
Real-time Mesh Extraction of Dynamic Volume Data Using

GPU

Szymon Engel

AGH, Krakow, Poland

szymon@hoopoe.com.pl

Witold Alda

AGH, Krakow, Poland

alda@agh.edu.pl

Krzysztof Boryczko

AGH, Krakow, Poland

boryczko@agh.edu.pl

ABSTRACT

In the paper an algorithm of triangle mesh generation for a full three-dimensional volumetric data is presented.

Calculations are performed in real time using graphics processors. The method is very well suited for the visu-

alization of dynamic data, as the calculations use only the current frame data (not including data from previous

frames). Due to high performance of the algorithm, it can be practically applied in programs for digital sculpting,

simulators and games which require editable geometries.
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1 INTRODUCTION

Nowadays, visualization of volumetric data is very of-

ten applied in practice. Both in medicine, e.g. for the

MRI, PET, or CT data presentation in medical imag-

ing, nondestructive inspection of materials (industrial

CT), digital sculpting software, as well as in computer

games. Often the visualization itself is not sufficient

and a three-dimensional mesh is required for a physi-

cal calculations, such as collision detection, calculation

of material properties or stress. Moreover, the advan-

tage of representing models with triangle meshes is that

modern GPUs are optimized for efficient rendering of

triangles.

Another issue is that volumetric data can change dy-

namically. When modeling is performed in a program

for sculpting a virtual material, a three-dimensional

mesh generated in real time is needed in order to dis-

play the results. In video games or simulators of earth-

moving machineries, we have to deal with the terrain,

which cannot be fully represented by height maps. We

may require a visualization of structures such as tun-

nels, caves, overhangs of the land as well as other mod-

ifications caused as a result of a player actions, such as

explosions, vehicle interactions with the terrain or other

gameplay activities.

Currently available methods often do not allow to gen-

erate a mesh for a large amount of data in real time.
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this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

Sometimes the resulting effect is described as "interac-

tive" which usually means ability to carry out calcu-

lations giving a few frames per second. This speed,

however, is not sufficient for the smooth operation of

applications such as computer games.

In response to these problems, a mesh generation al-

gorithm for a fully three-dimensional volumetric data

has been developed. All calculations are performed on

GPU in real time by which we understand the actual

mean speed of computations above 30 frames per sec-

ond. Another advantage of the presented algorithm is

its independence of the volumetric data representation;

therefore, scalar fields, implicit functions, or metaball

objects can be used.

The rest of this article is organized as follows. The

next section presents previous work on mesh generation

methods of volumetric data. The third part briefly de-

scribes the possible methods of data representation. It

then shows the subsequent steps of the algorithm while

in the following passage detailed information on how

to implement the algorithm using graphics processors

is included. The last section presents a description and

summary of results.

2 RELATED WORK

The subject of this paper is to visualize an iso-surface

generated for the volumetric data using triangle mesh.

Mesh-based methods allow their easy integration with

other algorithms or modules, e.g. physics engines, that

require mesh as an input. Thanks to this approach our

algorithm can be used in real-time applications.

Therefore, discussion of previous works does not

include ray-tracing and view-dependent visualization;

however, information on the methods of these types

can be found e.g. in [OBA05, LK10, GDL+02].
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GPU-based methods which allows to interactive

or real-time calculations were presented e.g. in

[KOKK06, CNLE09, KOR08, TSD07].

One of the basic methods of generating a mesh on the

basis of volumetric data is the Marching Cubes algo-

rithm [LC87] developed in the 1980s. It consists in di-

viding the visualized space into equal cubes and gen-

erating a polygon within each cube, which is then sub-

jected to triangulation. The position and shape of the

polygon are dependent on the values of an implicit

function in eight vertices of each cube. A common

issue with this method is that it requires generating a

mesh in the entire space of visualized data. In response

to this, several hierarchical and adaptive versions of

the Marching Cubes algorithm have been developed

[OR97, Blo88, WKE99, KKDH07] using octal trees to

reduce the area for which calculations were carried out

and which reduce the number of triangles by generating

them in different densities depending on the distance of

the camera. Implementations of of the Marching Cubes

algorithm using GPUs are presented in [JC06, Gei07].

Another, possibly less popular, method is the Sur-

faceNets method [Gib98] which originally was used

to visualize binary medical data. This method is dual

to the marching cubes algorithm and, as in the latter

one, visualized space is divided into cubes of the same

dimensions. In its base version, the method consisted

of selecting the nodes belonging to the surface in a way

that a certain node has been selected, if among the eight

vertices of the cube were those that had a different

sign. These nodes were linked with adjacent ones thus

creating a net, which was then smoothed by moving

the nodes so as to minimize the energy between them

while maintaining the restriction that a node could not

leave the cube, to which it originally belonged. The

final step was a triangulation of the network, which

gave the resulting mesh of triangles. The next method

which belongs to the group of "dual algorithms" is the

one by [Nie04], which generates a mesh very similar

to SurfaceNets, but its implementation is more like

the Marching Cubes algorithm. One of the important

differences between this method and the SurfaceNets

is that the mesh generated by the former is a proper

two-dimensional manifold.

In addition to the methods outlined above, there are

also: the marching tetrahedra method [TPG99], whose

operating principle is based on the marching cubes al-

gorithm, the marching triangles method based on the

Delaunay triangulation [HSIW96] which generates an

irregular mesh, or the method based on marching cubes

which allows one to obtain sharp edges, described in

the work [JLSW02].

We follow the existing approach of dual marching

cubes, however, our algorithm is implemented exclu-

sively on GPU and it efficiently exploits geometry

shaders. Thanks to the use of dual methods, the result-

ing mesh contains fewer triangles and is regular due to

the number of generated triangles within each of the

cubes. The latter allows the method to be implemented

in a very efficient way using graphics processors.

Former GPU-accelerated mesh extraction algorithms

(e.g. [KW05], [Goe05], [JC06]) are based on both

CPU and GPU computations, using vertex or fragment

shaders only. Although meshes generated using our

method are not proper two-dimensional manifolds, our

approach is extremely efficient and can be used for

dynamic data which change on random every frame.

3 VOLUMETRIC DATA

The basic method of describing three-dimensional vol-

umetric data is the implicit function. By setting the val-

ues of the contour we obtain surface limiting the de-

sired area. If the values of this function represent the

Euclidean distances from a given contour and we save

them as an array, then we get a three dimensional signed

distance field D : R3 → R, representing the iso-surface

S, defined for point p ∈ R
3 as:

D(p) = sgn(p) ·min{|p−q| : q ∈ S}, (1)

where

sgn(p) =

{

−1 if p is inside

+1 if p is outside
(2)

This representation can be stored in graphics card mem-

ory as a three-dimensional texture. Thanks to this rep-

resentation, smoothing of the resulting mesh using nor-

mals computed directly from distance fields and vertex

distances from the surface, is very effective.

Also, most medical data is stored in the form of three-

dimensional arrays. For such data combined with con-

tour values we can generate a mesh. Another, less

common way to represent the volumetric data, is using

metaball objects which, with adequate representation,

can be converted to distance fields.

4 ALGORITHM OVERVIEW

Due to the GPU architecture and the way they carry out

calculations, the developed algorithm is based on dual

methods. They allow to obtain a regular mesh consist-

ing of squares, so one doesn’t need expensive triangula-

tion of polygons generated inside a cube, as is the case

of marching cubes method. The algorithm has been

adapted to carry out calculations on GPUs, and highly

parallelized, which allows it to achieve very high per-

formance.

Input data block, of size n3, where n of a form 2k, is

divided into equal cubes. This is shown in Figure 1.
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Figure 1: Data organization (2D view)

The image represents a two-dimensional version, but

the three-dimensional one is similar.

Calculation points marked with "•" symbol are placed

in the centers of cubes and their coordinates are used

to calculate the distance from the contour, based on

the volumetric data. Distance field values are stored in

points marked "+", while points marked "×" represent

vertices of quadrangles generated by the algorithm.

The calculations of the algorithm are processed in two

steps. At the beginning, for each calculation point

p ∈ R
3, marked with the symbol "•", such that p ∈

{[0,n − 1]× [0,n − 1]× [0,n − 1]}, there are gener-

ated three points q,r,s ∈ R
3 such that for p = (x,y,z):

q = (x − 1,y,z), r = (x,y − 1,z), s = (x,y,z − 1). In

each of these points p,q,r,s an implicit function value

dp = f (p) is calculated and three edges defined by pairs

of calculation points pq, pr, ps are created. Then, for

each edge – if its endpoints have different signs (lie on

different sides of the contour) – a quadrangle located on

the border of the cubes is generated. Its orientation is

determined by the direction of the edge, which is con-

sistent with the direction of the normal to the surface of

the quadrangle. A set of squares, generated in this way,

approximates the iso-surface for input volumetric data,

and is smoothed in the next stage. As a result of con-

version of each square to a pair of triangles, a triangle

mesh is obtained.

Due to the fact that during the calculation the sign

changes, zero is treated differently depending on the

direction of the edge, the condition 3, under which

quadrilaterals are generated is presented as follows:

( f (q)≥ 0∧ f (p)< 0)∨ ( f (q)< 0∧ f (p)≥ 0) (3)

The first step in the algorithm, described above, is ide-

ally suited for parallelization, because the calculations

for computing the individual points can be carried out

independently. Despite the fact that the distance fields

are calculated for each point twice, it is possible to ob-

tain a high-performance computing algorithm, because

it is not a costly operation.

The second stage of the algorithm is a smoothing of

generated mesh by moving its vertices in the direction

of the surface represented by the distance fields values.

For this purpose, at each vertex of the distance field, a

normal vector n is calculated on the basis of the gradi-

ent and the distance d to the surface. Then, the vertex

is moved in the direction of the normal, by the value

calculated according to formula 4.

p′ = p+dn (4)

In the case that the resulting mesh is used only for dis-

playing a surface, this step can be implemented directly

during rendering. Otherwise, it is possible to smooth

the mesh only and use it for subsequent calculations,

such as collision detection.

The advantage of the developed algorithm over march-

ing cubes method consists partly in that for creating a

quad for the cube we generate exactly four indices and

there is no need for triangulation of polygons gener-

ated. This allows the calculations to be successfully

performed on the GPU.

5 IMPLEMENTATION DETAILS

The algorithm was implemented using the OpenGL

graphics library; however, DirectX library can be used

as well.

Input volumetric data, for which a mesh is generated,

is divided into equal blocks, for which fragments of the

mesh are generated independently. This approach was

chosen because of the GPU hardware limitations on the

maximum size of supported textures, as well as for op-

timization purposes. To be specific: not all parts of dy-

namic data need to be modified at the same time, and

hence there is no need for mesh regeneration in these

blocks. Generated meshes merge together in continu-

ous blocks along borders.

The algorithm is carried out equally for each data

block. All calculations are done on the GPU, so the

data are not transferred between main memory and

graphics card memory. Calculations are carried out in

two phases, the algorithm flowchart is shown in Figure

2.

In both passes of the rendering shaders refer to the vol-

umetric data.

5.1 Volume Representation

Three-dimensional floating-point texture is used for

distance field representation in each block of data.
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Figure 2: Algorithm flowchart

Texture size is (n+ 3)3, 2 bytes per texel. Although

4-byte floating point numbers can be applied for the

precision improvement, no need for that has been

found during testing. To avoid communication between

neighboring blocks, block’s data size is enlarged and

overlaps adjacent blocks; for each common quadrangle

between two adjacent blocks of size (n+3)3 each, 2n2

of voxels are duplicated. This allows parts of the mesh

in each block to be generated independently of the

others.

In the texture, we used a single GL_RED channel,

where the data is stored in GL_FLOAT16 format. In

order to allow reading distance field values, each point

of the texture is sampled using linear filtering. This is

done automatically, and the values are calculated on the

basis of neighboring texels. Mipmaps for the textures

are not generated.

5.2 Mesh Generation (Pass 1)

In the first pass calculations are performed using ver-

tex shader and geometry shader. Then, using a trans-

form feedback, generated indices are stored in the out-

put buffer. Input and output data are presented in Table

1.

IN

Vertex buffer containing calculation points p ∈
{[0,n−1]× [0,n−1]}
type: GL_ARRAY_BUFFER

size: (n−1)2

sharing: one per all blocks

Texture with volumetric data

type: GL_TEXTURE_3D

size: (n+3)3

sharing: one per single block

OUT

Buffer with indices of generated quads

type: GL_ELEMENT_ARRAY_BUFFER

sharing: one per single block

Table 1: Input and output data of the first pass

The subsequent steps of the algorithm are as follows:

1. Data from the vertex buffer containing the calcula-

tion points is rendered n−1 times, using the instance

rendering.

2. For a calculation point p three points q,r,s are cre-

ated in the vertex shader.

3. For each of the points p,q,r,s a volumetric texture is

sampled in order to retrieve implicit function value.

Texture coordinates t are calculated according to for-

mula 5.

t =
p+2

n+3
(5)

4. Subsequently three edges pq, pr, ps are created and

according to formula 3 it is checked whether the val-

ues of implicit function at the endpoints have differ-

ent signs.

5. For each edge, if the sign changes, there is a flag set,

which specifies whether the quadrilateral is gener-

ated or not, and what is its orientation (zero means

that the quadrilateral is not generated). Generated

flags along with the coordinates of the point p are

forwarded to the geometry shader.

6. In the geometry shader, for each non-zero flag there

a vertex containing four indices of generated quad-

rangles is established. Indices are calculated on the

basis of the flag f and coordinates p. For example,

quadrangle, which normal is consistent with the di-

rection of the edge pq, is defined by (i1, i2, i4, i3),
where

i1 = pxn2 + pyn+ pz+1

i2 = pxn2 + py+1n+ pz+1

i3 = pxn2 + py+1n+ pz

i4 = pxn2 + pyn+ pz

7. Using the feedback transformation these indices are

stored directly in the index buffer, used in the next

pass. Number of saved indices is queried using an

OpenGL query mechanism.

5.3 Rendering (pass 2)

The second pass is responsible for smoothing of the

generated mesh and its rendering. All programmable

shader units, i.e. vertex, fragment and geometry shaders

are used. The input data is presented in Table 2.

Subsequent steps of the second pass of the algorithm

are as follows:

1. The data from the vertex buffer is ren-

dered using the indices as primitives of the

GL_LINES_ADJACENCY type. This type was

chosen because it is the only type that can render
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IN

Vertex buffer which contains all potential vertices,

such as: u ∈ {[0,n]× [0,n]× [0,n]}.

type: GL_ARRAY_BUFFER

size: n3

sharing: one per all blocks

Buffer with indices for generated quadrangles

type: GL_ELEMENT_ARRAY_BUFFER

sharing: one per single block

Texture with volumetric data

type: GL_TEXTURE_3D

size: (n+3)3

sharing: one per single block

Table 2: Input data for the second pass of the algorithm

primitives indexed by four indices (in OpenGL

version 3.0 or higher it is not possible to render

quadrangles).

2. Then in the vertex shader for each vertex u, a nor-

mal vector n is calculated, on the basis of the gradi-

ent map. Normal value is obtained by sampling the

volumetric data texture in the neighboring six texels

in x,y,z directions.

3. On the basis of the direction of the normal and the

density function value, the point u is moved in the

direction of the contour, according to formula 4.

Due to the fact that the value of the density func-

tion is calculated as the average of neighboring tex-

els at the point u, for small values of n it is required

to perform a smoothing of the mesh in an iterative

manner.

4. Vertices calculated in this way are sent to the geom-

etry shader, in which there is a change of type done,

from "lines adjacency" into "triangle strip".

5. The last step is to display a completed mesh, during

which the associated shading calculations are per-

formed in the fragment shader. In case when mesh

rendering is not required, but the mesh is needed for

further calculations, smoothed values of the vertices

can be stored in the output buffer using a transform

feedback.

6 RESULTS

All calculations were performed on an AMD Phenom

II X6 1090T 3.2GHz computer with an nVidia GeForce

GTX 460 graphics card. Figure 3 presents datasets used

in tests; Armadillo and Asian Dragon from The Stan-

ford 3D Scanning Repository, Engine and Skull from

http://www.volvis.org/. In addition, three-

dimensional animated Perlin noise has been used as a

dynamic, time-dependent data. All tests were run for

different n on one block of data.

(a) Armadillo (b) Asian Dragon

(c) Engine (d) Skull

Figure 3: Datasets used for tests

Table 3 lists times for mesh generation and rendering

for different block sizes and different data sets. All

meshes were regenerated from volumetric data each

frame; moreover, calculations for time-dependent Per-

lin noise data were also performed before mesh gener-

ation every frame. Generated meshes for the Armadillo

dataset for different block sizes are presented on figure

4, results for noise dataset are presented on figure 6.

dataset n triangle count fps

Armadillo 64 14180 1100

Armadillo 128 91958 208

Armadillo 256 494880 28

Asian Dragon 64 5864 1180

Asian Dragon 128 41578 234

Asian Dragon 256 229840 30

Engine 256 592884 29

Skull 256 1699526 23.6

Perlin Noise 128 180k-246k 60

Table 3: Results for different block sizes and data sets

Table 4 presents results for our method compared to

[Goe05, JC06]. The Engine and Skull datasets were

used, no preprocessing were performed for these data.

As it can be seen our algorithm performs much faster,

however, if all methods would be run on the same hard-

ware configuration, the difference could be less signifi-

cant. Both methods of [Goe05] and [JC06] were tested

on nVidia GeForce 6800GT graphics card.

The Marching Cubes algorithm described in [Gei07]

seems to execute faster than [Goe05, JC06] methods

but no measurable results were published. Authors of

[Gei07] claims that their algorithm executes in interac-
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(a) n = 64 (b) n = 128 (c) n = 256

Figure 4: Generated mesh for the Armadillo dataset

tive frames but mesh generation are not performed each

frame.

dataset size method fps

engine 256x256x110 [Goe05] 3.6

engine 256x256x128 [JC06] 2.8

engine 256x256x256 our method 29

skull 256x256x225 [Goe05] 2.4

skull 256x256x256 [JC06] 1.5

skull 256x256x256 our method 23.6

Table 4: Results compared to previous GPU-based

methods

7 MESH IMPROVEMENTS

The presented method works well for smooth surfaces,

such as the ones presented in figure 6. In case of sur-

faces with sharp edges we see artifacts as it is shown in

figure 5(a).

(a) Artifacts on sharp edges

(b) Smoothed mesh

Figure 5: Mesh improvements due to smoothing

In order to improve visual quality of the generated sur-

face, in the second pass of the algorithm a smoothing

process based on normals is performed about 10 times.

Next, during transforming quadrangles into strips of tri-

angles, the quadrangles are divided along the shorter

diagonal. The last step of smoothing the mesh is com-

putation of normals for every pixel in fragment shader,

on the basis of volumetric data. Normals are calculated

in the same way as for the mesh vertices. The smoothed

mesh is presented in Figure 5(b).

8 CONCLUSION AND FUTURE

WORK

In this paper we present a real-time algorithm for gener-

ating a three-dimensional mesh fully based on volumet-

ric data. This method has been optimized for graphics

processors and provides a significant advantage over the

already existing solutions for conventional processors.

The presented algorithm is also very well suited for the

visualization of dynamic data, because the calculations

carried out do not need to know the state of the algo-

rithm from previous time steps.

With the resulting performance, practical application

of the algorithm in digital sculpting software, earth-

moving machineries simulators and computer games is

fully possible. The tests show a significant advantage

of GPUs. The volumetric data representation that has

been used allows also for efficient data modification us-

ing GPUs.

As part of further work on the algorithm it would be rea-

sonable to add support for levels of detail (LOD), so as

to enable the process to connect continuously adjacent

blocks containing cubes of different sizes and densities.

The second issue is to optimize the algorithm by an

additional parallelization and simultaneous calculation

carried out for 4 blocks. It would be possible in the

case of using all four available texture channels. As a

result, it would be possible to generate meshes for the

four blocks at the same time.
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