
When It Makes Sense to Use Uniform Grids for Ray Tracing

Michal Hapala
Czech Technical University in Prague

Faculty of Electrical Engineering
Czech Republic

hapalmic{@}fel.cvut.cz

Ondřej Karlík
Czech Technical University in Prague

Faculty of Electrical Engineering
Czech Republic

karliond{@}fel.cvut.cz

Vlastimil Havran
Czech Technical University in Prague

Faculty of Electrical Engineering
Czech Republic

havran{@}fel.cvut.cz

ABSTRACT

Commonly used hierarchical data structures such as bounding volume hierarchies and kd-trees have rather high build times,
which can be a bottleneck for applications rebuilding or updating the acceleration structure required by data changes. On the
other hand uniform grids can be built almost instantly in linear time, however, they can suffer from severe performance penalty,
in particular in scenes with non-uniformly populated geometry. We improve on performance using a two-step approach that
combines both approaches: first we build a uniform grid and test its performance. Second, using an estimate on the number of
rays to be queried we either continue using the grid or build a hierarchical data structure instead. This way we select a more
efficient data structure given a particular implementation of the algorithms which yields with high probability an overall smaller
computational time. We evaluate the properties of this method for a set of 28 scenes.

Keywords: ray tracing, ray casting, uniform grid, kd-tree, hierarchical data structures.

1 INTRODUCTION

Ray tracing is a technique that can be used for generat-
ing images by shooting rays into a 3D scene and finding
closest intersections among rays and the scene objects.
This basic visibility computation is used in a core of
many rendering algorithms. Although ray tracing has
been known for over last four decades [App68, Gla89],
it is still considered relatively slow to be massively
used in real-time applications particularly for animated
scenes.

Different data structures have been proposed, each
one with its own advantages and disadvantages. Most
commonly used are hierarchical data structures, e.g.
a kd-tree [Ben75] and a bounding volume hierarchy
(BVH) [Kay86]. Their main advantage is their capabil-
ity to adapt to the distribution of geometric primitives –
they can deal with non-uniform geometry distribution,
including so-called "teapot in a stadium" type of scenes.
Because of that they perform well in a vast majority of
scenes encountered in real-life use. They are typically
built in O(N logN) or O(N log2 N) time using the sur-
face area heuristic (SAH) [Wal06a]. Super-linear time

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

complexity of their build algorithms can be a bottleneck
in particular when tracing rays in applications with real-
time requirements.

Another type of an acceleration structure is a uniform
grid [Fuj86]. In its simple form it divides a scene reg-
ularly and non-adaptively into equally-sized voxels and
sets the primitive references to each cell overlapped by
the primitives. Ray then traverses cells along the ray
path and only geometric primitives in these cells are
tested for an intersection. Although this data structure
can perform well in certain types of scenes (typically
with uniformly distributed primitives), its performance
degrades drastically in scenes with a non-uniform dis-
tribution. Despite this fact, uniform grids can still be
advantageous for usage in real-time applications be-
cause their build algorithm has only a linear time com-
plexity.

The availability of two approaches with different
properties presents us with a choice whether to use
either an adaptive data structures that will most likely
be efficient for shooting rays, but have higher time
complexity for building, or a simple regular one like
the aforementioned uniform grids, which have lower
build time but can have a severe performance penalty.

In this paper we propose and study such an algorithm
that uses the estimate of performance properties choos-
ing acceleration data structures on the fly. The algo-
rithm uses a calibration phase which requires a set of
scenes of different properties such as number of ge-
ometric primitives and their spatial distribution. The
calibration phase is executed only once before the al-

WSCG 2011 Communication Papers 193

gorithm is used for an application on a particular hard-
ware. During the calibration phase we measure the im-
plementation and hardware constants for building up
data structures and also a practical efficiency of shoot-
ing rays. Given an unknown scene we build a uniform
grid first in a short time and test its performance by sam-
pling a small set of representative rays. Using the data
from this test and data from the calibration phase we
estimate if it is more advantageous to use the uniform
grid or to discard it and build a hierarchical data struc-
ture instead. To make a correct decision we need to
know at least roughly the number of rays to be shot in
the application.

This paper is further structured as follows. Section 2
describes the previous work on the most relevant data
structures. Section 3 describes the proposal of our al-
gorithm. Section 4 shows the results obtained from the
set of 28 scenes. Section 5 concludes the paper with
some prospectives for future work.

2 PREVIOUS WORK
In this section we briefly recall the most important work
on uniform grids and hierarchical data structures. As
the number of papers is huge, we select only the most
recent and important work to our approach.

Uniform Grids. The uniform grids, also called
regular subdivision, were proposed by Fujimoto et
al. [Fuj86]. Cleary and Wyvill [Cle88] analyse the
properties of ray tracing with uniform grids in depen-
dence on its resolution. They study the performance
when the number of cells in the uniform grid is propor-
tional to the number of objects. Other methods were
also studied by Ize et al. [Ize07]. The performance of
ray tracing with uniform grids has two important fac-
tors. First, the initial setup time given a ray is relatively
high. Second, when the distribution of primitives in a
scene is highly uniform, it is likely that the ray will stop
its traversal after only a few traversal steps. Therefore,
the uniform grids are for such types of scenes even
more efficient than hierarchical data structures that
require initial traversal phase to a first leaf. However,
for moderately to highly non-uniform distribution of
geometric primitives in space the uniform grids are
rather inefficient as studied for example by Havran et
al. [Hav00b].

Given an arbitrary ray the number of traversed cells
is of order O(3

√
N) in the worst case, where N is the

number of object primitives hence the number of all
grid cells. The second important property is the time
needed for building a uniform grid, which is only O(N)
provided each geometric primitive is assigned to only a
constant number of cells. Wald et al. [Wal06b] studied
the coherent traversal algorithm for primary rays that
reaches real-time framerates. Recently, Kalojanov and
Slusallek [Kal09] presented the algorithm for parallel
building of uniform grids on a GPU.

Hierarchical Data Structures. Hierarchical data
structures for ray tracing were studied in a num-
ber of papers. Chang [Cha04], Wald [Wal04], and
Havran [Hav00a] provide the survey on the spatial data
structures for ray tracing static scenes with the focus on
the hierarchical data structures. The common property
of the data structures is that the time complexity for
building is O(N logN) since it corresponds to sorting
in 3D space. While the time complexity for building is
higher than the one for uniform grids O(N), the time
needed for ray query can be estimated by O(logN).
The performance of the ray is hence much less depen-
dent on the number of objects than for uniform grids
as we also show further in the paper. The properties
and relations between these data structures in general
were discussed by Havran [Hav07]. Another study that
compares the performances of a grid and a kd-tree was
presented by Szirmay-Kalos et al. [SKH02].

Selection Algorithm. We are aware of only two al-
gorithmic proposals that considers the use of different
data structures. The first one proposed by Havran et
al. [Hav00b] is based on statistical properties for the
same input data. They analyse the distribution of ob-
jects in the scene and if selected statistical character-
istics are low without giving any threshold, they sug-
gest to use uniform grids, otherwise kd-trees or other
hierarchical data structures such as adaptive grids. The
statistics measures that are easy to compute from only
the distribution of geometry in the scene are sparseness,
maximum number of primitives referenced in the cell,
and statistical moments as mean, variance (hence also
standard deviation), skewness, and kurtosis. We recall
below the formulas for these measures computed over t
cells of a grid taking into account the references of ge-
ometric primitives in the cells denoted by Ni for the i-th
cell.

Scene sparseness is the ratio of empty cells to all
cells:

sparseness =
#empty cells

N
(1)

High values of sparseness could indicate inferior grid
performance, as adaptive data structures generally deal
better with cutting off empty space. Big gaps with no
geometry in the scene create many empty cells in the
grid which have to be traversed unnecessarily.

Maximum number of primitives in any cell is defined
simply as:

maxRe f s = max(Ni), i ∈ 1 . . . t (2)

High value could be useful in detecting a "teapot in a
stadium" type of scene.

Mean represents an average number of references per
cell:

mean =
1
t

t

∑
i=1

Ni (3)

WSCG 2011 Communication Papers 194

Because the grid is built to have the number of cells
proportional to the number of geometric primitives in
the scene, high mean values indicate low performance
as that means that there are many primitives overlap-
ping multiple cells.

Variance gives us information about how much val-
ues differ from the mean value. It is computed using
this formula:

variance =
1

t−1

t

∑
i=1

(Ni−mean)2 (4)

Higher variance corresponds to the higher differ-
ences in the data: there may be many empty cells
but also many cells with high number of primitives.
Standard deviation σ is computed from variance as
σ =
√

variance.
Skewness describes asymmetry of the distribution

and kurtosis describes "peakedness" of the distribution
belong to higher statistical moments and are defined as:

skewness =
1
t

t

∑
i=1

(
Ni−mean

σ

)3

(5)

kurtosis =
1
t

t

∑
i=1

(
Ni−mean

σ

)4

−3 (6)

The aforementioned metrics can be computed di-
rectly from the uniform grid based on a voxelisation
approach proposed by Klimaszewski [Kli94].

Another approach to selecting a better acceleration
structure on the fly was proposed by Müller and Fell-
ner [MF99]. They create a bounding volume hierarchy
for a given scene and try to find regions (nodes) that
contain uniformly distributed objects. A uniform sub-
division of space to a predetermined number of voxels
is then created in these regions.

3 ALGORITHM OUTLINE
In this section we present the algorithm that given a
scene suggest to use either the uniform grids or a hier-
archical data structure in the dependence on the number
of rays. We analyse such case and suggest an algorithm
that estimates if it is more convenient to use an already
built grid or to build up a hierarchical data structure.
Our decision algorithm can be used for virtually any
application of ray tracing that implements grids and hi-
erarchical data structure in the framework. The data
from the implementation are extracted in the calibra-
tion phase that is executed only once on a given hard-
ware/implementation on a set of scenes.

We verified the observation by Havran et
al. [Hav00b], if the suggested selection algorithm
between grids and kd-trees is valid for another set of
scenes. We have found out that on our set of scenes
(see Figure 3) there is no scene with such low standard
deviation, skewness, and kurtosis as in the study that

could justify the use of uniform grids based only on
the scene statistics. However, when analysing the
statistical characteristics in [Hav00b] it appears that
the threshold for standard deviation should be very
low, such as 2.0, to justify the use of uniform grids.
This leads to the higher performance of ray shooting
irrespective to the number of rays even if we ignore the
time needed to build the data structure.

In this paper we study another case when the number
of rays to be shot is known or well estimated in advance
and we account for the time needed to build the data
structure. The algorithm requires the calibration phase
over all s scenes in a set Scal (i.e. s = |Scal |).

The calibration phase computed for i-th scene having
N(i) geometric primitives for all the scenes in the set
Scal has four steps:

1. Build a uniform grid [Fuj86] over N(i) geometric
primitives of the i-th scene with the number of cells
proportional to N(i). Measure the time T G

B (i) to
build the uniform grid.

2. Measure the time T G
R (i) for M(i) ray queries using

the ray traversal algorithm over the uniform grid.

3. Build a hierarchical data structure over N(i) geomet-
ric primitives. Measure the time T H

B (i) needed for
the build.

4. Measure the time T H
R (i) for M(i) ray queries (the

same ray queries as for uniform grid) using the ray
traversal algorithm over the hierarchical data struc-
ture.

The data from the calibration phase are then used
for an application scenario given an unknown scene
S with N geometric primitives. To improve on the
performance we decide on both cases assuming the
knowledge or the rough estimate for the number of
rays R to be queried.

Decision algorithm:

1. Build a uniform grid [Fuj86] over N geometric prim-
itives of scene S with the number of cells propor-
tional to N. Measure the time T G

B (i) to build the
uniform grid.

2. Estimate the time tG
R needed for computing a single

ray with the uniform grid. This is carried out by
sampling using a small set of rays.

3. Estimate the time T H
B to build a hierarchical data

structure from the calibration phase and from N.

4. Estimate the time tH
R to ray trace a single ray from

the calibration phase and from N.

5. If tH
R ≥ tG

R then use the uniform grid to shoot all the
rays. Finish.

WSCG 2011 Communication Papers 195

6. Estimate the critical point, it is the number of rays
RC, when the uniform grid and hierarchical data
structure yields the same computation time taking
into the account the estimated build time of the hi-
erarchical data structure. This is computed as: RC =
T H

B /(tG
R ·(1+ε)− tH

R). The parameter ε is used only
to avoid division almost by zero, we use the value
such as ε = 0.01.

7. If RC ≤ R (R is the number of rays to be queried),
use uniform grids for the rest of the computation.
Finish.

8. Otherwise, discard the uniform grid and build the
hierarchical data structure. Shoot all the remaining
rays using hierarchical data structure. Finish.

To put it short the decision algorithm above simply
computes the estimate whether or not it is more advan-
tageous to use an already built uniform grid or if it pays
off to build a hierarchical data structure.

The only information computed after building the
uniform grid is the build time TB. To estimate the criti-
cal point for the number of rays RC we need to estimate
the average time tG

R to shoot a single ray using the uni-
form grid, the time needed to build the hierarchical data
structure T H

B , and the time tH
R for shooting a single ray

using this (unbuilt) data structure.
Below we describe how to estimate these qualitative

performance characteristics. The average time tG
R which

gives an average time to shoot a single ray in uniform
grid is estimated by sampling of small number of rays
such as 100 to 1000 rays. This provides an accurate
estimate, the only condition is that the sampling rays
represent the distribution of all rays.

The time needed to build the hierarchical data struc-
ture T H

B is estimated using the time complexity of a
build O(N logN) and from the times T H

B (i) needed to
build these data structure in the calibration phase as fol-
lows:

T H
B = N · log2 N · 1

s

s

∑
i=1

T H
B (i)

N(i) · log2 N(i)
(7)

Similarly, we can estimate the time to shoot a sin-
gle ray T H

R in a hierarchical data structure under the
assumption of O(log2 N) time complexity for this op-
eration, using the time T H

R (i) needed for the same algo-
rithm from the calibration phase as follows:

tH
R = log2 N · 1

s

s

∑
i=1

T H
R (i)

M(i) · log2 N(i)
(8)

Analysis and Discussion
After building the grid the algorithm above provides
three possible outcomes. First, if the estimated time
tG
R to shoot a ray in the grid is lower than the estimated

time tH
R to shoot a ray in the hierarchical data structure,

it does not make sense to build a hierarchical data struc-
ture. Second, for the number of rays to be shot in the
range between 0 and RC it does not pay off to build up
a hierarchical data structure. This is because the time
to build a hierarchical data structure is relatively high
even if it provides faster processing of a single ray and
for relatively small number of rays it does not pay off.
Third, for the number of rays larger than RC it is then
always more efficient to discard the uniform grid, build
the hierarchical data structure and use it to shoot the
rays.

Below we compare a proposed algorithm combining
uniform grids and hierarchical data structures with a
single use of the either two data structures. When we
compare it to the use of only the grids, the proposed
algorithm is more efficient as it is always of the same
performance or provides the speedup in cases when we
detect that the grids are inefficient.

We also compare the proposed algorithm to the use
of only the hierarchical data structure as we need the
additional time to build the uniform grid. Favourably,
the time complexity O(N) is asymptotically smaller
than the time complexity needed to build the hierarchi-
cal data structure O(N log2 N). Theoretically, the time
complexity needed to build the uniform grid, which
is possibly later discarded, gives the time complexity
increase from O(N log2 N) to O((N(1 + log2 N)) that
presents the slowdown of building of only a hierarchical
data structure 1+ 1/ log2 N. In practice when we take
into account the particular implementation, the con-
stants behind the time complexities for building them
are even higher for hierarchical data structure when
compared to uniform grids. Therefore such slowdown
is negligible. For the test scenes used in this paper the
slowdown is only 4.5% on average, with a minimum
value of 2.1% (1,070,671 triangles) and a maximum
value of 15.4% (528 triangles).

We can also express the maximum theoretical
speedup for using the combined solution when using
only the hierarchical data structure. This is only for
a small number of rays with a limit of O(log2 N) and

the speedup is then T H
B +tH

R ·log2 N
T G

B +tG
R ·log2 N

. The speedup reaches

the average value of 28.07 with a minimum of 6.5
(528 triangles) and a maximum of 46.50 (1,070,671
triangles). We avoid the discussion for a trival case –
it does not pay off to build up any hierarchical data
structure if the number of rays to be shot is smaller
than O(log2 N).

4 RESULTS
We have implemented a path tracer application in C++.
We report here the results for a PC equipped with Intel
Core 2 Duo E4300 1.8 G Hz (Allendale) and 6 GBytes
of RAM, running Windows 7 operating system in Mi-
crosoft Visual C++ 2008. For testing we have used a set

WSCG 2011 Communication Papers 196

of 28 scenes, 20 of them unique and 4 scenes tessellated
to triangles in two level of details, see Table 1.

For each scene we have measured uniform grid and
hierarchical data structure build times and traversal
times for two types of ray generation schemes. The first
scheme uses rays generated from two points randomly
generated on a bounding sphere of the scene, the
second one uses rays generated by the path tracer. As a
hierarchical data structure we used an implementation
of a kd-tree. From the measurements we have com-
puted exactly the critical point for the number of rays
RC and each scene where rendering using the uniform
grid is faster according to the equations provided in the
previous section. To test the quality of our estimate
algorithm we have compared the exactly computed
RC and its estimated value Rest when the hierarchical
data structure was not build. We report by how many
percent the estimate of RC is inaccurate (relative error
Err = 100 · Rest−RC

RC
).

This was carried out for random combinations of cal-
ibration and estimated scenes as follows: always a cer-
tain number of scenes from the set C are used in the
calibration stage, and the rest is used to test the accu-
racy of the estimate. This number C is increased from
1 to 27, thus for the first case one random scene would
be the base for the calibration and twenty seven would
be estimated and for the last one the situation is re-
versed. To gain some convergent data we have repeated
the computation 5000 times for every of these cases.
Both graphs in Figure 1 and Figure 2 show the average
value of estimated relative errors in percent (1

5000 ∑Err)
in red and the average of absolute values of relative er-
rors in percent (1

5000 ∑ |Err|) in blue colour.
For randomly generated rays (see Figure 1) the esti-

mate is about 25 percent more optimistic about the qual-
ity of the grid and is quite stable in this prediction ex-
cept for the extremes where there are either not enough
calibration scenes or not enough estimated scenes. The
estimate predicts that it is safe to shoot more rays with
the grid still being faster than in reality.

For path traced rays (see Figure 2) the estimate is off
by around 30 percent, but this prediction is not as stable
as for the randomly generated rays and the tendency is
to predict that the grid is worse than it really is. Since
a big part of our path traced rays are primary rays or
shadow rays, this is not an efficient sampling of the
space of possible rays with regard to providing good
calibration for other scenes. This can also occur for
non-diffuse scenes, where glossy reflections will result
in a non-uniform sampling.

From the results we see that the range of rays where
its does not pay off to build the hierarchical data struc-
ture can be significant in particular for scenes with a
higher number of geometric primitives. For example
for the scene phone-high the critical point for the num-
ber of rays RC is 2.7×106 rays to justify the use of hi-

0 5 10 15 20 25 30
5

10

15

20

25

30

35

40

45

50

55

Number of scenes for calibration [−]

E
s
ti
m

a
te

 e
rr

o
r

[%
]

Figure 1: Estimate error for random rays calibrated on
random rays.

0 5 10 15 20 25 30
10

15

20

25

30

35

40

45

50

Number of scenes for calibration [−]

E
s
ti
m

a
te

 e
rr

o
r

[%
]

Figure 2: Estimate error for the rays from path tracing
calibrated on rays from path tracing.

erarchical data structure for random rays and 856×103

rays for path tracing. The results for 28 scenes also
show that without computing the estimate the selection
cannot be made in general.

5 CONCLUSION AND FUTURE
WORK

We have proposed an algorithm that combines a uni-
form grid and a hierarchical data structure for ray trac-
ing so that it takes advantages of both types. Based on
the scene properties and a small number of rays com-
puted using the grid we decide either to continue ray
tracing with the grid or to build the hierarchical data
structure such as kd-trees.

We show that the use of uniform grids is relatively
limited for standard scenes with the exception of scenes
with a special distribution of geometric primitives in
space. To our best knowledge we present the first al-
gorithm that decides when it is advantageous to use
uniform grids in dependence on the number of rays
to be shot. Compared to the use of only a hierarchi-
cal data structure the method has a slowdown of only
1+1/log2N for the building of the data structure in the
worst case. We can reach the average speedup 28.07
for a small number of rays. Our method can be used

WSCG 2011 Communication Papers 197

Figure 3: All used test scenes. There are multiple scenes with the same model which differ only in a polygon
count. Only one picture for each such group is shown. Scenes from the top-left are: a10, boxes, building, camel,
bunny, sockets, case, conference, teapots, hunger, cornell, interior-3, interior-dance, interior-deloix, interior-japan,
knot, teapot, sphere, phone, pills, chess, spheres.

in any hardware platform and any implementation of
ray tracing that uses uniform grid and hierarchical data
structure. We show that the number of rays that gives
the critical point for the same performance of grids and
hierarchical data structure can be well estimated with
only a low number of scenes.

As a future work we can improve on estimates for the
time needed to shoot a ray using yet unbuilt hierarchical
data structure and the time to build this data structure
for example by using other statistical characteristics of
the scene. This could provide more accurate estimate
for the critical point.

WSCG 2011 Communication Papers 198

Random rays Path tracing
Scene Primitives σ T G

B T H
B tG

T tH
T RC tG

T tH
T RC

boxes 528 7.46 2 12 5.0 4.1 11,669 0.9 1.4 0
interior dance 1,990 10.84 3 50 5.0 4.2 55,328 0.7 1.3 0

cornell 2,450 8.73 3 42 7.9 5.5 15,773 3.0 3.0 38,177
sphere 2,880 4.85 4 74 7.7 7.9 0 0.6 1.6 0
teapot 3,080 7.50 32 73 6.8 6.0 78,320 0.8 1.6 0

interior 3 3,412 10.75 4 83 4.6 3.8 101,888 0.9 1.0 124,367
phone 7,716 15.85 6 207 3.3 2.9 441,922 3.3 0.9 53,984

spheres 31,460 7.70 22 696 11.2 8.1 211,736 2.0 4.9 0
pills 32,606 12.90 21 802 7.1 3.6 221,538 2.3 1.8 593,553

teapots 52,360 12.43 29 1,215 13.4 6.8 172,843 4.3 5.4 1,620,297
building 54,490 42.19 21 995 6.3 3.1 304,414 12.8 1.8 63,055

knot 56,448 6.97 35 1,300 20.2 12.1 147,560 1.3 3.3 0
bunny 69,473 7.48 35 1,639 33.1 10.8 69,587 1.3 2.5 0

interior japan 72,310 43.03 36 1,241 4.6 4.8 0 3.1 1.9 515,863
sphere-high 87,120 6.68 48 1,751 23.5 13.5 161,984 1.1 2.8 0

case 131,228 24.93 51 2,872 14.0 4.2 293,541 5.3 3.0 638,451
hunger 141,143 64.21 47 2,586 15.9 5.6 250,041 68.2 3.1 236,153

interior deloix 149,090 16.02 67 3,928 22.9 6.6 231,927 3.0 1.9 1,704,493
camel 178,102 72.49 73 3,734 23.0 6.0 216,668 3.3 2.5 1,734,172

sockets 187,330 15.93 102 5,229 22.8 8.9 358,906 1.2 2.8 0
conference 190,947 25.62 97 4,428 19.4 7.1 348,928 2.8 2.7 3,268,361

chess 249,608 12.65 103 5,799 16.4 5.1 543,065 1.4 1.1 6,037,314
phone-high 318,756 30.72 145 8,163 6.7 2.9 2,262,962 7.5 1.5 856,324

pills-high 590,626 15.23 283 18,694 17.7 4.3 1,401,905 4.6 2.9 5,082,077
a10 1,070,671 60.79 403 29,921 25.0 5.9 1,544,378 2.6 3.1 52,604,130

hunger-high 1,418,560 136.61 384 27,690 44.2 5.6 727,590 156.3 3.9 27,356
case-high 1,614,006 36.86 501 37,224 39.6 4.5 1,108,126 11.1 4.5 3,101,617

sockets-high 1,658,432 16.80 730 45,842 41.0 11.0 1,516,267 2.7 4.1 0

Table 1: Measurements for all tested scenes for both ray generation schemes. T G
B and T H

B are uniform grid and
kd-tree build times. tG

T and tH
T are uniform grid and kd-tree per-ray traversal times. Build times are in milliseconds

and traversal times are in microseconds. RC (the critical point) is the exact number of rays for which the uniform
grid is equal in performance of the kd-tree.

ACKNOWLEDGEMENTS
This work has been supported by the Ministry of Ed-
ucation, Youth and Sports of the Czech Republic un-
der research programs MSM 6840770014, LC-06008
(Center for Computer Graphics), MEB-060906 (Kon-
takt OE/CZ), the Grant Agency of the Czech Republic
under research program P202/11/1883, and the Grant
Agency of the Czech Technical University in Prague,
grant No. SGS10/289/OHK3/3T/13.

REFERENCES
[App68] Appel, A. Some techniques for shading ma-

chine renderings of solids. In AFIPS ’68 (Spring):

Proceedings of the April 30–May 2, 1968, spring
joint computer conference, pages 37–45, New
York, NY, USA, 1968. ACM.

[Ben75] Bentley, J.L. Multidimensional binary search
trees used for associative searching. Commun.
ACM, 18:509–517, 1975.

[Cha04] Chang, A. Y.-H. Theoretical and Experimen-
tal Aspects of Ray Shooting. PhD thesis, Polytech-
nic University, USA, 2004.

[Cle88] Cleary, J.G. and Wyvill, G. Analysis of an al-
gorithm for fast ray tracing using uniform space
subdivision. The Visual Computer, 4(2):65–83,
July 1988.

[Fuj86] Fujimoto, A., Tanaka, T., and Iwata, K. ARTS:

WSCG 2011 Communication Papers 199

Accelerated ray tracing system. IEEE Computer
Graphics and Applications, 6(4):16–26, 1986.

[Gla89] Glassner, Andrew S. An introduction to ray
tracing, Academic Press Ltd.,London, UK, 1989

[Hav00a] Havran, V. Heuristic Ray Shooting Algo-
rithms. Ph.d. thesis, Department of Computer Sci-
ence and Engineering, Faculty of Electrical En-
gineering, Czech Technical University in Prague,
November 2000.

[Hav00b] Havran, V., Prikryl, J., and Purgathofer, W.
Statistical comparison of ray-shooting efficiency
schemes. Technical Report TR-186-2-00-14, Vi-
enna University of Technology, May 2000.

[Hav07] Havran, V. About the relation between spatial
subdivisions and object hierarchies used in ray trac-
ing. In Mateu Sbert, editor, 23rd Spring Conference
on Computer Graphics (SCCG 2007), pages 55–60,
Budmerice, Slovakia, May 2007. ACM.

[Ize07] Ize, T., Shirley, P., and Parker, S. Grid cre-
ation strategies for efficient ray tracing. In RT ’07:
Proceedings of the 2007 IEEE Symposium on Inter-
active Ray Tracing, pages 27–32, Washington, DC,
USA, 2007. IEEE Computer Society.

[Kal09] Kalojanov, J., and Slusallek, P. A parallel al-
gorithm for construction of uniform grids. In HPG
’09: Proceedings of the Conference on High Per-
formance Graphics 2009, pages 23–28, New York,
NY, USA, 2009. ACM.

[Kay86] Kay, T.L. and Kajiya, J.T. Ray tracing com-
plex scenes. In David C. Evans and Rusell J. Athay,
editors, SIGGRAPH ’86 Proceedings), volume 20,
pages 269–278, August 1986.

[Kli94] Klimaszewski, K.S. Faster ray tracing using
adaptive grids and area sampling. PhD thesis,
Brigham Young University, dec 1994.

[MF99] Müller G. and Fellner D.W. Hybrid Scene
Structuring with Application to Ray Tracing. In
Proceedings. of Intl. Conf. on Visual Computing
ICVC ’99, 1999.

[SKH02] Szirmay-Kalos, L., Havran, V., Balázs, B.
and Szécsi, L. On the efficiency of ray-shooting
acceleration schemes. In Proceedings of the 18th
Spring Conference on Computer Graphics (SCCG
2002), pages 89–98, Budmerice, Slovakia, May
2002.

[Wal04] Wald, I. Realtime Ray Tracing and Interactive
Global Illumination. PhD thesis, Computer Graph-
ics Group, Saarland University, 2004.

[Wal06a] Wald, I. and Havran, V. On building fast kd-
trees for ray tracing, and on doing that in O(N log
N). In Proc. IEEE Symposium on Interactive Ray
Tracing 2006, pages 61–69, September 2006.

[Wal06b] Wald, I., Ize, T., Kensler, A., Knoll, A. and
Parker, S.G. Ray Tracing Animated Scenes using
Coherent Grid Traversal. ACM Transactions on
Graphics, pages 485–493, 2006. (Proceedings of

ACM SIGGRAPH 2006).

WSCG 2011 Communication Papers 200

	K47-full.pdf

