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ABSTRACT
The available methods for volume data segmentation and/or classification differ in the amount of the required
user input on the one side and precision and ability to tweak the obtained results on the other. Automation of the
task is more difficult when a general case is considered. In this paper we present an interactive segmentation and
classification tool for arbitrary volumetric data, which is based on pre-segmentation of the volume in a hierarchy
of homogeneous regions. The hierarchical subdivision allows for interactive adaptation of scale and precision
according to the user requirements. The data is processed in three dimensions which minimises the amount of the
needed interaction and gives instant overview of the resulting segmentation.
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1 INTRODUCTION
Segmentation methods, which are commonly used with
volume data, can be classified in two groups – gen-
eral methods and model-based methods [PB07]. Un-
like general ones, model-based methods are based on
certain knowledge about the target objects in the data
as, for example, the expected object shape, mean voxel
intensity, etc. In this paper we omit these as our goal
is to provide a general segmentation tool which can be
used with any volume data to segment arbitrary objects.

As the general methods use no additional information
about the data which would aid in the process of seg-
mentation, they require a greater amount of user inter-
action either in the form of process control, specifica-
tion of parameters tailored to the current task or post-
processing of the result. Our aim is to minimise this
interaction while still leaving full control of the seg-
mentation process to the user.

2 RELATED WORK
Common approach in volume data segmentation con-
sists of selection of a region or object of interest in
slices of the volume. The most basic general segmenta-
tion method used is manual segmentation where a user
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delineates the object of interest in the slices by hand.
Although it is applicable at all times, its heavy user
interaction demands are apparent. To speed up delin-
eation of contours the LiveWire method [MMBU92]
may be used. To obtain the desired results, a suitable
cost function has to be first specified. The LiveWire
method speeds up the process of contour drawing if the
object of interest is clearly separeted from the rest of
the data. If this condition is not satisfied for the cur-
rent task, difficulties in cost function specification arise
resulting in slow downs – user intervention is required
and the method is reduced to manual segmentation.

As commonly used data sets have rather large dimen-
sions, performing the segmentation on each slice is te-
dious and time consuming. An option is to segment
only certain slices and interpolate the contour in the
in-between slices [SPoP00]. Instead of the interpola-
tion of the contour one may interpolate LiveWire con-
trol points instead and let the system compute con-
tour in intermediate slices from the interpolated control
points [SOB]. Precision of the resulting segmentation
is dependent on the used interpolation and also on the
set of key-slices. Problems might arise when topology
or shape of the contour change rapidly between slices.
Validation and potential correction of the interpolation
is necessary.

Another common segmentation method is thresholding
where voxels with intensities in certain range are se-
lected. This method can be easily applied to certain
data where tissue types can be distinguished by inten-
sity (e.g. bone tissue in CT data), but applications to
other data modalities or tissue types may pose a prob-
lem. If the task is to separate various objects of the same
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tissue type thresholding may be used for preprocessing
to reject clearly non-target voxels and thus localise the
area of interest.

Two methods based on detection of homogeneous
regions instead of contours are worth mentioning.
General region growing requires user specified seed
points and a suitable homogeneity criterion. Data is
flooded from the seed points as long as the homo-
geneity criterion is satisfied, creating a homogeneous
region. The watershed segmentation [VS91] is usually
performed on a gradient image, which is treated as
a topographic height map. Homogeneous regions
with voxels with small gradient magnitude form
valleys having voxels with high gradient magnitude on
region borders as ridges. Although there exist various
algorithms for computing the watershed transform,
variants of two approaches are common – simulation
of downhill water flow for each voxel or immersing
of the relief into water. Exhaustive study of existing
watershed algorithms is provided by Roedink and
Meijster [RM00].

A broader overview and more detailed description
of the existing segmentation methods can be found
in [PB07].

2.1 Interaction techniques
All of the previously mentioned segmentation ap-
proaches differ in the way how a user can interact with
the data to modify a partial result until the desired seg-
mentation is achieved. For example, when delineating
a contour the user directly sees the partial result and
can undo recent steps if the contour starts to diverge
from the desired position.

Thresholding requires numeric input – the threshold.
Usually, a user is provided with a histogram from which
the most suitable threshold value can be estimated.
Clean separation of various tissue types based only on
voxel intensity is rare and thus it may be difficult to find
an optimal threshold value. Usage of other methods for
refining the segmentation from thresholding (morpho-
logic operations, connected component labeling, etc) is
therefore convenient [STBH92].

Watershed segmentation produces a highly over-
segmented result, especially if the data is spoiled by
noise. Some methods allow merging of neighbour-
ing regions if the shared border is weak (gradient
magnitude is low). This situation is illustrated in
figure 1 which shows gradient magnitude image of a
CT head dataset slice – the corresponding watershed
segmentation can be seen in figure 3 (red borders).
The aim is to create segmentation in which the target
object is labeled by a unique label. If this is not
happening user intervention is usually required. For
example, an interaction technique called marker-based
watershed segmentation can be used [HP03], where a

Figure 1: Slice from the Visible human male [Ack98]
CT dataset with corresponding gradient magnitude im-
age on right.

user specifies special include and exclude points in the
data which prohibit merging of neighbouring regions if
new region would contain markers of both types.

Watershed hierarchies [Beu94] were used in a tech-
nique based on interaction with slice views by Cates
et al [CWJ05]. In such hierarchy, the order in which
regions are merged defines a binary merge tree. Orig-
inal regions form leaves and non-leaf nodes represent
regions formed by merging of two regions – its children
nodes. This tree may be used to segment an object from
a data with a possibility to select large parts of the ob-
ject by specification of high-positioned tree nodes and
to refine the border by adding/removing low-positioned
nodes.

In the paper by Armstrong et al [APB07] an extension
of LiveWire or Intelligent Scissors called Live Surface
was proposed. Data is presegmented into hierarchy of
regions. Initial regions are computed using toboggan-
ing [MB99] creating result equivalent to watershed seg-
mentation (depends on the used watershed definition).
For merging of the regions for higher levels in the hi-
erarchy a special metric is used, which is based on the
mean voxel intensity/colour and intensity/colour vari-
ance of a region. Segmentation is done by specifying
two types of markers – inner and outer – which are then
used to create a graph-cut in the region neighbourhood
graph with minimal cost. Markers can be entered on
an arbitrary cross section of the volume or directly in
the 3D view allowing to add/remove parts to/from the
border of an already segmented object.

3 THE SEGMENTATION TOOL
All of the segmentation approaches mentioned in the
previous section were either proposed for two dimen-
sional images or, if targeted to segmentation of 3D data,
were used only for interaction in two dimensional space
– on respective slices – or provided limited possibilities
to modify the resulting segmentation directly in the 3D
visualisation of the data. In our approach we let the user
directly control the segmentation process by selecting
fragments of the target object in 3D space. As manual
segmentation by pixels/voxels is too cumbersome, data
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Figure 2: Measured dependency of mean region size on
the Gaussian filter sigma. Three data sets were used
– an MRI head, VHP male CT head and VHP female
colour head dataset. Measured was diameter of mini-
mal bounding sphere centered at the region’s centre of
mass.

is pre-segmented by the watershed transform as it cre-
ates homogeneous regions which can be used instead of
single voxels.

3.1 Preprocessing
The watershed segmentation produces highly over-
segmented results, because for each local minimum in
the (usually gradient image of) original data a region
is created. This can be a serious problem especially
if noise is present in the data. To cope with this,
data is usually first smoothed by the Gaussian filter.
Smoothing, however, also shifts edges and removes
weak edges, resulting in merging of regions which a
user might desire in certain cases separated. Therefore,
we perform the watershed segmentation on a sequence
of derived data sets where each one is produced from
the original by smoothing with a gradually increasing
degree (increasing of the Gaussian sigma). As Koen-
derink showed [Koe84] this produces a set of images
where on each image details smaller than certain size
are increasingly ignored (the scale-space approach).
As can be seen in figure 2, measurements on three dif-
ferent head datasets showed that dependency of mean
bounding sphere diameter of regions on used Gaussian
filter sigma can be approximated with function 1.

d(σ) = 5(σ −1)+10 (1)

To further reduce the starting number of regions, region
merging based on mean region intensity or some other
criterion can be used.

In order to correct position of the shifted edges, caused
by smoothing, to the original position specified by the
unsmoothed data or at least data at the lowest level of
smoothing, an aligned region hierarchy is build. Spa-
tial alignment of borders of corresponding regions on
different hierarchy levels is achieved by the technique
based on the maximum number of spatially overlapping
voxels [SD02]. Thus, if later required, aligned regions

Figure 3: Three levels of watershed segmentation on
visible human – male CT dataset. In the red channel
are boundaries of regions for Gaussian smoothing with
sigma 3, in green for sigma 5 and in blue for sigma 7.
Overlapping boundaries are blended. On the left are the
original watersheds, on the right the regions are aligned
showing only red, yellow (red plus green) and white (all
three levels) boundaries.

positioned higher in the hierarchy can be unambigu-
ously decomposed to multiple smaller regions on some
lower level.

As the last step of preprocessing the relevant neigh-
bour information is extracted from the original voxel
data and stored in a file. The described technique works
equally well for scalar data (CT and MRI scans) as well
as for multi-field data (dual energy CT, T1, T2 and PD
MRI data etc). In the second case the watershed trans-
form is performed on a gradient volume obtained as
maximum of individual gradient fields.

3.2 GUI interaction
GUI of the segmentation application is shown in Fig-
ure 4. In this section all parts of the application as well
as the segmentation workflow will be explained.

After the hierarchy is loaded into the application it is
displayed in a tree widget allowing the user to navi-
gate through it. Hovering or selecting a node highlights
the corresponding region in a 3D visualisation window
(Figure 5). This allows the user to choose an initial
fragment of the region of interest. Depending on the tar-
get object and created hierarchy, regions on higher lev-
els might consist of multiple target objects (e.g. various
bones of skull). As pre-segmentation was performed at
various scale levels, there is no need to repeat the pro-
cess when the aforementioned problem arises – moving
to lower levels in the hierarchy until the objects are sep-
arated is possible.

After the initial region is selected it is possible to dis-
play neighbouring regions which satisfy certain similar-
ity criteria (Figure 6, also see section 3.3). The user can
then select either one neighbour belonging to the target
object by clicking into the 3D view or by selecting the
neighbour in the list or can select all neighbors. De-
selection of an undesired region is possible in a similar
way, too. Once a neighbour is added/removed to/from
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Figure 4: The segmentation tool: the region hierarchy is on the right. Left side from top to bottom: the list of
selected regions, classification classes, the list similar neighbours of the regions in selection. At centre-bottom
similarity criteria can be specified and above is the 3D visualisation and interaction window.

Figure 5: Selection of objects using the tree widget.
The scene consist of concentric spheres/ellipsoids with
different density and was intentionally spoiled by noise
and superimposed low frequency density variation to
make segmentation of the ellipsoids by thresholding
impossible. Left: A region on the highest hierarchy
level (white) was selected. One can see that it is com-
posed of pieces of several ellipsoids. I we go down in
the hierarchy (bottom row, in this case by two levels
of the hierarchy), these pieces are separated and can be
individually selected. The yellow region is a partially
segmented and labeled part of the central sphere.

the selection, updated neighbours of the new selection
are displayed. This allows traversal of the target object
until all fragments are in the selection. Now classifica-
tion class for the object can be created and all selected
regions can be classified (Figure 6 right). Already clas-
sified regions are during selection refining displayed
dimmed to provide context whereas the current selec-
tion is always highlighted.

3.3 Similarity criteria
To decide whether neighbouring regions are similar we
implemented five different similarity criteria. Each cri-
terion can be turned on or off and has a separate thresh-
old value. When deciding whether two neighboring re-
gions are similar all criteria which are turned on have
to return a positive answer. Detailed description of the
similarity criteria can be found below.

When searching for similar neighbours all neighbour-
ing regions of the regions in the current selection are
visited. As the selection might contain regions on dif-
ferent levels in the hierarchy we have to prevent multi-
ple inclusion of same region – once directly and second
time by including parent of the region. Naturally, re-
gions positioned higher in the hierarchy are accepted in
favor of the lower positioned child.

A second issue arises from the fact that we would like
to move to a lower level of the hierarchy and to repeat
the search for similar neighbors there, if we were not
successful on a higher level. In this case, first, all re-
gions in the selection are decomposed to regions on
the lowest level – some lowest-level regions were di-
rectly present in the selection and some were selected
indirectly by selection of its ancestor. Now we iterate
through all pairs of the selected lowest-level regions
and their neighbours (also at the lowest level). For
both regions in the pair we ascend as many levels up
in the hierarchy, until the original region in the selec-
tion which was decomposed to the currently processed
lowest-level region is found. This leaves us with a list
of pairs – (indirectly) selected region with its neighbour
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– for each level not higher than level of the original se-
lected region. Subsequently we start with the similarity
tests. If a region and its neighbor on the higher level
do not pass the selected similarity test we descent by
one level and again perform the tests. By this higher
positioned similar neighbours are found first.
A detailed description of the different similarity criteria
follows:

Mean intensity Simple criterion comparing mean in-
tensities of neighbouring regions. Difference in the
intensities have to be in the specified interval for the
test to pass. If the data contains multiple bands, the
test must pass for all bands to be considered success-
ful.

Similar neighbors In this criterion the prevalent di-
rections of intensities in the region’s neighborhood
are compared. All neighbors of a region are vis-
ited and their center of mass is computed by aver-
aging their geometric centroids weighted by their
mean intensity. Subsequently, the direction vector,
which points in the direction of growing intensity, is
obtained by subtracting the center of mass from the
geometric centroid of the region. Comparison of an
angle between such vectors of two neighboring re-
gions against a user defined threshold yields result
of the similarity test.

Surface to volume ratio As working directly with
the volume data would be slow and would increase
memory requirements significantly, only derived
information is used – mean intensity of a region,
voxel count, etc. To compare region shapes ratio
of the number of region’s surface voxels to its
total voxel count is used. The computed value is
normalized to the [0,1] range where 0 represents
sphere-like objects and 1 string-like objects.

Weak borders For two regions to be similar in this cri-
terion their border should have small mean gradi-
ent magnitude. Unlike the mean intensity criterion
which compares mean values for whole regions, this
criterion uses the original gradient data which were
used during the creation of the most-detailed water-
shed segmentation. Intensity of the regions is n this
criterion irrelevant.

Continuous border This criterion tries to find border
in the data which spans multiple region boundaries.
For two regions to pass this test they have to have
a common neighbor. Both faces – first region with
the common neighbor and second region with the
common neighbor – have to be similar. For this, the
angle between mean normal/gradient vectors of the
faces is examined. Faces which are too small are
ignored as their mean gradient vectors are based on
too small set of values.

4 RESULTS
The application was implemented in C++ and uses
OpenGL with GLSL. It was tested on the VHP dataset
(the male head CT dataset). Individual bones of the
skull, which are connected without a well defined bor-
der, were successfully segmented (figure 7 left). We
also tested the application on an MRI scan of a human
head. Figure 7 right shows segmentation of the brain
cortex with certain gyri labeled as separate objects.
Preprocessing with three levels of watershed hierar-
chies and 3 additional levels of merging by density sim-
ilarity took about 10 minutes. Both segmentations were
produced in about 30 minutes.
In contrast to other methods, we intentionally omitted
the possibility to interact through slices or cross sec-
tions to investigate the possibility for interaction only
through the 3D view. If desired, display of the slices
or cross sections can be easily added to the application,
which may be then used for an initial selection.
If compared to traditional segmentation approaches,
our method is most similar to region growing – assum-
ing that mean intensity criterion is used. Neighbours
to selected regions having similar intensity can be iter-
atively added to the selection until only regions with
large difference in intensity remain. Because of the
manual operation, user can omit regions which evaluate
similar, but are not part of the target object. This can be
essential when separating two or more objects of same
or similar intensity, but different shape (as exemplified
by segmentetion of the brain cortex in individual gyri).
Automatic, or semi-automatic methods fail to separate
these, if the interface is too weak or not present due to
partial volume effect.

5 CONCLUSION
The presented segmentation and classification tool al-
lows fast insight into data and fast segmentation of tar-
get structures while still leaving full control of the seg-
mentation in user’s hands. The amount of user interac-
tion depends on data properties – resolution, presence
of noise or other artefacts. Different similarity criteria
were presented which should simplify and thus speed-
up localisation of similar neighbouring regions in the
data. Still, the user interaction is mainly done directly
in the 3D visualisation window instead of slices. Opera-
tion in the visualisation window also gives direct visual
feedback.
The concept was tested on the VHP dataset by segmen-
tation of the bones of human skull and on MRI data by
segmentation of respective gyri of the brain cortex.
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Figure 6: From left: selection of similar neighbors starting from an initial region. The blue regions are selection
candidates (density similarity was used). White objects are already selected objects, the green color means that the
object has already been labeled. The highlighted blue candidate object can be individually added to the selection
or all candidates can be added at once.

Figure 7: Left: segmentation of skull bones of the VHP male CT head dataset. Right: segmentation of brain and
gyri in the MRI head dataset.
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