers.* Santa Ana, California : MSC.Software Corporation, 2010. MA*11/2010*Z*Z*Z*LT-WPS-ELAS.

MSC.Software Corp. 2008. Theory and User Information. *MSC Marc 2008r1 Product Documentation.* 2008, Sv. A.

Odvárka, Jakub. 2007. *Numerické simulace chování staticky zatíženého sendviče.* Plzeň : Západočeská univerzita v Plzni, 2007. str. 38. bakalářská práce.

Plunkett, R. a Lee, C.T. 1970. Length Optimization of Constrained Viscoelastic Layer Damping. *Journal of the Acoustical Society of America*. 1970, 48, stránky 150-161.

Ponížil, P. 2009. 6. Viskoelasticita materiálů. [Online] Univerzita Tomáše Bati ve Zlíně, 11. prosinec 2009. [Citace: 27. srpen 2010.] http://ufmi.ft.utb.cz/texty/env_fyzika/EF_06.pdf.

Rao, Mohan D. 2002. Recent Applications of Viscoelastic Damping for Noise Control in Automobiles and Commercial Airplanes. *Journal of Sound and Vibration.* 2002, 262, stránky 457 - 474.

Ross, D., Ungar, E. E. a Kerwin, E. M. Jr. 1959. Damping of Plate Flexural Vibrations by Means of Viscoelastic Laminate. *Structural Damping.* 1959, stránky 49-88.

Saravanos, D.A. a Pereira, J.M. 1992. Effects of Interply damping Layers on the Dynamic Characteristics of Compoiste Plates. *AIAA Journal.* 1992, Sv. 30, 12, stránky 2906-2913.

Schroeder, M. a Callahan, L. 2005. Taking the Witchcraft Out Of Advanced Composite Bicycle Frames.Specialized.[Online]leden2005.[Citace:12.květen2012.]http://www.specialized.com/OA_MEDIA/pdf/Witchcraft.pdf.

Siala, W., a další. 2008. Modal Damping Prediction of Sandwich Panel with Viscoelastic Thick Core. *Journal of Mechanical Engineering Science.* 2008, Sv. 222, stránky 2077-2086.

Torvik, P.J. a Strickland, D.Z. 1972. Damping Additions for Plates Using Constrained Viscoelastic Layers. *Journal of the Acoustical Society of America.* 1972, Sv. II, 51, stránky 985-991.

Vacík, J., a další. 2010. Experimental Determination of Damping Characteristics of Hybrid Composite Structure. *Experimentální analýza napětí.* 2010, stránky 483-490.

Vacík, J., a další. 2010. Selection of Optimum Type FEM Model for Hybrid Composite Structure. *Advanced Engineering.* Journal, 2010, Sv. I, 4, stránky 111-118.

Vacík, J., Lašová, V. a Kottner, R. 2011. Structure Optimization of Passive damped Composite Beam. *Bulletin of Applied Mechanics.* 2011, Sv. 7, 27.

Yan, M.J. a Dowell, E.H. 1972. Governing Equation for Vibrating Constrained-Layer Damping Sandwich Plates and Beams. *Journal of Applied Mechanics.* 1972, 39, stránky 1041-1046.

Zapfe, J.A. a Lesieutre, G.A. 1998. A Discrete Layer Beam Finite Element for the Dynamic Analysis of Composite Sandwich Beams with Integral Damping Layers. *Computers and Structures.* 1998, Sv. 70.

Zeman, V. a Hlaváč, Z. 2004. *Kmitání mechanických soustav*. Plzeň : Západočeská univerzita v Plzni, 2004. ISBN 80-7043-337-X.

Zemčík, Robert a Sadílek, Petr. 2008. Identification of material properties of sandwich structure with piezo patches. *Applied and Computational Mechanics.* 2008, Sv. 2, 1, stránky 199-206.

10 Seznam literatury publikované autorem

Bernardin, P., Vacík, J., Kroupa, T., Kottner, R. Determination of Mechanical Parameters of Bonded Joint between Metal and Composite by Comparing Experiments with the Finite Element Model. In *Materiali in tehnologije*, 2012, ISSN 1580-3414.

Kottner, R., Vacík, J., Zemčík, R., Krystek, J. Mechanical Properties of Hybrid Laminates Consisting of CFRP and Rubber-Cork Layers. In *Conference MCM 2012*, Book of Abstracts. 2012.

Lašová, V., Vacík, J., Kottner, R. Investigation of Dynamic Properties of Hybrid Laminate Structure. In *Procedia Engineering*, 2012, roč. neuveden, č. 48, s. 358-366. ISSN: 1877-7058

Vacík, J., Kosnar, M., Janda, P., Lašová, V. Přípravek pro upínání vzorků pro statickou zkoušku v tlaku. Praha: Úřad průmyslového vlastnictví, 2012. Užitný vzor

Vacík, J., Kosnar, M., Janda, P., Lašová, V. Přípravek pro upínání kompozitních oček. Praha: Úřad průmyslového vlastnictví, 2012. Užitný vzor

Kosnar, M., Janda, P., Vacík, J., Lašová, V. Upínací deska pro přírubové upínání rotačních obrobků. Praha: Úřad průmyslového vlastnictví, 2012. Průmyslový vzor

Kosnar, M., Janda, P., Vacík, J., Lašová, V. Základ upínací desky soustruhu. Praha: Úřad průmyslového vlastnictví, 2012. Průmyslový vzor

Kosnar, M., Janda, P., Vacík, J., Lašová, V. Upínací deska soustruhu. Praha: Úřad průmyslového vlastnictví, 2012. Průmyslový vzor

Kosnar, M., Janda, P., Hudec, Z., Lašová, V., Vacík, J., Hřídel, J., Zíka, M., Krauz, J., Musila, P. Výzkumná zpráva podúrovňové soustružnické centrum PSC-T 2011. Plzeň: Západočeská univerzita v Plzni, 2011. 135 s.

Vacík, J. Adhesive Bonding of Various Materials. In *Proceedings of CADAM 2011*. Rijeka: Zigo, 2011. s. 73-76. ISBN: 978-953-7142-58-2

Janda, P., Lašová, V., Kosnar, M., Vacík, J. Design of Welded Face-Plates. In *Proceedings of CADAM 2011*. Rijeka: Zigo Rijeka, 2011. s. 27-30. ISBN: 978-953-7142-58-2

Vacík, J., Lašová, V., Kottner, R. Structure Optimization of Passive Damped Composite Beam. In *Bulletin of Applied Mechanics*, 2011, roč. 7, č. 27, s. 50-53. ISSN: 1801-1217

Vacík, J., Lašová, V., Kosnar, M., Janda, P. Adhesive Bonding of Various Materials. In *International Journal of Advanced Engineering 2011*, roč. 5, č. 1, s. 119-128. ISSN: 1846-5900

Kosnar, M., Lašová, V., Janda, P., Vacík, J. Upínací desky soustruhů s vysokou ohybovou tuhostí a sníženou náročností výroby. Praha: Úřad průmyslového vlastnictví, 2011. Užitný vzor

Vacík, J., Lašová, V., Kosnar, M., Janda, P., Kottner, R. Selection of Optimum Type FEM Model for Hybrid Composite Structure. In *International Journal of Advanced Engineering 2010*. ISSN:1846-5900

Kottner, R., Vacík, J., Zemčík, R. Improvement of damping properties of carbon fibre reinforced laminated plastics using damping layers. In *18th Conference on Materials and technology*. Ljubljana, 2010., ISBN: 978-961-92518-2-9.

Vacík, J., Lašová, V., Kosnar, M., Janda, P., Dvořák, J. Comparison of Strengths of Various Types Metalto-Composite bonded Joints. In *Proceedings of CADAM 2010*. Rijeka: Zigo, 2010. s. 59-60. ISBN: 978-953-7142-52-0

Vacík, J., Lašová, V., Kosnar, M., Janda, P., Kottner, R. Selection of Optimum Type FEM Model for Hybrid Composite Structure. In *Proceedings of CADAM 2010*. Rijeka: Zigo, 2010. s. 57-58. ISBN: 978-953-7142-52-0

Vacík, J., Lašová, V., Kottner, R., Káňa, J. Experimental Determination of Damping Characteristics of Hybrid Composite Structure. In *Experimentální analýza napětí 2010*. Olomouc: Univerzita Palackého, 2010. s. 483-490. ISBN: 978-80-244-2533-7

Janda, P., Kroupa, T., Lašová, V., Kosnar, M., Vacík, J. Methods for Prediction of Elastic Properties of Textile Composites. In *Proceedings of CADAM 2010*. Rijeka: Zigo Rijeka, 2010. s. 25-26. ISBN: 978-953-7142-52-0

Lašová, V., Kosnar, M., Janda, P., Vacík, J., Kroupa, T. Závěrečná zpráva projektu 1.2.2 2009 - Plzeň. Praha: ČVUT v Praze, 2009. 94 s.

Vacík, J., Lašová, V., Kottner, R. Integration Of Damping Components Into Wound Composite Structures. In *Proceedings of CADAM 2009*. Rijeka: Zigo, 2009. s. 67-68. ISBN: 978-953-7142-38-4

Lašová, V., Kosnar, M., Janda, P., Vacík, J. Závěrečná zpráva projektu 1.2.2 2008. Praha: ČVUT v Praze, 2008. 64 s.

Vojna, J., Janda, P., Vacík, J. Simulace hydrostatického vedení. In *1. ANSYS Konference*. Brno-Židenice: SVS FEM s.r.o., 2008. s. 1-10. ISBN: 978-80-254-3355-3

11 Přílohy

	Composite S	Structural T	ubes	Zákaznik:	Družstevni 15 Sušice I. 342 0 Tel : +420 376 52 Fax +420 376 52 www.compotech. ondrej@compotech		
	Název trubky:	Vzorek 10	2x102/90x90	- korek/gu			
				Konstruktér	Poul/Chror	ný/20/05	vitek@compotect
Soubor	ZCU vzorek 90	x90-3000 kore	ek, guma - pr	Datum	25.5.2009	.,,,======	-,
nam výk	res. dokument. :			Schvállil :	R.Poul		
1	Válcová trubka						
н	motnost trubky :	9,99	Kg	63			
	Délka trubky :	3000	mm				
Levý	vnitřní průměr :	112,4	mm		Pravý vni	iní průmér :	112.4 mm
Levy	vnější průměr :	125,3	mm		Pravý vné	iší průměr	125.3 mm
Tlou	šť. stěny vlevo :	6,5	mm		Tloušť, ste	ény vpravo	6,5 mm
		Zatížení a n	nechanické vla	astnosti ve	vvšetřované	m průřezu	1
	Vzdáler	ost vyšetřova	ného průřezu od	levého konce:	0	mm	
Oh	ybový moment :	0,0	Nm	Osov	154882 MPa		
	Vnitřní přetlak :	0,0	MPa	Tećn	19760 MPa		
				Modul pr	22691 MPa		
	Osová sila ;	0,0	N	Teplot.	-1,0E-06 1/K		
K	routici moment :	0,0	Nm	Teplot.	3,2E-06 1/K		
					6,6E+11 Nmm ²		
_					Krute	vá tuhost*	1,9E+11 Nmm ²
				Laminát			
Ĉislo	Objern. podil	Typ vlákna	Tloušťka	Úhel	Osové	Tečné	Smyk. nap.
vrstvy	vlákna		vrstvy*	návinu*	napěti*	napéti*	od krutu
	%		mm		MPa	MPa	MPa
1	56	k63712	0,513	42.48	0.00	0,00	0,00
2	56	k63712	1,368	0,00	0,00	0,00	0,00
3	56	k63712	0,504	43,42	0,00	0,00	0,00
4	100	zcork	2,008	0,00	0,00	0,00	0,00
5	56	k63712	0,258	89,02	0,00	0,00	0,00
6	56	k63712	1,329	0.00	0.00	0,00	0,00
7	56	k63712	0,487	45,38	0,00	0,00	0,00
8							
9							
10							
11							
12							
13							
14							
15							
10							

Materiál ZCork nahrazuje korek nebo gumu (dle vzorku). Tloušťka této vrstvy je 2 mm, pouze v případě nosníku II. s gumou je to 2,5 mm. * Hodnoty platí pro vyšetřovaný řez

Příloha I: Materiálové listy čtvercového profilu I z hybridního kompozitu K63712/korek

Zpráva pro zákazníka

COMPOTECH+ Composite Structural Tubes Projekt: 1448 Zákaznik: ZČU

Název trubky: ZČU hybridní vřeteník 104x104/90x90-2800 V.1 R.3

CompoTech Plus s.r.o. Družstevní 159 Sušice I. 342 01 Tel: +420 376 521 131 Fax: +420 376 522 350 www.compotech.com ordrej@compotech.com

							The new geo	ompoleon.
				Konstrukté	r: J.Chromý(2	24/10/11)		
Soubor:	ZCU hybridni v	retenik 104x1	104-90x90-28	Datum				
Seznam výkre	es. dokument. :		-	Schváli	I: J.Chromý			
V	/álcová trubka							
Hn	notnost trubky :	10,33	±5% Kg					
	Délka trubky :	2800	+5 mm					
Vr	nitřní rozměr 1 :	90,0	mm		Vnitř	ni rozměr 2 :	90,0	mm
Vr	nējši rozmēr 1 :	103,6	mm		Vněj	ši rozměr 2 :	103,6	mm
Tiouš	t. stěny vlevo :	6,8	mm		Tloušť, st	ěny vpravo :	6,8	mm
	Tolerances:	ID	90,0	+/-0,3				
		OD	103,6	+/-1				
		Zatižoni a r	nochanické	wastporti w	wčetřevené	การกำรังสาย		
	Vadálogy	zauzeni a i		ad louths keep	vyseuovane	mprurezu		
Ohy	vzualenk bowi moment i	o o o	Nm	Oc leveno konc	e: U	nun osti tarbio/* :	150795	MDa
City	Voltoi ototlak :	0,0	MDa	Tel	ivy modul pružn	osti trubky :	2083	MDa
	vitani pretak .	0,0	mra	Modul	any modul prozn	usu uuuky :	47393	MDo
	Ocová ella :		N	Teolo	t roztež v osov	ém eměnu* :	3 35.06	1/16
Kr	ostici moment :	0,0	Nm	Teok	t roztaž v tečn	ám emănı* :	3.8E-05	1/K
	batter mornent.	0,0		Teph	Ohub	em amera :	7.25+11	Nmm ²
					Kod	ová tuhosť :	1.65+11	Nmm ²
					1441	ova tanost .	1,02.11	
				Laminát				
Čislo	Objem. podil	Typ vlákna	Tloušťka	Ühel	Osové	Tečné	Smyk. nap.	
vrstvy	vlákna		vrstvy*	návinu*	napēti*	napěti*	od krutu	
	%		mm	•	MPa	MPa	MPa	
4	55	00.60.020	0 567	24 60	0.00	0.00	0.00	

0.00

13.25

13,37

0.00

13,79

13,91

0.00

26,92

0.00

0.00

0,00

0,00

0.00

0.00

0,00

0.00

0.00

0.00

0,00

0,00

0.00

0.00

0,00

0.00

0.00

0.00

0,00

0,00

0,00 0,00

0,00

0,00

* Hodnoty platí pro vyšetřovaný řez

Prohlášení o zodpovědnosti

2

3

4

5

6 7

8

9

55

55

55

55

55

55

55

55

zkork

cn-60-a2s

cn-60-a2s

cn-60-a2s

cn-60-a2s

cn-60-a2s

zkork

cn-60-a2s

1.020

0.550

0,545

1,369

0,529

0,524

1,020

0,652

Veškeré rady, informace, instrukce či doporučeni jsou poskytovány v dobré víře, ale CompoTech ruči pouze za to, že pisemné informace jsou poskytovány na základě odpovídajících znalostí a s příslušnou péčí. CompoTech nepřejímá žádné další závazky ani zodpovědnost. Veškeré informace podléhají obchodním podmínkám firmy CompoTech, které je na vyžádání možné obdržet od firmy CompoTech nebo si je prohlédnout na internetových stránkách http://www.compotech.com.

CompoTech výrazně doporučuje, aby si zákaznící provedli příslušné testy materiálů nebo zboží dodaného firmou CompoTech pro ověření jejich vhodnosti pro zamýšlené použití. Součásti takového testování by měly být i testy v podmínkách co nejvíce podobných podmínkám, jimž bude výsledný komponent vystaven. CompoTech se výslovně zříká jakýchkoliv záruk na vhodnost svého zboží pro jiné účely, než jaké CompoTech písemně uvádí. CompoTech si vyhrazuje právo bez oznámení změnit nepsané detalů specifikace. Zákaznící by proto měli vycházet z nejnovějších informací poskytnutých firmou CompoTech nebo z informací uvedených na internetových stránkách firmy CompoTech.

Příloha II: Materiálové listy čtvercového profilu II z hybridního kompozitu, cn-60-a2s/korek
Zpráva pro zákazníka

Projekt:

Zákazník:

1448

ZČU

CompoTech Plus s.r.o. Družstevní 159 Sušice I. 342 01 Tel.: +420 376 521 131 Fax: +420 376 522 350 www.compotech.com ondrej@compotech.com

Název trubky: ZČU hybridní vřeteník 104x104/90x90-2800 V.2 R.2

СомроТесн+

Composite Structural Tubes

				vitek@compotech.com
		ĸ	onstruktér : J.Chromý(24/10/11)	
Soubor: ZCU hybridni vreter	nik 104x104	-90x90-28	Datum : 24.11.2011	
Seznam výkres, dokument, :	-		Schválil : J.Chromý	
Válcová trubka				
Hmotnost trubky :	10,04 ±5	% Kg		
Délka trubky :	2800 +5	imm		
Vnitřní rozměr 1 :	90,0 mr	n	Vnitřní rozměr 2 :	90,0 mm
Vnější rozměr 1 :	103,2 mr	n	Vnější rozměr 2 :	103,2 mm
Tloušť. stěny vlevo :	6,6 mr	n	Tloušť, stěny vpravo :	6,6 mm
Tolerances:	ID	90,0 +/-0,3		
	OD	103,2 +/-1		

Zatížení a mechanické vlastnosti ve vyšetřovaném průřezu Vzdálenost vyšetřovaného průřezu od levého konce: 0 mm

Ohybový moment :	0,0 Nm	Osový modul pružnosti trubky* :	214590 MPa
Vnitřní přetlak :	0,0 MPa	Tečný modul pružnosti trubky* :	2710 MPa
		Modul pružnosti trubky ve smyku* :	7688 MPa
Osová sila :	0,0 N	Teplot. roztaž. v osovém směru* :	-2,2E-06 1/K
Kroutici moment :	0,0 Nm	Teplot. roztaž. v tečném směru* :	5,9E-05 1/K
		Ohybová tuhost* :	9,4E+11 Nmm ²
		Krutová tuhosť* :	6,7E+10 Nmm ²

				Laminát			
Číslo	Objem. podil	Typ vlákna	Tloušťka	Úhel	Osové	Tečné	Smyk. nap.
vrstvy	vlákna		vrstvy*	návinu*	napětí*	napēti*	od krutu
	%		mm	•	MPa	MPa	MPa
1	56	cn-60-a2s	0,692	12,90	0,00	0,00	0,00
2	56	zkork	1,000	0,00	0,00	0,00	0,00
3	56	cn-60-a2s	1,271	0,00	0,00	0,00	0,00
4	56	cn-60-a2s	0,660	13,55	0,00	0,00	0,00
5	56	cn-60-a2s	1,324	0,00	0,00	0,00	0,00
6	56	zkork	1,005	0,00	0,00	0,00	0,00
7	56	cn-60-a2s	0,630	14,21	0,00	0,00	0,00
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							

Hodnoty platí pro vyšetřovaný řez

Prohlášení o zodpovědnosti

Veškeré rady, informace, instrukce či doporučení jsou poskytovány v dobré víře, ale CompoTech ručí pouze za to, že písemné informace jsou poskytovány na základě odpovídajících znalostí a s příslušnou péči. CompoTech nepřejímá zádné další závazky ani zodpovědnost. Veškeré informace podléhají obchodním podmínkám firmy CompoTech, které je na vyžádání možné obdržet od firmy CompoTech nebo si je prohlédnout na internetových stránkách http://www.compotech.com.

CompoTech výrazně doporučuje, aby si zákazníci provedli příslušné testy materiálů nebo zboží dodaného firmou CompoTech pro ověření jejich vhodnosti pro zamýšlené použití. Součástí takového testování by měly být i testy v podmínkách co nejvíce podobných podmínkám, jimž bude výsledný komponent vystaven. CompoTech se výslovně zříká akýchkoliv záruk na vhodnost svého zboží pro jiné účely, než jaké CompoTech písemně uvádí. CompoTech si vyhrazuje právo bez oznámení změnit nepsané detaily specifikace. Zákazníci by proto měli vycházet z nejnovějších informací poskytnutých firmou CompoTech nebo z informací uvedených na internetových stránkách firmy CompoTech.

Příloha III: Materiálové listy čtvercového profilu III z hybridního kompozitu, cn-60-a2s/korek

č								st. ohyb.	vlastní frekvence	noměrný	návrh Pareto
návrhu	o1	o2	о3	o4	о5	o6	07	[N/mm]	[Hz]	útlum	frontv
24	0	R	R	R	R	R	R	1,69	29,4	0,0548	ano
37	0	R	0	R	R	R	R	2,03	31,9	0,0545	ano
145	0	R	R	0	R	R	R	2,01	31,7	0,0538	ne
171	0	R	R	R	0	R	R	1,99	31,6	0,0530	ne
19	0	R	0	R	R	0	R	2,46	34,6	0,0529	ano
45	0	R	0	R	0	R	R	2,45	34,7	0,0526	ano
6	R	0	R	R	R	R	R	1,38	26,8	0,0526	ne
51	0	R	R	R	R	0	R	1,98	31,6	0,0521	ne
78	R	0	R	0	R	R	R	1,69	29,5	0,0518	ne
125	0	0	R	R	R	R	R	2,12	33,2	0,0518	ne
198	0	R	R	0	R	0	R	2,46	34,7	0,0515	ano
176	0	0	R	R	R	0	R	2,52	35,6	0,0508	ano
31	R	0	R	R	0	R	R	1,67	29,3	0,0507	ne
26	0	0	R	0	R	R	R	2,52	35,9	0,0504	ano
121	0	0	R	0	R	0	R	3,12	39,1	0,0498	ano
21	R	0	R	R	R	0	R	1,66	29,2	0,0495	ne
62	R	0	0	R	R	R	R	1,77	30,6	0,0495	ne
146	R	R	0	R	R	R	R	1,07	23,9	0,0494	ne
138	0	R	R	R	R	R	0	2,00	32,4	0,0485	ne
9	0	0	R	0	R	R	0	3,18	39,7	0,0485	ano
120	R	0	0	R	R	0	R	2,18	33,5	0,0480	ne
54	R	0	0	R	0	R	R	2,18	33,6	0,0478	ne
40	R	R	0	R	0	R	R	1,36	26,7	0,0476	ne
14	0	R	R	0	0	R	R	2,51	36,0	0,0475	ne
103	0	R	0	0	R	0	R	3,17	39,8	0,0474	ano
189	0	R	0	R	0	0	R	3,25	40,1	0,0471	ano
35	0	0	R	R	0	0	R	3,24	40,3	0,0470	ano
144	0	R	R	R	0	R	0	2,55	36,0	0,0467	ne
58	0	0	R	0	0	R	R	3,20	40,4	0,0466	ano
181	R	0	R	0	R	R	0	2,18	33,5	0,0464	ne
15	0	R	0	0	R	R	0	3,22	40,3	0,0463	ne
165	0	R	R	R	0	0	R	2,54	36,2	0,0460	ne
72	R	R	0	0	R	R	R	1,42	27,8	0,0460	ne
43	R	0	0	R	R	R	0	2,22	34,1	0,0459	ne
34	R	R	0	R	R	0	R	1,33	26,6	0,0458	ne
92	0	0	0	R	R	R	R	2,60	37,8	0,0456	ne
11	R	0	R	R	R	R	0	1,67	29,9	0,0453	ne
8	0	0	0	R	R	0	R	3,18	40,9	0,0451	ano
217	R	0	R	0	0	R	R	2,18	33,9	0,0450	ne
180	R	R	R	0	R	R	R	0,77	20,7	0,0449	ne

v								st. ohyb.	vlastní	¥ /	návrh
Č.	- 4	- 2	- 2	- 4			- 7	tuhost	frekvence	poměrný	Pareto
139	01	02	03	04 R	05	00 R	0/ R	[N/mm] 3 20	[HZ] //1 2	0.0445	ano
133	R	0	0	R	0	R	0	2.95	38.6	0.0444	ne
1	0	0	0	R	R	R	0	3.23	41.3	0.0444	ano
- 113	0	0	0	R	0	R	0	4.24	46.2	0.0436	ano
28	R	0	0	R	0	0	R	2 94	38.9	0.0432	ne
57	R	0	0	0	R	R	R	2.24	35.4	0.0431	ne
161	R	0	R	R	0	0	R	2,20	34,0	0,0430	ne
85	0	0	0	R	0	0	R	4,25	46,6	0,0426	ano
65	R	0	0	0	R	0	R	2,90	39,4	0,0417	ne
99	0	R	0	0	0	R	R	3,31	42,1	0,0415	ne
168	R	R	0	0	R	R	0	1,88	31,8	0,0412	ne
91	0	0	R	0	0	0	R	4,47	47,8	0,0412	ano
74	R	0	0	0	R	R	0	2,94	39,7	0,0411	ne
70	R	0	R	0	0	R	0	3,05	39,6	0,0408	ne
36	R	R	R	0	0	R	R	1,08	24,7	0,0404	ne
46	0	R	R	0	0	0	R	3,44	42,7	0,0399	ne
17	0	0	R	0	R	0	0	4,74	49,3	0,0398	ano
16	0	R	0	0	0	R	0	4,63	48,6	0,0397	ne
2	R	R	0	R	0	R	0	1,87	31,6	0,0397	ne
4	0	0	0	0	R	R	R	3,35	43,6	0,0396	ne
82	R	R	0	0	0	R	R	1,89	32,8	0,0392	ne
71	R	R	0	R	0	0	R	1,86	31,7	0,0391	ne
124	0	0	0	0	R	0	R	4,30	48,1	0,0390	ne
5	0	0	0	R	R	0	0	4,58	49,2	0,0389	ne
7	R	R	R	R	0	R	R	0,49	16,9	0,0377	ne
25	0	R	0	0	R	0	0	4,95	50,5	0,0371	ano
158	R	0	R	0	0	0	R	3,09	40,9	0,0369	ne
101	0	R	R	R	R	0	0	2,71	39,1	0,0367	ne
39	0	R	R	0	R	0	0	3,70	44,6	0,0365	ne
53	R	0	0	R	R	0	0	3,23	42,1	0,0363	ne
30	R	R	0	0	0	R	0	2,74	38,7	0,0344	ne
60	R	R	R	0	R	R	0	1,01	24,1	0,0344	ne
77	R	0	0	0	0	R	0	4,37	48,5	0,0342	ne
174	0	0	0	0	R	0	0	6,72	59,2	0,0340	ano
67	0	0	0	0	0	R	R	4,57	50,9	0,0336	ne
59	К	0	К	0	ĸ	0	0	3,35	42,7	0,0333	ne
111	к	0	0	0	ĸ	0	0	4,65	49,8	0,0330	ne
12/	0	0	0	U	0	ĸ	0	0,51	58,9	0,0328	ne
129	ĸ	0	К	ĸ	ĸ	0	0	2,36	36,8	0,0326	ne
175	К	К	К	U	U	К	0	1,55	29,6	0,0322	ne

Č.	o1	-3	•3	-1	۰۲	o(•7	st. ohyb. tuhost	vlastní frekvence	poměrný	návrh Pareto
102	R	R	03 R	04	05	00	07 R	<u>[N/mm]</u> 1 55	<u>[nz]</u> 30.1	0.0313	ne
29	0	0			0	0	0	5.40	54.6	0,0300	ne
30	0	0	<u> </u>	<u> </u>	0	0	0	5,40	34,0	0,0309	ne
22	К	К	К	К	0	0	К	0,73	20,9	0,0301	ne
203	R	0	0	0	0	0	R	4,50	50,4	0,0300	ne
12	0	0	0	R	0	0	0	7,56	63,3	0,0294	ano
156	R	R	0	0	R	0	0	2,99	40,9	0,0288	ne
98	0	0	0	0	0	0	R	6,84	61,5	0,0280	ne
29	0	R	0	R	0	0	0	5,69	55,9	0,0279	ne
68	R	R	0	R	R	0	0	2,00	34,3	0,0271	ne
162	R	0	0	R	0	0	0	5,35	54,6	0,0245	ne
32	R	R	R	R	0	R	0	0,69	20,5	0,0238	ne
42	R	0	R	R	0	0	0	3,71	46,7	0,0218	ne
172	0	0	R	0	0	0	0	8,88	69,8	0,0208	ano
132	R	R	R	0	R	0	0	1,63	31,4	0,0190	ne
80	0	R	R	0	0	0	0	6,41	60,8	0,0179	ne
130	R	R	0	R	0	0	0	3,34	44,6	0,0155	ne
27	R	0	R	0	0	0	0	6,12	59,6	0,0128	ne
83	0	R	0	0	0	0	0	10,22	76,0	0,0107	ano
13	R	R	R	R	R	R	0	0,06	6,3	0,0074	ne
18	R	R	R	R	R	0	0	0,39	16,3	0,0055	ne
3	R	R	R	0	0	0	0	3,01	43,0	0,0038	ne
64	R	R	0	0	0	0	0	5,85	59,0	0,0036	ne
122	R	0	0	0	0	0	0	10,17	76,5	0,0033	ano
185	0	0	0	0	0	0	0	16,32	95,5	0,0020	ano

									st. ohyb.	vlastní		návrh
Č. návrhu	01	02	03	04	05	06	07	08	tuhost [N/mm]	frekvence	poměrný útlum	Pareto
267	45	ACM	0	ACM	0	0	ACM	45	741.4	135.8	1.99F-02	ano
274	45	ACM	0	0	ACM	0	ACM	45	732.0	135.2	1.92E-02	ne
234	45	ACM	35	ACM	0	0	ACM	45	574.2	120.8	1.84E-02	ne
1923	45	ACM	15	ACM	0	0	ACM	45	738,3	135,8	1,71E-02	ano
1411	45	45	ACM	ACM	0	0	ACM	45	540,2	119,0	1,68E-02	ne
425	45	ACM	ACM	0	0	0	ACM	45	732,3	136,6	1,66E-02	ano
520	45	45	ACM	0	ACM	0	ACM	45	547,1	120,0	1,66E-02	ne
245	45	ACM	0	0	0	ACM	ACM	45	696,9	133,8	1,62E-02	ne
408	45	35	ACM	ACM	0	0	ACM	45	566,1	121,5	1,61E-02	ne
1646	45	35	ACM	0	0	0	ACM	45	796,8	137,1	1,61E-02	ano
1842	45	35	ACM	0	0	ACM	ACM	45	541,9	119,2	1,59E-02	ne
1241	45	ACM	0	0	ACM	15	ACM	45	721,2	134,7	1,57E-02	ne
205	45	ACM	0	ACM	0	ACM	0	45	864,5	145,8	1,57E-02	ano
976	45	0	ACM	0	ACM	0	ACM	45	809,5	142,5	1,50E-02	ne
1613	45	ACM	0	ACM	0	ACM	15	45	785,5	140,0	1,47E-02	ne
255	45	25	ACM	0	0	0	ACM	45	875,1	143,2	1,47E-02	ano
1775	45	25	ACM	0	ACM	0	ACM	45	650,2	129,6	1,47E-02	ne
894	45	25	ACM	ACM	0	0	ACM	45	644,4	129,1	1,45E-02	ne
394	45	15	ACM	0	ACM	0	ACM	45	748,7	137,7	1,43E-02	ne
999	45	25	ACM	0	0	ACM	ACM	45	619,4	126,9	1,43E-02	ne
1047	45	ACM	0	0	0	ACM	25	45	871,9	142,8	1,42E-02	ne
281	45	15	ACM	ACM	0	0	ACM	45	744,9	137,8	1,37E-02	ne
1904	45	ACM	0	0	ACM	ACM	25	45	626,3	127,0	1,36E-02	ne
357	45	15	ACM	0	0	0	ACM	45	973,4	150,5	1,36E-02	ano
609	45	0	ACM	ACM	0	0	ACM	45	807,9	142,9	1,33E-02	ne
492	45	15	ACM	0	0	ACM	ACM	45	717,7	135,7	1,32E-02	ne
181	45	35	ACM	35	ACM	0	ACM	45	367,9	98,7	1,32E-02	ne
515	45	ACM	15	ACM	0	ACM	0	45	842,0	144,2	1,29E-02	ne
340	45	0	ACM	0	0	0	ACM	45	1033,0	154,9	1,28E-02	ano
1379	45	ACM	0	ACM	15	ACM	0	45	842,1	144,2	1,28E-02	ne
1816	45	ACM	0	0	ACM	ACM	15	45	758,1	138,6	1,26E-02	ne
1637	45	25	25	ACM	0	0	ACM	45	760,6	134,9	1,26E-02	ne
383	45	0	ACM	0	0	ACM	ACM	45	777,9	140,9	1,26E-02	ne
352	45	ACM	0	0	ACM	ACM	0	45	840,5	145,1	1,25E-02	ne
310	45	ACM	ACM	0	0	ACM	0	45	859,8	146,6	1,25E-02	ne
1853	45	ACM	0	ACM	25	ACM	0	45	713,6	133,7	1,21E-02	ne
621	45	ACM	0	15	ACM	0	ACM	45	787,1	140,4	1,21E-02	ne
557	45	0	ACM	15	ACM	0	ACM	45	790,6	141,2	1,20E-02	ne
483	45	ACM	15	15	ACM	0	ACM	45	698,6	133,2	1,20E-02	ne
1196	45	35	15	ACM	0	0	ACM	45	805,6	138,6	1,20E-02	ne

×									st. ohyb.	vlastní		návrh
c. návrhu	o1	o2	о3	o4	о5	06	07	08	[N/mm]	frekvence [Hz]	útlum	fronty
725	45	ACM	0	ACM	0	15	ACM	45	797,4	141,0	1,19E-02	ne
1450	45	15	ACM	25	ACM	0	ACM	45	600,4	124,3	1,19E-02	ne
85	45	15	55	ACM	0	0	ACM	45	792,4	138,2	1,19E-02	ne
772	45	ACM	15	0	ACM	0	ACM	45	791,4	141,1	1,18E-02	ne
675	45	0	ACM	0	ACM	25	ACM	45	643,0	128,2	1,18E-02	ne
241	45	ACM	0	0	0	ACM	0	45	1078,3	157,7	1,18E-02	ano
460	45	ACM	0	ACM	15	0	ACM	45	802,2	141,7	1,17E-02	ne
196	45	15	65	ACM	0	0	ACM	45	807,7	139,6	1,16E-02	ne
1643	45	65	15	ACM	0	0	ACM	45	821,4	140,3	1,15E-02	ne
432	45	0	ACM	0	ACM	15	ACM	45	780,2	140,3	1,15E-02	ne
947	45	25	15	ACM	0	0	ACM	45	875,2	144,2	1,13E-02	ne
271	45	15	25	ACM	0	0	ACM	45	869,7	144,2	1,11E-02	ne
542	45	ACM	0	25	ACM	0	ACM	45	694,4	133,0	1,09E-02	ne
220	45	15	ACM	15	ACM	0	ACM	45	723,4	135,8	1,09E-02	ne
293	45	25	ACM	0	0	ACM	15	45	910,5	146,0	1,09E-02	ne
1805	45	15	ACM	0	0	ACM	15	45	1008,8	152,8	1,07E-02	ne
1481	45	ACM	15	ACM	0	ACM	25	45	629,3	127,2	1,05E-02	ne
415	45	25	0	ACM	0	0	ACM	45	960,0	150,7	1,05E-02	ne
759	45	0	ACM	0	0	ACM	15	45	1070,2	157,0	1,05E-02	ne
439	45	ACM	0	ACM	0	25	ACM	45	694,3	132,7	1,05E-02	ne
2010	45	ACM	0	0	ACM	15	25	45	889,0	144,7	1,04E-02	ne
389	45	15	15	ACM	0	0	ACM	45	975,8	152,0	1,03E-02	ne
441	45	0	25	ACM	0	0	ACM	45	951,2	150,8	1,02E-02	ne
1714	45	25	25	ACM	ACM	0	ACM	45	508,0	116,4	1,02E-02	ne
790	45	35	ACM	0	0	ACM	0	45	914,3	146,7	1,02E-02	ne
377	45	15	ACM	0	0	ACM	0	45	1088,7	158,1	1,02E-02	ano
1297	45	25	ACM	0	0	ACM	0	45	990,6	151,8	1,02E-02	ne
269	45	0	ACM	0	0	ACM	0	45	1149,6	162,0	1,02E-02	ano
1044	45	25	ACM	0	ACM	15	ACM	45	617,3	126,7	1,01E-02	ne
278	45	15	0	ACM	0	0	ACM	45	1047,1	157,1	9,88E-03	ne
794	45	ACM	0	0	ACM	0	25	45	990,9	152,2	9,64E-03	ne
202	45	15	55	ACM	ACM	0	ACM	45	541,4	120,5	9,59E-03	ne
315	45	0	0	ACM	0	0	ACM	45	1094,6	160,4	9,45E-03	ne
1858	45	35	15	ACM	0	ACM	ACM	45	539,3	119,9	9,36E-03	ne
568	45	0	ACM	ACM	0	ACM	0	45	917,7	151,7	9,33E-03	ne
1344	45	ACM	0	ACM	35	0	ACM	45	644,9	128,6	9,29E-03	ne
188	45	ACM	75	ACM	0	ACM	15	45	575,3	122,6	9,26E-03	ne
640	45	0	ACM	0	ACM	ACM	0	45	904,8	150,9	9,09E-03	ne
1090	45	ACM	15	ACM	15	0	ACM	45	749,0	137,2	9,06E-03	ne
1528	45	ACM	0	0	ACM	0	15	45	1105,2	160,2	9,02E-03	ne

									st. ohyb.	vlastní		návrh
č.		-	-	-	_	_	_	-	tuhost	frekvence	poměrný	Pareto
navrhu	01	02	03	04	05	06	07	08		[Hz]		fronty
1748	45	65	15	ACIVI	0	ACIVI	ACIVI	45	555,6	121,9	8,94E-03	ne
155	45	ACM	90	ACM	0	ACM	15	45	570,0	122,8	8,86E-03	ne
1502	45	ACM	0	15	ACM	15	ACM	45	724,9	135,3	8,85E-03	ne
324	45	15	ACM	ACM	0	ACM	15	45	772,0	140,5	8,74E-03	ne
722	45	ACM	0	0	ACM	15	0	45	1109,5	160,9	8,72E-03	ne
191	45	0	90	ACM	ACM	0	ACM	45	608,4	127,8	8,68E-03	ne
1098	45	0	ACM	15	ACM	15	ACM	45	713,9	134,7	8,66E-03	ne
1144	45	25	15	ACM	0	ACM	ACM	45	609,2	127,2	8,66E-03	ne
1231	45	ACM	25	ACM	15	ACM	0	45	652,3	128,2	8,63E-03	ne
800	45	25	ACM	ACM	0	ACM	15	45	671,4	132,1	8,59E-03	ne
409	45	0	ACM	0	ACM	ACM	15	45	820,8	144,5	8,58E-03	ne
488	45	ACM	0	0	ACM	0	0	45	1167,0	164,2	8,58E-03	ano
238	45	15	ACM	ACM	0	ACM	0	45	853,6	147,0	8,55E-03	ne
275	45	15	ACM	0	ACM	ACM	0	45	842,4	146,3	8,48E-03	ne
125	45	ACM	75	ACM	0	ACM	0	45	657,3	130,6	8,47E-03	ne
1087	45	35	0	ACM	0	ACM	ACM	45	621,9	128,5	8,43E-03	ne
1784	45	0	ACM	0	ACM	ACM	25	45	688,6	133,6	8,43E-03	ne
956	45	25	0	ACM	ACM	0	ACM	45	710,9	136,8	8,21E-03	ne
165	45	0	90	ACM	0	ACM	ACM	45	590,2	126,0	8,19E-03	ne
201	45	25	ACM	ACM	0	ACM	0	45	753,2	139,3	8,11E-03	ne
1470	45	35	ACM	0	ACM	ACM	0	45	667,4	132,2	8,09E-03	ne
473	45	15	15	ACM	ACM	0	ACM	45	727,2	138,4	8,05E-03	ne
369	45	25	0	ACM	0	ACM	ACM	45	694,8	135,5	7,96E-03	ne
1903	45	ACM	0	ACM	ACM	15	25	45	647,8	130,1	7,91E-03	ne
1281	45	15	15	ACM	0	ACM	ACM	45	710,9	137,1	7,81E-03	ne
273	45	15	0	ACM	ACM	0	ACM	45	801,6	144,9	7,75E-03	ne
84	45	ACM	0	ACM	ACM	65	15	45	593,5	125,6	7,75E-03	ne
948	45	25	25	15	ACM	0	ACM	45	734,4	133,3	7,64E-03	ne
1761	45	ACM	ACM	0	ACM	0	25	45	764,8	140,7	7,56E-03	ne
636	45	0	0	ACM	ACM	0	ACM	45	853,7	149,3	7,54E-03	ne
461	45	15	0	ACM	0	ACM	ACM	45	783,7	143,5	7,43E-03	ne
229	45	35	0	25	ACM	0	ACM	45	760,2	135,7	7,35E-03	ne
301	45	25	35	0	ACM	0	ACM	45	764,9	136,1	7,32E-03	ne
53	45	ACM	25	ACM	0	25	ACM	45	504,0	114,0	7,28E-03	ne
694	45	0	15	ACM	0	ACM	ACM	45	780,4	143,5	7,28E-03	ne
261	45	25	55	ACM	0	ACM	15	45	725,5	132,4	7,28E-03	ne
2026	45	ACM	ACM	0	ACM	0	15	45	880,9	150,3	7,17E-03	ne
171	45	0	90	ACM	0	ACM	25	45	743,6	134,1	7,16E-03	ne
1493	45	0	ACM	ACM	15	ACM	0	45	866,3	147,7	7,15E-03	ne
204	45	25	55	0	ACM	0	ACM	45	781,0	137,6	7,13E-03	ne

ě									st. ohyb.	vlastní	noměrný	návrh
návrhu	o1	o2	о3	o4	о5	06	о7	08	[N/mm]	[Hz]	útlum	fronty
508	45	0	0	ACM	0	ACM	ACM	45	833,4	147,8	7,13E-03	ne
427	45	ACM	ACM	0	15	ACM	0	45	886,7	148,9	7,12E-03	ne
907	45	ACM	0	ACM	ACM	0	15	45	870,9	149,5	7,11E-03	ne
1182	45	ACM	ACM	15	15	ACM	0	45	782,9	140,7	7,07E-03	ne
358	45	ACM	0	15	ACM	ACM	0	45	861,6	147,1	7,03E-03	ne
709	45	0	ACM	15	ACM	ACM	0	45	854,8	147,1	7,03E-03	ne
119	45	ACM	15	0	ACM	35	ACM	45	530,0	117,0	6,99E-03	ne
319	45	25	35	ACM	0	ACM	0	45	787,0	137,5	6,96E-03	ne
169	45	ACM	0	ACM	ACM	0	0	45	938,1	154,7	6,93E-03	ne
537	45	ACM	ACM	15	0	ACM	0	45	891,2	149,5	6,91E-03	ne
678	45	ACM	15	15	ACM	ACM	0	45	760,9	139,1	6,90E-03	ne
416	45	ACM	ACM	0	ACM	0	0	45	944,9	155,2	6,88E-03	ne
1675	45	0	ACM	ACM	25	ACM	0	45	730,4	136,4	6,87E-03	ne
852	45	ACM	ACM	0	ACM	15	0	45	885,2	151,2	6,85E-03	ne
1095	45	0	ACM	25	ACM	ACM	0	45	725,6	136,2	6,81E-03	ne
257	45	ACM	0	ACM	ACM	15	0	45	875,2	150,4	6,80E-03	ne
200	45	25	55	ACM	0	ACM	0	45	808,4	139,6	6,72E-03	ne
79	45	ACM	0	25	ACM	65	ACM	45	407,2	103,5	6,71E-03	ne
55	45	ACM	0	15	ACM	65	ACM	45	512,5	115,6	6,71E-03	ne
449	45	25	25	ACM	0	ACM	0	45	859,1	143,3	6,67E-03	ne
197	45	0	65	15	ACM	0	ACM	45	868,7	145,1	6,65E-03	ne
1898	45	0	ACM	0	ACM	15	25	45	943,2	149,2	6,58E-03	ne
1888	45	ACM	0	ACM	15	15	35	45	796,1	137,8	6,56E-03	ne
1308	45	0	ACM	ACM	15	0	ACM	45	836,6	145,8	6,54E-03	ne
586	45	0	0	ACM	0	ACM	25	45	987,6	152,9	6,54E-03	ne
1566	45	35	15	ACM	0	ACM	0	45	904,3	146,7	6,53E-03	ne
109	45	ACM	55	ACM	0	25	ACM	45	449,6	108,5	6,52E-03	ne
1791	45	15	ACM	0	ACM	0	25	45	982,7	152,0	6,48E-03	ne
149	45	0	55	ACM	0	ACM	15	45	864,3	144,4	6,47E-03	ne
1217	45	0	ACM	0	15	ACM	ACM	45	803,3	143,4	6,44E-03	ne
1738	45	35	ACM	0	ACM	0	15	45	924,2	147,9	6,41E-03	ne
1959	45	ACM	ACM	0	15	0	ACM	45	829,7	145,7	6,39E-03	ne
57	45	ACM	25	ACM	0	35	ACM	45	439,8	106,9	6,39E-03	ne
1278	45	ACM	ACM	0	15	ACM	15	45	800,5	142,3	6,38E-03	ne
316	45	15	35	ACM	0	ACM	0	45	894,1	146,6	6,36E-03	ne
440	45	15	45	ACM	0	ACM	0	45	879,0	145,5	6,36E-03	ne
1175	45	25	15	ACM	0	ACM	0	45	974,2	151,9	6,36E-03	ne
1490	45	15	0	ACM	0	ACM	15	45	1066,8	158,5	6,35E-03	ne
977	45	25	ACM	0	ACM	0	15	45	1000,6	153,4	6,34E-03	ne
578	45	15	ACM	0	ACM	0	15	45	1100,0	160,2	6,33E-03	ne

									st. ohyb.	vlastní		návrh
č.		-	-		_	_	_		tuhost	frekvence	poměrný	Pareto
navrhu	01	02	03	04	05	06	07	08	[N/mm]	[Hz]		fronty
143	45	0	90	ACIVI	0	ACM	15	45	874,3	145,4	6,31E-03	ne
1132	45	0	ACM	0	15	ACM	0	45	1165,9	163,3	6,30E-03	ne
712	45	ACM	ACM	0	0	15	ACM	45	824,9	145,3	6,30E-03	ne
532	45	0	ACM	15	0	ACM	ACM	45	807,7	143,9	6,28E-03	ne
135	45	15	55	ACM	0	ACM	0	45	891,6	146,6	6,28E-03	ne
627	45	0	ACM	0	ACM	0	15	45	1163,1	164,5	6,27E-03	ano
548	45	0	0	ACM	0	ACM	15	45	1118,0	162,1	6,25E-03	ne
891	45	ACM	ACM	15	0	ACM	15	45	805,1	142,9	6,24E-03	ne
218	45	35	0	ACM	0	ACM	0	45	986,9	153,0	6,24E-03	ne
225	45	15	ACM	0	ACM	0	0	45	1166,0	164,6	6,22E-03	ano
391	45	25	ACM	0	ACM	0	0	45	1066,9	158,0	6,20E-03	ne
680	45	35	ACM	0	ACM	0	0	45	990,3	152,9	6,20E-03	ne
465	45	0	ACM	15	0	ACM	0	45	1170,3	163,7	6,19E-03	ano
630	45	ACM	0	15	0	ACM	ACM	45	788,7	142,7	6,17E-03	ne
390	45	0	ACM	0	ACM	0	0	45	1228,5	168,6	6,13E-03	ano
159	45	15	0	ACM	0	ACM	0	45	1149,1	164,2	6,13E-03	ne
455	45	15	15	0	ACM	0	ACM	45	1037,8	157,8	6,11E-03	ne
1974	45	0	0	25	ACM	0	ACM	45	1005,3	155,9	6,10E-03	ne
901	45	15	15	ACM	0	ACM	0	45	1076,0	159,3	6,10E-03	ne
1114	45	ACM	0	0	15	0	ACM	45	1075,7	159,0	6,09E-03	ne
128	45	ACM	0	ACM	15	55	15	45	839,2	141,9	6,08E-03	ne
714	45	15	0	15	ACM	0	ACM	45	1034,1	157,7	6,08E-03	ne
406	45	15	ACM	0	ACM	15	0	45	1104,3	160,9	6,07E-03	ne
1868	45	ACM	ACM	0	25	ACM	0	45	778,8	140,4	6,07E-03	ne
173	45	ACM	0	0	0	15	ACM	45	1070,7	158,8	6,05E-03	ne
489	45	0	ACM	0	15	0	ACM	45	1110,2	160,6	6,01E-03	ne
655	45	0	0	ACM	0	ACM	0	45	1199,7	167,6	6,00E-03	ne
211	45	ACM	0	15	0	0	ACM	45	1080,2	159,5	6,00E-03	ne
195	45	ACM	ACM	15	0	0	ACM	45	833,9	146,5	5,99E-03	ne
1313	45	0	ACM	0	ACM	15	0	45	1167,4	165,2	5,98E-03	ne
684	45	0	ACM	0	0	15	ACM	45	1105,5	160,4	5,94E-03	ne
118	45	ACM	ACM	25	0	ACM	0	45	790,4	141,7	5,93E-03	ne
421	45	15	0	0	ACM	0	ACM	45	1100,4	162,4	5,93E-03	ne
478	45	0	15	0	ACM	0	ACM	45	1097,3	162,2	5,91E-03	ne
396	45	15	ACM	0	0	15	ACM	45	1040,8	155,9	5,90E-03	ne
649	45	0	15	ACM	0	ACM	0	45	1145,9	164,3	5,90E-03	ne
601	45	0	ACM	ACM	0	25	ACM	45	717,0	135,7	5,89E-03	ne
1619	45	15	ACM	0	15	ACM	0	45	1099,9	159,1	5,88E-03	ne
382	45	0	0	15	ACM	0	ACM	45	1093,8	162,0	5,87E-03	ne
1190	45	0	ACM	0	25	ACM	0	45	1058,7	156,4	5,85E-03	ne

									st. ohyb.	vlastní		návrh
Č. návrbu	01	02	03	04	05	06	07	08	tuhost	frekvence	poměrný útlum	Pareto
1511	45	ACM	0	15	0	ACM	15	45	1067.6	157.4	5.84E-03	ne
964	45	ACM	0	15	0	ACM	0	45	1152,1	163,0	5,84E-03	ne
565	45	15	ACM	15	0	ACM	ACM	45	741,7	138,4	,82E-03	ne
435	45	0	0	0	ACM	0	ACM	45	1136,4	164,9	5,82E-03	ne
829	45	0	ACM	0	25	ACM	ACM	45	694,3	134,2	5,80E-03	ne
560	45	ACM	15	0	0	ACM	ACM	45	792,8	143,5	5,78E-03	ne
1085	45	ACM	15	0	0	0	ACM	45	1084,2	160,1	5,77E-03	ne
106	45	15	ACM	15	0	ACM	0	45	1104,4	159,5	5,77E-03	ne
1555	45	0	ACM	0	ACM	25	0	45	1056,9	158,3	5,76E-03	ne
902	45	0	ACM	25	0	ACM	0	45	1070,1	157,2	5,73E-03	ne
849	45	ACM	0	ACM	15	25	0	45	999,4	154,3	5,73E-03	ne
1018	45	ACM	0	0	15	ACM	0	45	1147,7	162,8	5,72E-03	ne
117	45	ACM	0	ACM	0	65	15	45	923,2	148,7	5,71E-03	ne
1893	45	ACM	0	0	15	ACM	25	45	930,8	147,7	5,71E-03	ne
1125	45	25	ACM	0	15	0	ACM	45	944,7	149,1	5,69E-03	ne
1939	45	0	0	ACM	25	ACM	ACM	45	647,5	130,8	5,68E-03	ne
279	45	0	ACM	15	0	0	ACM	45	1114,3	161,3	5,68E-03	ne
351	45	15	ACM	15	0	0	ACM	45	1049,7	156,8	5,64E-03	ne
776	45	0	ACM	25	0	ACM	ACM	45	705,8	135,2	5,64E-03	ne
1259	45	ACM	ACM	0	15	15	ACM	45	756,5	139,6	5,64E-03	ne
583	45	ACM	0	ACM	0	0	25	45	1078,2	159,6	5,63E-03	ne
893	45	ACM	0	ACM	0	15	15	45	1106,7	161,8	5,54E-03	ne
442	45	ACM	15	0	0	ACM	15	45	1071,7	158,1	5,53E-03	ne
487	45	ACM	15	0	0	ACM	0	45	1156,2	163,8	5,48E-03	ne
116	45	25	ACM	15	0	0	ACM	45	949,0	149,7	5,48E-03	ne
346	45	ACM	0	ACM	0	25	0	45	1088,8	160,8	5,46E-03	ne
1388	45	ACM	ACM	15	15	0	ACM	45	766,6	140,7	5,45E-03	ne
731	45	ACM	0	ACM	15	15	0	45	1115,1	162,7	5,43E-03	ne
1106	45	ACM	0	15	15	ACM	0	45	1082,1	158,4	5,42E-03	ne
1295	45	35	ACM	15	15	ACM	0	45	818,0	139,2	5,39E-03	ne
660	45	ACM	0	ACM	0	0	15	45	1180,3	166,7	5,37E-03	ne
1193	45	ACM	ACM	15	ACM	0	0	45	900,3	151,7	5,36E-03	ne
616	45	ACM	0	ACM	0	15	0	45	1184,7	167,2	5,31E-03	ne
913	45	ACM	15	15	0	ACM	ACM	45	727,6	137,7	5,30E-03	ne
208	45	ACM	0	ACM	0	0	0	45	1227,8	169,8	5,26E-03	ano
1156	45	ACM	ACM	15	0	15	ACM	45	761,7	140,5	5,26E-03	ne
524	45	ACM	15	15	0	ACM	0	45	1091,7	159,3	5,25E-03	ne
107	45	ACM	90	15	0	0	ACM	45	882,2	145,6	5,24E-03	ne
587	45	ACM	15	ACM	ACM	0	0	45	889,0	150,8	5,24E-03	ne
581	45	0	ACM	15	ACM	0	0	45	1181,0	165,5	5,23E-03	ne

									st. ohyb.	vlastní		návrh
Č. návrhu	01	02	03	04	05	06	07	08	tuhost [N/mm]	frekvence	poměrný útlum	Pareto
333	45	ACM	ACM	04	25	0	ACM	45	756.6	139.5	5.23E-03	ne
243	45	ACM	0	ACM	15	0	0	45	1188,7	167,7	5,22E-03	ne
429	45	0	0	0	ACM	25	ACM	45	940,0	150,3	5,20E-03	ne
386	45	0	ACM	0	25	0	ACM	45	1035,6	155,5	5,20E-03	ne
2012	45	ACM	15	25	0	ACM	0	45	981,7	151,4	5,17E-03	ne
1188	45	ACM	0	25	0	ACM	0	45	1081,2	158,3	5,16E-03	ne
1270	45	0	0	ACM	15	ACM	ACM	45	783,4	143,6	5,13E-03	ne
1669	45	ACM	15	25	0	ACM	ACM	45	616,5	127,1	5,10E-03	ne
530	45	ACM	0	25	0	ACM	ACM	45	718,1	136,5	5,09E-03	ne
622	45	ACM	15	ACM	ACM	0	15	45	816,7	145,0	5,04E-03	ne
318	45	ACM	0	15	ACM	0	0	45	1184,2	165,5	4,98E-03	ne
73	45	0	90	15	ACM	15	ACM	45	816,3	140,8	4,94E-03	ne
231	45	ACM	0	15	25	ACM	0	45	964,7	150,4	4,92E-03	ne
361	45	ACM	15	0	ACM	0	0	45	1188,6	165,9	4,89E-03	ne
1945	45	ACM	25	ACM	ACM	0	25	45	570,1	122,0	4,87E-03	ne
1975	45	ACM	0	15	15	0	ACM	45	1044,5	157,0	4,86E-03	ne
1073	45	ACM	0	15	ACM	0	15	45	1113,7	160,9	4,86E-03	ne
354	45	ACM	25	ACM	0	0	0	45	1063,6	158,3	4,84E-03	ne
444	45	0	0	ACM	0	15	ACM	45	1111,3	161,8	4,83E-03	ne
1082	45	25	ACM	15	0	15	ACM	45	872,7	143,9	4,81E-03	ne
221	45	ACM	25	0	ACM	0	0	45	1094,1	159,6	4,80E-03	ne
1789	45	ACM	15	0	ACM	0	15	45	1118,1	161,3	4,79E-03	ne
339	45	15	0	ACM	0	15	ACM	45	1056,6	157,9	4,75E-03	ne
1109	45	0	0	ACM	15	0	ACM	45	1115,8	162,2	4,75E-03	ne
543	45	25	ACM	15	ACM	0	0	45	1010,7	154,0	4,74E-03	ne
632	45	0	ACM	15	ACM	15	0	45	1111,7	161,3	4,73E-03	ne
433	45	ACM	15	ACM	ACM	15	0	45	820,9	145,8	4,73E-03	ne
571	45	ACM	15	25	0	15	ACM	45	841,0	141,7	4,70E-03	ne
674	45	ACM	ACM	25	0	15	ACM	45	652,3	130,8	4,69E-03	ne
1810	45	ACM	15	0	25	ACM	0	45	970,0	151,2	4,67E-03	ne
232	45	15	0	ACM	15	0	ACM	45	1061,2	158,3	4,67E-03	ne
136	45	ACM	15	15	0	0	ACM	45	1053,2	158,0	4,65E-03	ne
1517	45	ACM	0	0	25	ACM	0	45	1070,4	158,1	4,63E-03	ne
1340	45	0	0	ACM	25	0	ACM	45	1010,4	154,7	4,63E-03	ne
1081	45	25	0	ACM	0	15	ACM	45	964,5	151,3	4,62E-03	ne
45	45	0	25	15	ACM	25	ACM	45	712,6	131,3	4,60E-03	ne
1141	45	0	15	ACM	15	ACM	0	45	1088,2	160,3	4,59E-03	ne
141	45	ACM	90	15	0	ACM	ACM	45	580,4	124,4	4,58E-03	ne
60	45	ACM	15	ACM	35	55	0	45	664,7	126,5	4,57E-03	ne
142	45	15	ACM	25	0	15	ACM	45	864,7	143,4	4,54E-03	ne

									st. ohyb.	vlastní	× .	návrh
Č. návrhu	01	02	03	04	05	06	07	08	tuhost [N/mm]	frekvence	poměrný útlum	Pareto
1238	45	02	15	ACM	0	15	ACM	45	1053.2	158.0	4.53E-03	ne
288	45	ACM	0	0	25	0	ACM	45	1033,3	156,2	4,52E-03	ne
1908	45	0	ACM	25	0	0	ACM	45	1046,1	157,0	4,52E-03	ne
501	45	15	0	ACM	0	25	ACM	45	941,4	149,5	4,51E-03	ne
1088	45	ACM	15	0	ACM	15	0	45	1122,4	162,0	4,51E-03	ne
890	45	45	ACM	15	0	ACM	0	45	904,0	146,5	4,50E-03	ne
1268	45	ACM	0	0	25	15	ACM	45	937,5	149,1	4,49E-03	ne
1694	45	ACM	ACM	25	0	0	ACM	45	767,2	141,4	4,46E-03	ne
480	45	ACM	25	0	0	ACM	0	45	1091,5	160,0	4,43E-03	ne
453	45	ACM	35	ACM	ACM	0	0	45	717,3	136,1	4,42E-03	ne
71	45	15	35	ACM	0	15	ACM	45	796,7	138,6	4,42E-03	ne
946	45	ACM	15	ACM	0	0	0	45	1183,6	166,8	4,39E-03	ne
1311	45	ACM	0	25	ACM	15	0	45	1013,7	154,2	4,34E-03	ne
110	45	ACM	0	25	ACM	65	15	45	733,5	132,9	4,33E-03	ne
81	45	ACM	0	15	ACM	65	15	45	839,4	142,0	4,31E-03	ne
33	45	ACM	0	15	ACM	55	15	45	817,1	140,1	4,27E-03	ne
78	45	0	25	ACM	0	15	ACM	45	955,4	151,3	4,22E-03	ne
500	45	0	15	15	ACM	15	ACM	45	961,5	152,2	4,21E-03	ne
94	45	ACM	90	ACM	0	35	25	45	523,1	112,3	4,19E-03	ne
65	45	ACM	15	0	0	25	ACM	45	940,6	150,0	4,17E-03	ne
387	45	ACM	15	ACM	0	15	0	45	1131,3	163,5	4,12E-03	ne
512	45	0	ACM	ACM	ACM	0	0	45	973,3	158,1	4,09E-03	ne
89	45	ACM	90	15	0	15	ACM	45	872,2	144,9	4,06E-03	ne
486	45	ACM	35	15	ACM	0	15	45	864,2	142,8	4,06E-03	ne
91	45	ACM	25	0	0	25	ACM	45	832,7	141,6	4,06E-03	ne
491	45	ACM	25	0	0	15	ACM	45	960,6	151,6	4,06E-03	ne
160	45	ACM	65	0	ACM	ACM	25	45	468,2	111,3	4,06E-03	ne
14	45	0	35	ACM	0	25	ACM	45	759,8	135,5	4,00E-03	ne
604	45	15	ACM	ACM	ACM	0	0	45	907,3	153,0	3,98E-03	ne
207	45	ACM	55	ACM	0	0	0	45	996,1	153,6	3,97E-03	ne
523	45	0	ACM	ACM	ACM	0	15	45	902,1	152,7	3,94E-03	ne
1218	45	ACM	15	ACM	25	15	0	45	941,5	150,1	3,86E-03	ne
97	45	ACM	65	ACM	ACM	15	0	45	634,5	129,1	3,85E-03	ne
138	45	ACM	ACM	0	0	35	ACM	45	679,9	133,3	3,84E-03	ne
153	45	ACM	75	15	0	ACM	ACM	45	595,9	126,0	3,84E-03	ne
228	45	ACM	65	15	ACM	0	15	45	895,4	145,8	3,80E-03	ne
1727	45	35	25	ACM	0	0	0	45	1128,8	156,9	3,79E-03	ne
1954	45	0	0	0	ACM	25	35	45	1012,8	149,0	3,78E-03	ne
1013	45	35	ACM	ACM	ACM	0	0	45	728,5	138,1	3,76E-03	ne
1843	45	25	ACM	ACM	ACM	0	0	45	805,5	144,8	3,76E-03	ne

v									st. ohyb.	vlastní	× /	návrh
Č. návrhu	ი1	02	03	04	05	06	07	08	tuhost [N/mm]	frekvence	poměrný útlum	Pareto
86	45	0	75	15	ACM	25	25	45	829,5	135,3	3,76E-03	ne
262	45	0	0	ACM	ACM	ACM	0	45	929,2	155,6	3,76E-03	ne
137	45	0	0	ACM	ACM	45	ACM	45	576,7	123,5	3,75E-03	ne
292	45	25	25	ACM	0	0	0	45	1196,2	161,4	3,75E-03	ne
175	45	ACM	55	ACM	0	0	15	45	940,6	149,4	3,72E-03	ne
113	45	ACM	35	ACM	0	15	0	45	959,4	150,8	3,71E-03	ne
51	45	ACM	35	15	0	25	ACM	45	685,9	128,7	3,71E-03	ne
63	45	ACM	90	25	0	ACM	15	45	817,3	140,1	3,70E-03	ne
414	45	0	ACM	ACM	ACM	15	0	45	906,3	153,4	3,70E-03	ne
64	45	ACM	75	15	ACM	ACM	0	45	645,1	130,5	3,69E-03	ne
250	45	25	45	ACM	0	0	0	45	1119,6	156,6	3,69E-03	ne
75	45	25	90	ACM	0	25	25	45	811,1	133,8	3,68E-03	ne
1686	45	0	0	ACM	ACM	ACM	15	45	842,6	148,5	3,68E-03	ne
760	45	35	15	ACM	0	0	0	45	1241,7	164,3	3,67E-03	ano
710	45	25	15	ACM	0	0	0	45	1312,0	168,8	3,67E-03	ano
1856	45	0	0	0	ACM	15	25	45	1240,2	164,6	3,64E-03	ne
58	45	ACM	35	25	ACM	25	0	45	621,8	122,1	3,64E-03	ne
986	45	ACM	0	0	0	35	ACM	45	962,5	151,6	3,64E-03	ne
325	45	15	0	ACM	ACM	ACM	0	45	873,8	151,1	3,64E-03	ne
126	45	ACM	65	15	0	0	ACM	45	930,8	149,5	3,63E-03	ne
1946	45	0	0	0	ACM	15	35	45	1147,6	158,4	3,62E-03	ne
1828	45	35	25	ACM	ACM	0	0	45	833,5	141,2	3,62E-03	ne
182	45	15	35	ACM	0	0	0	45	1231,3	164,0	3,62E-03	ne
792	45	35	ACM	ACM	0	0	0	45	1020,5	155,6	3,61E-03	ne
282	45	0	0	ACM	ACM	0	0	45	1251,5	171,6	3,61E-03	ano
918	45	35	0	ACM	0	0	0	45	1325,0	169,6	3,60E-03	ano
21	45	0	75	75	0	ACM	25	45	791,2	132,4	3,59E-03	ne
263	45	15	25	ACM	0	0	0	45	1306,4	168,6	3,59E-03	ne
98	45	ACM	45	ACM	0	15	0	45	947,2	150,0	3,59E-03	ne
177	45	15	0	ACM	ACM	0	0	45	1197,0	168,0	3,58E-03	ne
16	45	55	0	ACM	25	25	15	45	809,2	133,5	3,58E-03	ne
166	45	25	0	ACM	0	0	0	45	1398,5	174,1	3,58E-03	ano
38	45	ACM	90	25	0	15	ACM	45	826,6	141,2	3,58E-03	ne
812	45	15	ACM	ACM	ACM	15	0	45	839,7	147,9	3,58E-03	ne
266	45	25	ACM	ACM	0	0	0	45	1097,8	161,2	3,58E-03	ne
1739	45	0	0	ACM	ACM	0	15	45	1181,0	167,0	3,58E-03	ne
1857	45	45	25	ACM	ACM	0	0	45	832,7	141,2	3,57E-03	ne
1889	45	0	0	ACM	ACM	25	25	45	815,8	139,8	3,57E-03	ne
152	45	0	15	ACM	ACM	55	ACM	45	514,2	117,0	3,57E-03	ne
209	45	15	45	ACM	0	0	0	45	1216,4	163,1	3,57E-03	ne

,									st. ohyb.	vlastní	× /	návrh
c. návrhu	01	02	03	04	05	06	07	08	tuhost [N/mm]	frekvence [Hz]	pomerny útlum	Pareto fronty
120	45	ACM	ACM	15	0	65	ACM	45	601,2	126,1	3,56E-03	ne
384	45	15	15	ACM	0	0	0	45	1414,8	175,1	3,56E-03	ano
2011	45	0	0	ACM	ACM	15	25	45	954,7	150,8	3,56E-03	ne
801	45	25	15	ACM	ACM	0	0	45	1017,3	155,4	3,54E-03	ne
1206	45	65	ACM	0	0	0	15	45	1237,6	164,5	3,54E-03	ne
111	45	15	55	ACM	0	0	0	45	1229,5	164,1	3,53E-03	ne
69	45	25	90	ACM	0	15	25	45	942,2	144,1	3,53E-03	ne
1011	45	35	15	ACM	ACM	0	0	45	946,9	150,1	3,53E-03	ne
270	45	25	0	ACM	ACM	0	0	45	1104,8	161,7	3,53E-03	ne
1835	45	0	0	ACM	ACM	0	25	45	1060,1	158,6	3,53E-03	ne
174	45	15	0	ACM	0	0	0	45	1489,3	179,5	3,51E-03	ano
49	45	ACM	90	45	0	ACM	15	45	687,5	128,9	3,51E-03	ne
189	45	0	90	ACM	0	15	25	45	1040,7	151,4	3,51E-03	ne
144	45	0	15	0	ACM	55	ACM	45	811,8	139,9	3,50E-03	ne
226	45	15	ACM	ACM	0	0	0	45	1199,3	168,2	3,50E-03	ne
366	45	15	15	ACM	ACM	0	0	45	1121,3	162,9	3,50E-03	ne
210	45	35	0	ACM	ACM	0	0	45	1030,7	156,5	3,50E-03	ne
1894	45	0	0	0	ACM	15	15	45	1375,1	173,1	3,50E-03	ne
1744	45	45	ACM	0	0	0	15	45	1224,8	163,5	3,49E-03	ne
172	45	15	75	ACM	0	0	0	45	1256,9	166,0	3,49E-03	ne
831	45	15	0	ACM	ACM	0	15	45	1125,5	163,2	3,49E-03	ne
1140	45	25	35	15	ACM	0	0	45	1053,7	152,0	3,48E-03	ne
477	45	ACM	ACM	ACM	0	0	0	45	986,2	160,1	3,48E-03	ne
413	45	0	15	ACM	ACM	0	0	45	1193,7	167,9	3,48E-03	ne
299	45	25	0	ACM	ACM	ACM	0	45	780,8	143,3	3,48E-03	ne
1885	45	0	0	ACM	0	15	25	45	1286,7	167,3	3,47E-03	ne
936	45	0	15	ACM	0	0	0	45	1485,9	179,4	3,47E-03	ne
1210	45	0	0	ACM	ACM	15	0	45	1185,1	167,5	3,47E-03	ne
1214	45	0	25	ACM	0	0	0	45	1389,5	173,9	3,47E-03	ne
1796	45	15	0	ACM	ACM	ACM	25	45	652,0	131,3	3,47E-03	ne
96	45	0	90	ACM	ACM	15	25	45	706,7	130,8	3,47E-03	ne
1124	45	0	15	ACM	ACM	ACM	0	45	870,4	151,1	3,47E-03	ne
80	45	ACM	35	0	0	15	ACM	45	918,6	148,5	3,46E-03	ne
468	45	0	ACM	ACM	0	0	0	45	1264,7	172,6	3,46E-03	ne
41	45	ACM	35	0	0	25	ACM	45	792,6	138,3	3,46E-03	ne
34	45	0	25	ACM	65	45	55	45	477,0	102,8	3,45E-03	ne
628	45	15	15	ACM	ACM	ACM	0	45	797,4	144,8	3,45E-03	ne
35	45	0	65	65	0	ACM	35	45	688,5	123,5	3,44E-03	ne
277	45	15	35	ACM	ACM	0	0	45	936,4	149,8	3,44E-03	ne
1586	45	25	15	ACM	ACM	ACM	0	45	692,8	135,3	3,44E-03	ne

									st. ohyb.	vlastní		návrh
č.		_			_	_	_	_	tuhost	frekvence	poměrný	Pareto
navrhu	01	02	03	04	05	06	07	08	[N/mm]	[Hz]		fronty
1527	45	35	ACM	0	15	0	0	45	1257,6	165,7	3,44E-03	ne
323	45	15	25	ACM	ACM	0	0	45	1011,/	155,4	3,42E-03	ne
99	45	25	75	0	ACM	15	35	45	816,6	134,3	3,42E-03	ne
46	45	ACM	75	25	0	15	ACM	45	823,4	140,9	3,42E-03	ne
579	45	0	0	ACM	0	0	25	45	1382,4	173,2	3,42E-03	ne
1054	45	25	ACM	0	0	0	15	45	1326,1	169,9	3,41E-03	ne
550	45	35	ACM	ACM	0	0	15	45	965,4	151,6	3,41E-03	ne
1289	45	35	ACM	15	0	0	0	45	1261,3	166,0	3,41E-03	ne
598	45	0	0	0	ACM	0	15	45	1463,8	178,4	3,40E-03	ne
879	45	0	0	ACM	0	15	15	45	1411,5	175,1	3,40E-03	ne
40	45	0	25	ACM	65	35	65	45	558,8	111,2	3,40E-03	ne
1899	45	15	0	ACM	ACM	15	15	45	1034,7	156,8	3,40E-03	ne
608	45	25	ACM	ACM	0	0	15	45	1042,4	157,2	3,40E-03	ne
131	45	15	65	ACM	ACM	0	0	45	951,5	151,3	3,40E-03	ne
701	45	0	0	0	ACM	25	0	45	1354,9	172,1	3,40E-03	ne
572	45	0	0	ACM	0	0	15	45	1488,6	179,5	3,40E-03	ano
367	45	25	ACM	0	0	15	0	45	1330,5	170,2	3,39E-03	ne
212	45	ACM	0	0	0	15	0	45	1478,5	179,5	3,39E-03	ne
1825	45	35	15	0	ACM	0	0	45	1263,4	166,0	3,39E-03	ne
866	45	0	0	0	ACM	ACM	15	45	1125,7	164,1	3,39E-03	ne
253	45	25	15	0	ACM	0	0	45	1331,9	170,3	3,39E-03	ne
690	45	15	0	ACM	0	0	15	45	1433,9	176,3	3,38E-03	ne
1648	45	35	ACM	ACM	0	15	0	45	969,6	152,0	3,38E-03	ne
227	45	ACM	0	0	15	0	0	45	1482,9	179,8	3,38E-03	ano
967	45	ACM	ACM	ACM	0	0	15	45	932,4	155,9	3,38E-03	ne
693	45	0	ACM	ACM	0	0	15	45	1210,4	169,0	3,38E-03	ne
30	45	0	65	25	55	ACM	25	45	640,7	119,3	3,38E-03	ne
134	45	0	90	ACM	0	15	15	45	1165,8	160,1	3,37E-03	ne
1058	45	15	ACM	ACM	0	0	15	45	1144,2	164,5	3,37E-03	ne
528	45	ACM	0	15	0	0	0	45	1486,9	180,1	3,37E-03	ano
876	45	0	0	0	ACM	15	0	45	1467,9	178,7	3,37E-03	ne
378	45	15	15	ACM	0	0	15	45	1358,2	171,7	3,37E-03	ne
1935	45	0	0	0	ACM	ACM	ACM	45	848,8	150,4	3,37E-03	ne
1271	45	0	0	ACM	0	15	0	45	1492,8	179,9	3,36E-03	ano
168	45	0	90	ACM	0	0	0	45	1297,2	168,7	3,36E-03	ne
438	45	35	0	0	ACM	0	0	45	1341,9	171,0	3,36E-03	ne
115	45	ACM	45	15	0	ACM	ACM	45	586,7	124,8	3,36E-03	ne
1171	45	0	15	0	0	0	ACM	45	1418,6	176,7	3,36E-03	ne
595	45	0	0	15	0	0	ACM	45	1415,4	176,5	3,36E-03	ne
4	45	75	0	ACM	55	35	35	45	486,0	103,7	3,35E-03	ne

č									st. ohyb.	vlastní frokvonco	noměrný	návrh Paroto
návrhu	o1	o2	о3	o4	о5	06	о7	08	[N/mm]	[Hz]	útlum	fronty
1335	45	25	0	15	ACM	0	0	45	1328,0	170,2	3,35E-03	ne
1887	45	0	0	ACM	ACM	25	55	45	759,5	135,0	3,35E-03	ne
1487	45	0	0	0	15	0	ACM	45	1411,8	176,3	3,35E-03	ne
244	45	25	0	0	ACM	0	0	45	1411,5	175,2	3,35E-03	ne
213	45	15	15	15	ACM	0	0	45	1341,7	171,0	3,35E-03	ne
206	45	25	ACM	15	0	0	0	45	1338,4	170,9	3,35E-03	ne
781	45	ACM	ACM	ACM	0	15	0	45	936,7	156,4	3,34E-03	ne
961	45	15	0	ACM	0	15	0	45	1438,1	176,6	3,34E-03	ne
8	45	ACM	ACM	45	0	ACM	65	45	379,3	100,4	3,34E-03	ne
1764	45	0	15	ACM	0	0	15	45	1430,4	176,2	3,34E-03	ne
995	45	25	0	ACM	ACM	15	0	45	1036,6	157,0	3,34E-03	ne
1251	45	15	ACM	0	0	0	15	45	1427,2	176,1	3,34E-03	ne
534	45	15	ACM	ACM	0	15	0	45	1148,5	164,9	3,34E-03	ne
252	45	15	15	ACM	0	15	0	45	1362,4	172,1	3,33E-03	ne
23	45	0	ACM	ACM	90	45	65	45	394,6	97,8	3,33E-03	ne
1104	45	0	ACM	ACM	0	15	0	45	1214,6	169,5	3,33E-03	ne
1324	45	15	15	0	ACM	0	0	45	1426,8	176,2	3,33E-03	ne
2009	45	0	ACM	0	15	25	25	45	1082,9	153,9	3,33E-03	ne
603	45	15	0	0	ACM	0	0	45	1492,1	180,0	3,33E-03	ano
236	45	15	25	ACM	0	0	15	45	1248,9	165,0	3,32E-03	ne
297	45	15	ACM	0	0	15	0	45	1431,6	176,4	3,32E-03	ne
898	45	15	25	0	ACM	0	0	45	1326,5	170,2	3,32E-03	ne
1819	45	15	0	0	ACM	0	15	45	1421,1	175,9	3,31E-03	ne
145	45	15	25	ACM	0	35	ACM	45	685,3	128,5	3,30E-03	ne
186	45	0	90	ACM	0	0	15	45	1243,0	165,2	3,30E-03	ne
815	45	0	15	ACM	0	15	0	45	1434,7	176,5	3,30E-03	ne
327	45	15	35	0	ACM	0	0	45	1253,4	165,7	3,30E-03	ne
962	45	0	25	15	ACM	0	0	45	1318,2	169,7	3,30E-03	ne
356	45	0	0	0	ACM	ACM	0	45	1211,5	170,0	3,30E-03	ne
1977	45	0	0	ACM	0	25	0	45	1392,8	174,1	3,30E-03	ne
1290	45	25	ACM	ACM	15	0	0	45	1050,6	158,1	3,30E-03	ne
1115	45	0	15	0	ACM	0	0	45	1488,9	179,9	3,30E-03	ne
593	45	15	25	ACM	ACM	ACM	0	45	687,1	135,1	3,30E-03	ne
606	45	0	0	ACM	15	0	0	45	1496,8	180,3	3,30E-03	ano
249	45	ACM	ACM	ACM	15	0	0	45	940,7	156,9	3,29E-03	ne
1757	45	0	ACM	ACM	15	15	15	45	1039,3	157,3	3,29E-03	ne
1328	45	25	0	ACM	15	0	0	45	1350,0	171,4	3,29E-03	ne
943	45	15	0	15	ACM	0	0	45	1423,0	176,0	3,29E-03	ne
239	45	15	ACM	0	15	0	0	45	1435,7	176,7	3,29E-03	ne
803	45	0	ACM	0	0	0	15	45	1492,4	180,0	3,29E-03	ne

									st. ohyb.	vlastní		návrh
č.		-	-		_	-	_	-	tuhost	frekvence	poměrný	Pareto
navrhu	01	02	03	15	05	06	07	08	[N/mm]	[Hz]		fronty
164	45	0	/5	15	0	0	ACIM	45	1217,9	164,0	3,28E-03	ne
926	45	15	0	ACM	15	0	0	45	1442,0	1/7,0	3,28E-03	ne
482	45	15	35	ACM	ACM	ACM	0	45	611,6	127,8	3,28E-03	ne
1026	45	0	15	15	ACM	0	0	45	1419,1	175,8	3,28E-03	ne
1941	45	0	ACM	0	15	15	25	45	1215,4	162,9	3,28E-03	ne
1808	45	15	ACM	ACM	15	0	0	45	1152,4	165,4	3,28E-03	ne
424	45	15	0	0	ACM	15	0	45	1425,2	176,2	3,27E-03	ne
398	45	0	ACM	0	0	15	0	45	1496,9	180,3	3,27E-03	ano
1421	45	25	ACM	0	0	15	15	45	1259,0	165,7	3,27E-03	ne
1838	45	25	0	0	ACM	0	15	45	1339,2	170,8	3,26E-03	ne
833	45	0	0	15	ACM	0	25	45	1293,6	168,1	3,26E-03	ne
1971	45	15	25	ACM	ACM	0	15	45	938,9	149,9	3,26E-03	ne
514	45	ACM	ACM	0	0	0	15	45	1214,0	169,8	3,26E-03	ne
665	45	0	ACM	ACM	15	0	0	45	1218,6	170,0	3,26E-03	ne
1802	45	ACM	0	0	15	0	15	45	1425,0	176,4	3,26E-03	ne
66	45	ACM	0	15	15	45	ACM	45	795,3	138,3	3,26E-03	ne
344	45	15	ACM	15	0	0	0	45	1439,5	177,1	3,26E-03	ne
1202	45	0	15	ACM	15	0	0	45	1438,6	176,9	3,25E-03	ne
661	45	0	0	15	ACM	0	0	45	1485,4	179,8	3,25E-03	ne
1693	45	ACM	0	15	0	0	15	45	1429,3	176,7	3,25E-03	ne
462	45	15	0	0	ACM	ACM	ACM	45	806,8	146,8	3,25E-03	ne
789	45	ACM	ACM	0	0	15	0	45	1218,4	170,1	3,25E-03	ne
179	45	15	0	0	0	ACM	15	45	1386,5	174,3	3,24E-03	ne
9	45	55	55	35	ACM	75	0	45	504,7	105,8	3,24E-03	ne
734	45	ACM	0	15	0	15	0	45	1433,5	177,0	3,24E-03	ne
1037	45	25	15	0	ACM	0	15	45	1258,6	165,7	3,24E-03	ne
749	45	0	15	0	ACM	15	0	45	1422,0	176,0	3,24E-03	ne
1737	45	25	ACM	0	15	0	15	45	1263,4	166,0	3,24E-03	ne
718	45	ACM	0	15	15	0	0	45	1437,5	177,2	3,24E-03	ne
1642	45	0	15	45	ACM	0	0	45	1216,7	163,6	3,24E-03	ne
10	45	ACM	0	90	0	75	75	45	678,2	122,4	3,24E-03	ne
343	45	0	ACM	0	15	0	0	45	1501,0	180,6	3,24E-03	ano
1342	45	0	15	0	0	ACM	15	45	1383,4	174,1	3,24E-03	ne
240	45	15	35	25	ACM	0	15	45	967,5	145,9	3,24E-03	ne
919	45	ACM	15	0	0	0	15	45	1433,2	177,0	3,24E-03	ne
251	45	15	0	0	ACM	ACM	0	45	1169,5	167,1	3,24E-03	ne
471	45	ACM	15	0	0	15	0	45	1437,4	177,3	3,23E-03	ne
254	45	ACM	ACM	0	15	0	0	45	1222,6	170,5	3,23E-03	ne
877	45	15	0	0	0	ACM	ACM	45	1109,5	163,7	3,23E-03	ne
1032	45	0	15	0	0	ACM	ACM	45	1106,5	163,5	3,23E-03	ne

									st. ohyb.	vlastní		návrh
č.	_	-	-	_	_	-	_	_	tuhost	frekvence	poměrný	Pareto
návrhu	01	02	03	04	05	06	07	08	[N/mm]	[Hz]	útlum	fronty
624	45	ACIVI	0	0	0	25	0	45	1406,3	175,2	3,23E-03	ne
121	45	15	0	15	ACM	/5	15	45	1086,5	154,7	3,23E-03	ne
454	45	ACM	15	0	15	0	0	45	1441,4	177,5	3,23E-03	ne
544	45	15	0	15	0	0	ACM	45	1374,0	174,0	3,23E-03	ne
1067	45	0	0	15	0	ACM	15	45	1380,0	174,0	3,22E-03	ne
658	45	0	0	15	0	ACM	ACM	45	1103,1	163,3	3,22E-03	ne
739	45	ACM	15	15	0	0	0	45	1445,0	177,8	3,22E-03	ne
42	45	25	90	15	0	ACM	15	45	1082,1	154,6	3,22E-03	ne
219	45	25	15	35	ACM	0	15	45	968,0	146,0	3,22E-03	ne
178	45	0	90	0	15	ACM	ACM	45	885,8	146,7	3,22E-03	ne
1938	45	ACM	0	0	15	15	15	45	1348,1	171,6	3,22E-03	ne
1948	45	15	15	0	0	0	ACM	45	1377,3	174,2	3,22E-03	ne
434	45	15	15	0	ACM	15	0	45	1358,6	172,1	3,21E-03	ne
154	45	ACM	25	25	0	15	15	45	1044,6	151,5	3,21E-03	ne
1116	45	0	15	15	0	0	ACM	45	1370,5	173,8	3,21E-03	ne
1113	45	0	15	0	ACM	ACM	0	45	1166,3	167,0	3,21E-03	ne
184	45	ACM	ACM	ACM	0	25	15	45	734,5	139,1	3,21E-03	ne
248	45	ACM	ACM	15	0	0	0	45	1226,4	170,9	3,21E-03	ne
24	45	90	25	65	ACM	0	45	45	598,8	115,3	3,21E-03	ne
370	45	25	0	0	ACM	ACM	0	45	1087,6	161,3	3,21E-03	ne
7	45	0	90	35	45	75	ACM	45	507,8	106,4	3,21E-03	ne
479	45	0	15	0	15	0	ACM	45	1366,8	173,6	3,21E-03	ne
1792	45	35	15	15	ACM	ACM	0	45	846,7	142,8	3,21E-03	ne
18	45	0	ACM	25	65	90	65	45	540,4	109,4	3,21E-03	ne
1729	45	0	ACM	0	15	0	15	45	1431,3	176,5	3,21E-03	ne
1559	45	0	0	15	15	0	ACM	45	1362,9	173,3	3,21E-03	ne
566	45	0	ACM	15	0	0	0	45	1504,8	181,0	3,20E-03	ano
2024	45	15	0	15	ACM	0	15	45	1350,8	171,7	3,20E-03	ne
1616	45	ACM	0	0	25	0	0	45	1416,4	175,9	3,20E-03	ne
31	45	ACM	75	35	0	25	ACM	45	662,9	126,8	3,20E-03	ne
631	45	0	0	15	0	15	ACM	45	1358,9	173,1	3,20E-03	ne
1556	45	15	15	0	ACM	ACM	0	45	1103,0	162,5	3,20E-03	ne
539	45	0	0	15	ACM	15	0	45	1418,4	175,9	3,20E-03	ne
43	45	45	75	35	0	ACM	15	45	785,6	132,0	3,20E-03	ne
1930	45	ACM	ACM	ACM	0	25	0	45	835,5	148,2	3,20E-03	ne
450	45	0	15	0	0	15	ACM	45	1362,8	173,4	3,20E-03	ne
1172	45	0	0	0	15	15	ACM	45	1354,6	172,9	3,20E-03	ne
342	45	25	15	0	ACM	ACM	0	45	1006,9	155,4	3,20E-03	ne
1969	45	ACM	0	0	15	15	25	45	, 1227,7	163.9	3,20E-03	ne
2025	45	ACM	0	0	0	25	15	45	1323,5	170,1	3,19E-03	ne

									st. ohyb.	vlastní		návrh
č.		_	-		_	-	_	_	tuhost	frekvence	poměrný	Pareto
navrhu	01	02	03	04	05	06	07	08	[N/mm]	[Hz]	utium	fronty
1576	45	15	15	0	ACIVI	ACM	ACIVI	45	739,9	140,7	3,19E-03	ne
	45	25	0	90	35	75	ACM	45	648,2	120,1	3,19E-03	ne
880	45	0	15	ACM	0	25	0	45	1333,2	170,5	3,19E-03	ne
13	45	75	65	75	0	25	ACM	45	599,2	115,5	3,19E-03	ne
26	45	0	15	ACM	ACM	65	25	45	745,2	134,2	3,19E-03	ne
183	45	25	55	0	ACM	0	15	45	1094,5	155,2	3,19E-03	ne
93	45	0	0	ACM	25	75	25	45	1020,5	149,8	3,19E-03	ne
158	45	15	65	0	0	0	ACM	45	1225,2	164,5	3,19E-03	ne
353	45	25	0	0	ACM	ACM	ACM	45	724,4	139,2	3,19E-03	ne
36	45	15	75	45	0	ACM	15	45	924,9	143,1	3,18E-03	ne
20	45	25	45	55	ACM	35	0	45	583,8	113,7	3,18E-03	ne
552	45	0	25	0	0	0	ACM	45	1358,0	173,0	3,18E-03	ne
1921	45	ACM	ACM	0	0	0	25	45	1121,6	163,4	3,18E-03	ne
667	45	ACM	15	15	0	15	0	45	1369,1	173,1	3,18E-03	ne
1356	45	0	0	25	ACM	0	0	45	1393,7	174,7	3,18E-03	ne
569	45	0	ACM	0	0	25	0	45	1410,3	175,3	3,18E-03	ne
216	45	25	25	15	0	ACM	0	45	1130,1	157,7	3,18E-03	ne
1287	45	ACM	ACM	0	15	15	0	45	1157,3	166,0	3,17E-03	ne
25	45	90	0	ACM	25	65	35	45	642,8	119,2	3,17E-03	ne
551	45	0	0	15	ACM	ACM	0	45	1162,8	166,9	3,17E-03	ne
147	45	15	25	25	0	ACM	0	45	1118,3	157,0	3,17E-03	ne
74	45	15	55	25	0	ACM	25	45	872,8	138,9	3,17E-03	ne
729	45	0	ACM	15	0	0	15	45	1435,4	176,9	3,17E-03	ne
720	45	ACM	0	25	0	0	0	45	1425,8	176,6	3,17E-03	ne
139	45	15	15	15	ACM	ACM	0	45	1016,8	156,3	3,17E-03	ne
540	45	0	0	ACM	25	0	0	45	1402,5	175,1	3,17E-03	ne
349	45	15	35	15	ACM	ACM	0	45	836,2	142,1	3,17E-03	ne
167	45	15	0	15	ACM	ACM	ACM	45	736,1	140,4	3,17E-03	ne
527	45	15	ACM	ACM	0	25	0	45	1046,7	157,9	3,17E-03	ne
2016	45	ACM	ACM	15	0	0	15	45	1157,2	166,1	3,17E-03	ne
626	45	0	0	25	0	0	ACM	45	1349,5	172,5	3,16E-03	ne
129	45	ACM	15	0	0	25	0	45	1340,7	171,3	3,16E-03	ne
313	45	15	0	15	ACM	ACM	0	45	1099,3	162,4	3,16E-03	ne
475	45	0	ACM	15	0	15	0	45	1439,5	177,2	3,16E-03	ne
190	45	ACM	ACM	15	0	15	0	45	1161,4	166,4	3,16E-03	ne
162	45	15	15	25	ACM	15	0	45	1154,8	159,2	3,16E-03	ne
102	45	0	0	ACM	15	65	25	45	1073,8	153,6	3,15E-03	ne
92	45	15	25	15	0	15	ACM	45	1111,9	156,8	3,15E-03	ne
1803	45	ACM	ACM	15	15	0	0	45	1165,2	166,8	3,15E-03	ne
793	45	0	ACM	15	15	0	0	45	1443,3	177,5	3,15E-03	ne

									st. ohyb.	vlastní	× /	návrh
Č. návrhu	01	02	03	04	05	06	07	08	tuhost [N/mm]	frekvence [Hz]	pomérný útlum	Pareto
481	45	15	15	0	0	ACM	ACM	45	1053,8	159,7	3,15E-03	ne
1635	45	0	15	15	ACM	ACM	0	45	1095,4	162,1	3,15E-03	ne
651	45	15	15	15	0	0	ACM	45	1309,8	170,0	3,15E-03	ne
452	45	15	15	0	0	ACM	15	45	1329,9	170,8	3,15E-03	ne
379	45	15	0	15	0	ACM	ACM	45	1050,3	159,4	3,15E-03	ne
1224	45	0	ACM	ACM	25	15	0	45	1027,4	156,9	3,15E-03	ne
1373	45	ACM	15	25	0	15	0	45	1267,8	166,8	3,14E-03	ne
140	45	15	35	25	0	ACM	0	45	1052,5	152,3	3,14E-03	ne
536	45	ACM	0	25	0	0	15	45	1344,2	171,6	3,14E-03	ne
237	45	15	0	0	0	ACM	0	45	1472,0	179,5	3,14E-03	ne
32	45	15	90	25	0	15	ACM	45	1082,0	154,7	3,14E-03	ne
108	45	0	0	ACM	15	55	15	45	1140,2	158,1	3,14E-03	ne
320	45	15	0	15	0	ACM	15	45	1326,3	170,6	3,14E-03	ne
1399	45	25	15	15	0	ACM	0	45	1241,7	165,2	3,14E-03	ne
1343	45	0	15	0	0	ACM	0	45	1469,0	179,3	3,14E-03	ne
295	45	25	0	0	0	ACM	ACM	45	1040,1	158,6	3,14E-03	ne
176	45	0	25	0	ACM	15	0	45	1334,7	170,8	3,13E-03	ne
1829	45	35	0	0	ACM	ACM	ACM	45	653,7	132,4	3,13E-03	ne
1571	45	ACM	15	25	0	0	0	45	1359,6	172,6	3,13E-03	ne
1093	45	ACM	ACM	0	25	0	0	45	1142,1	165,2	3,13E-03	ne
1895	45	ACM	0	0	0	25	35	45	1116,2	156,4	3,13E-03	ne
715	45	25	0	15	0	0	ACM	45	1297,6	169,2	3,13E-03	ne
363	45	25	15	0	0	0	ACM	45	1301,0	169,4	3,13E-03	ne
100	45	15	25	15	0	ACM	0	45	1236,1	164,8	3,13E-03	ne
402	45	15	25	0	0	0	ACM	45	1296,2	169,1	3,13E-03	ne
436	45	0	0	15	0	ACM	0	45	1465,6	179,2	3,12E-03	ne
908	45	25	15	0	0	15	ACM	45	1211,4	163,6	3,12E-03	ne
132	45	15	75	15	0	ACM	ACM	45	855,7	144,2	3,12E-03	ne
607	45	15	ACM	0	25	0	0	45	1353,7	172,0	3,12E-03	ne
203	45	25	25	15	0	0	ACM	45	1114,1	156,9	3,12E-03	ne
562	45	25	25	0	0	ACM	0	45	1227,1	164,2	3,12E-03	ne
767	45	25	15	0	15	0	ACM	45	1215,6	163,8	3,12E-03	ne
1754	45	55	0	0	0	ACM	ACM	45	947,7	151,5	3,12E-03	ne
1644	45	0	15	0	15	ACM	ACM	45	1042,6	158,9	3,12E-03	ne
1235	45	25	15	15	0	0	ACM	45	1219,5	164,1	3,12E-03	ne
1503	45	15	0	25	0	0	ACM	45	1287,4	168,6	3,12E-03	ne
22	45	15	90	35	0	15	ACM	45	1007,2	149,4	3,12E-03	ne
1084	45	35	15	15	0	ACM	0	45	1178,7	161,0	3,12E-03	ne
328	45	15	0	0	15	ACM	15	45	1322,4	170,4	3,12E-03	ne
247	45	35	15	0	ACM	ACM	ACM	45	574,2	124,2	3,12E-03	ne

									st. ohyb.	vlastní		návrh
č.		-			_	_	_	-	tuhost	frekvence	poměrný	Pareto
navrhu	01	02	03	04	05	06	07	08	[N/mm]	[Hz]		fronty
19	45	0	25	ACM	0	55	45	45	//8,4	131,0	3,11E-03	ne
1763	45	0	0	ACM	35	0	0	45	1322,0	170,3	3,11E-03	ne
580	45	35	0	0	0	ACM	15	45	1251,0	165,8	3,11E-03	ne
104	45	0	0	ACM	15	65	15	45	1170,3	160,2	3,11E-03	ne
359	45	0	0	0	15	ACM	0	45	1461,9	179,0	3,11E-03	ne
1208	45	0	ACM	0	25	0	0	45	1420,1	176,1	3,11E-03	ne
161	45	0	55	15	0	0	ACM	45	1212,8	163,6	3,11E-03	ne
130	45	15	15	15	0	ACM	0	45	1339,9	171,5	3,11E-03	ne
133	45	15	55	15	ACM	ACM	0	45	858,9	144,2	3,11E-03	ne
1448	45	0	0	25	ACM	ACM	ACM	45	706,3	137,8	3,11E-03	ne
846	45	25	15	0	0	ACM	0	45	1330,3	170,8	3,11E-03	ne
54	45	0	ACM	ACM	ACM	55	15	45	599,5	126,4	3,11E-03	ne
1179	45	15	ACM	0	25	15	0	45	1266,5	166,5	3,11E-03	ne
70	45	15	75	25	0	15	ACM	45	1068,9	153,8	3,10E-03	ne
199	45	15	15	0	0	ACM	0	45	1416,6	176,2	3,10E-03	ne
376	45	25	0	15	0	ACM	0	45	1326,6	170,6	3,10E-03	ne
1041	45	25	25	0	0	0	ACM	45	1205,2	163,1	3,10E-03	ne
1697	45	15	0	25	ACM	15	0	45	1247,6	165,5	3,10E-03	ne
163	45	25	65	15	0	0	ACM	45	1113,2	156,9	3,10E-03	ne
535	45	ACM	ACM	25	0	0	0	45	1151,2	166,0	3,10E-03	ne
699	45	25	0	0	0	ACM	0	45	1402,9	175,3	3,10E-03	ne
6	45	0	65	ACM	ACM	65	75	45	352,5	92,6	3,10E-03	ne
1207	45	0	ACM	ACM	25	0	0	45	1123,2	163,9	3,10E-03	ne
214	45	25	15	0	0	ACM	ACM	45	967,0	153,1	3,10E-03	ne
103	45	15	35	0	ACM	15	25	45	951,0	144,7	3,09E-03	ne
298	45	15	0	15	0	ACM	0	45	1413,0	176,0	3,09E-03	ne
105	45	ACM	90	15	0	25	15	45	1137,4	158,2	3,09E-03	ne
3	45	ACM	0	75	35	25	90	45	702,2	124,5	3,09E-03	ne
215	45	15	25	0	0	ACM	0	45	1325,2	170,5	3,09E-03	ne
625	45	0	15	15	0	ACM	0	45	1409,3	175,8	3,09E-03	ne
1111	45	25	0	15	0	ACM	ACM	45	963,3	152,8	3,09E-03	ne
848	45	35	15	0	0	0	ACM	45	1239,4	165,4	3,09E-03	ne
112	45	15	35	15	0	15	ACM	45	1050,4	152,4	3,09E-03	ne
954	45	15	35	15	0	ACM	0	45	1168,5	160,4	3,09E-03	ne
83	45	15	15	15	0	35	ACM	45	1016,1	150,1	3,09E-03	ne
123	45	25	75	25	0	ACM	0	45	1083,4	154,7	3,09E-03	ne
185	45	25	35	0	0	ACM	0	45	1156,5	159,5	3,09E-03	ne
44	45	0	15	15	15	65	ACM	45	1069,9	154,0	3,09E-03	ne
233	45	0	35	0	15	0	ACM	45	1219,1	164,1	3,09E-03	ne
235	45	15	35	0	0	0	ACM	45	1230,0	164,8	3,08E-03	ne

									st. ohyb.	vlastní		návrh
č.	_	_	_		_	_	_	_	tuhost	frekvence	poměrný	Pareto
návrhu	01	02	03	04	05	06	07	08		[Hz]	útlum	fronty
1364	45	15	ACIM	ACIM	25	0	0	45	1056,4	159,0	3,08E-03	ne
498	45	15	0	0	15	ACIM	0	45	1409,2	175,8	3,08E-03	ne
114	45	15	55	15	0	0	ACM	45	1161,2	160,2	3,08E-03	ne
122	45	25	25	25	0	ACM	15	45	917,9	142,3	3,08E-03	ne
87	45	15	75	15	0	ACM	0	45	1219,3	163,9	3,08E-03	ne
156	45	35	15	15	0	35	ACM	45	846,1	137,0	3,08E-03	ne
1212	45	0	15	0	15	ACM	0	45	1405,5	175,6	3,08E-03	ne
1801	45	0	0	15	15	ACM	0	45	1401,4	175,4	3,08E-03	ne
148	45	15	45	0	0	0	ACM	45	1211,6	163,6	3,07E-03	ne
1768	45	45	15	0	0	ACM	ACM	45	885,6	146,6	3,07E-03	ne
445	45	25	35	15	0	ACM	ACM	45	699,3	130,4	3,07E-03	ne
12	45	75	ACM	0	15	90	35	45	801,4	132,9	3,07E-03	ne
88	45	25	75	35	0	15	ACM	45	918,9	142,7	3,07E-03	ne
1	45	25	55	25	0	65	ACM	45	695,5	124,3	3,07E-03	ne
681	45	0	ACM	25	0	0	0	45	1429,2	176,9	3,07E-03	ne
77	45	0	ACM	ACM	15	90	35	45	745,2	134,0	3,07E-03	ne
146	45	ACM	ACM	ACM	0	45	15	45	633,6	129,5	3,07E-03	ne
642	45	0	15	25	0	ACM	0	45	1311,8	169,8	3,07E-03	ne
72	45	ACM	75	15	0	15	25	45	1119,2	157,0	3,07E-03	ne
381	45	15	35	0	0	ACM	ACM	45	891,3	147,1	3,07E-03	ne
101	45	ACM	0	15	15	45	15	45	1072,1	153,3	3,06E-03	ne
17	45	ACM	90	45	55	35	0	45	584,3	113,7	3,06E-03	ne
61	45	ACM	75	25	0	15	15	45	1137,5	158,2	3,06E-03	ne
150	45	15	ACM	ACM	0	65	25	45	787,6	137,7	3,06E-03	ne
265	45	15	25	15	0	ACM	15	45	1147,7	158,9	3,05E-03	ne
29	45	0	15	ACM	0	55	15	45	1148,2	158,7	3,05E-03	ne
151	45	ACM	ACM	0	0	45	15	45	941,0	150,1	3,05E-03	ne
62	45	ACM	55	75	0	15	15	45	979,3	146,9	3,05E-03	ne
15	45	0	ACM	ACM	0	65	25	45	854,3	143,3	3,05E-03	ne
1523	45	0	15	0	25	ACM	0	45	1301,7	169,3	3,05E-03	ne
37	45	ACM	65	65	0	15	25	45	869,9	138,5	3,04E-03	ne
76	45	ACM	ACM	15	0	55	15	45	892,8	146,3	3,04E-03	ne
82	45	ACM	75	15	0	25	25	45	1029,7	150,6	3,04E-03	ne
47	45	0	ACM	25	0	65	35	45	918,5	142,2	3,04E-03	ne
59	45	0	ACM	0	15	90	25	45	1140,7	158,2	3,04E-03	ne
52	45	0	ACM	0	15	75	35	45	1035,2	150,8	3,04E-03	ne
50	45	0	15	25	25	65	ACM	45	897,8	141,2	3,04E-03	ne
124	45	ACM	55	0	0	15	15	45	1222,7	164,0	3,03E-03	ne
180	45	25	0	25	0	ACM	15	45	1129,3	157,8	3,03E-03	ne
28	45	0	0	45	ACM	25	65	45	824,4	135,0	3,03E-03	ne

č.									st. ohyb. tuhost	vlastní frekvence	poměrný	návrh Pareto
návrhu	o1	o2	o3	o4	o5	06	07	08	[N/mm]	[Hz]	útlum	fronty
193	45	15	15	45	0	0	ACM	45	1128,6	158,0	3,03E-03	ne
2	45	ACM	65	25	55	0	15	45	867,1	138,3	3,02E-03	ne
1427	45	0	0	0	25	ACM	0	45	1376,2	174,0	3,02E-03	ne
39	45	ACM	25	15	0	65	15	45	1077,5	153,9	3,02E-03	ne
67	45	ACM	75	25	0	25	25	45	948,1	144,6	3,02E-03	ne
48	45	ACM	45	0	0	25	0	45	1176,8	160,9	3,02E-03	ne
27	45	15	55	0	35	35	ACM	45	685,1	123,4	3,00E-03	ne
5	45	ACM	55	0	45	35	15	45	712,3	125,4	2,99E-03	ne