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ABSTRACT 
This paper introduces an efficient and reliable algorithm to create soft shadows for ray traced implicit surfaces. 
In a classical soft shadow creation process, many rays have to be traced to calculate how much of the area light 
is visible from a point. In our approach, we trace from a point a beam that covers the area light. If the beam is 
not occluded, the point can be safely discarded because the use of Interval Arithmetic guarantees that the point is 
fully lit by the area light. In this case, extra rays are not traced, thus extra intersection tests are not required. Our 
soft shadow algorithm is then 38% to 59% faster than an algorithm based in a regular number of beams traced 
for each point. Besides, the using of beams based on Interval Arithmetic guarantees that thin details of the 
surfaces are not lost during the process.  
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1. INTRODUCTION 
An implicit surface can be defined as the set of 
points from the equation defined by f(x,y,x)=0, where 
f : Ω  R3  R. Finding methods to perform a 
reliable ray tracing process of these surfaces has been 
the subject of study by several authors in the last two 
decades  [Kal89a,Mit90a,Har97a]. However, the 
most extended technique to perform such work is a 
root finding process using Interval Arithmetic 
[Mit90a,Cap00a,San03a]. 
Ray tracing of implicit surfaces is a slow process. 
Furthermore, the use of Interval Arithmetic decreases 
the performance of such algorithms. This is because 
every interval operation requires many floating point 
operations. For that reason, the creation of effects 
like soft shadows are often avoided due to the vastly 
increased number of rays required.  
Another problem is that some special implicit 
surfaces are still not correctly rendered. This occurs 
because the rays miss the thin parts of the surfaces 
crossing a pixel, causing aliasing problems. This is 
more noticeable in the shadows produced by the 

implicit surfaces. 
In this paper, we propose an efficient and reliable 
algorithm to create soft shadows for implicit surfaces 
using Interval Arithmetic. Our method is based on 
the use of shadow beams instead of rays, having the 
following advantages: 
 A shadow beam can be used to replace the 

process of many shadow rays. If the beam is not 
occluded by any object in the scene, then the 
trace of the single rays is avoided, saving the 
computational time required for such intersection 
test. 

 Our reliable beam can detect any feature (even 
the smallest ones), avoiding aliasing problems in 
the shadows. 

Previous Works 
There are a huge number of articles related with soft 
shadows in literature. The most widely used 
algorithms are based in rasterization techniques like 
shadow maps [Kir03a,Arv04a,Ann08a], in which a 
pre-filtered depth map of the shadows are created, 
and shadow volumes [Asr03a,Leh06a] which defines 
the shadow boundary using a geometric algorithm for 
a silhouette extraction. Guennebaud et al [Gue06a] 
developed an algorithm which computes a 
percentage of light seen from every pixel in the 
image. This is done by backprojecting the occluders 
in a shadow map onto the light plane and 
determining the magnitude of the occlusion. These 
techniques can run very fast in graphics hardware. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
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However, they can not be easily adapted to work 
with a pure ray tracing process for implicit surfaces. 
An approach that can be easily applied to create soft 
shadows for ray tracing is Monte Carlo sampling 
[Coo84a]. Here, many rays have to be traced against 
the area light, which is inefficient for implicit 
surfaces where the root finding process is slow. To 
solve that problem, coherence approaches can be 
applied.   
In pencil tracing [Shi87a], the rays nearby to a 
special ray (called the axial ray) are grouped. These 
rays (called paraxial rays) are represented by a 4D 
matrix that represents the deviations in position and 
direction from the axial ray. This matrix system can 
be combined with the matrices for every surface in 
the environment to represent the propagation of the 
rays. The disadvantage of this method is that the 
surfaces have to be smooth, because the system can 
not deal with discontinuities. In those cases, the 
method requires of individual rays instead of pencils.   
In cone tracing [Ama8a], the rays are represented by 
a cone conformed by an apex, a center line and a 
spread angle. To calculate reflections and refractions, 
the new center line is calculated using a standard ray 
tracing technique. This technique can deal with the 
aliasing problems in the soft shadows by means of 
the calculation of the part of the cone blocked by the 
objects. However, due to the complexity in the 
calculation of intersections and parts of the cone 
covered by the objects, the method only deals with 
spheres, planes and polygons.  
Beam tracing [Hec08a] replaces individual rays with 
beams. A beam consists in a set of rays with a 
common apex crossing planar polygons. When a 
beam intersects an object, a new beam with a new 
polygonal section is generated. The remainder of the 
beam can be complex forms that require a method 
that can operate with arbitrary polygons. However, 
this technique is slow, only works for planar 
polygons facets and require complex intersections 
test. 
There are some techniques that improve the beam 
tracing process, which can be used to accelerate the 
soft shadow generation. [Over07a] introduced a 
technique based in algorithms for efficient beam-
triangle intersection, and beam-kd-tree traversal to 
generate the soft shadows. In [Car09a] a frustum 
tracing technique is introduced. Here, shadow rays 
are generated in every frustum on demand. This 
technique is well suited for SIMD architectures, and 
was specially designed for the Larrabee architecture 
of Intel. These techniques represent the beam by 
means of four rays, which are traversed in the 
acceleration structures. Those techniques can be 
easily adapted to work with implicit surfaces. 

However, they could miss small features of the 
implicit surfaces that lie inside the beam represented 
by four unconnected rays. 
In [Over99a] there is a proposal to create an 
approximation of the soft shadow for implicit 
surfaces. However, it only works for simple implicit 
surfaces and generates only approximations of the 
shadows. 

2. PRELIMINARIES 
Our proposal is based in the use of beams and 
Interval Arithmetic to accelerate the creation of the 
soft shadows, as well to guarantee that any part of 
the surfaces is not missed during the beam traversing. 
Besides, our algorithm was implemented for GPU 
using the Nvidia’s CUDA architecture to improve the 
rendering time. Using a CPU, a ray tracer using 
Interval Arithmetic could take minutes for naïve 
implicit surfaces [Cap00a,San03a]. Other approaches 
based on GPU have demonstrated that the rendering 
time for the ray tracing of implicit surfaces could be 
decreased up to 3 orders of magnitude 
[Col08a,Woo04a]. 

Beam Definition 
Using interval arithmetic, a beam is defined by: 

)( xsx cXTcX   

)( ysy cYTcY   

)( zsz cZTcZ   

Where X, Y, Z; Xs, Ys, Zs; T are intervals (in this 
paper, intervals are defined as capital letters). (cx, cy, 
cz) is the origin or view point; Xs, Ys, Zs are the 
intervals defining the direction of the beam, and T is 
the interval parameter of the beam, which determines 
how much the beam is advancing in the direction Xs, 
Ys, Zs. 
The intersection between a beam and an implicit 
surface defined by f(x, y, z) = 0, is defined by:  

),,,(0 TZYXF sss  

where F(Xs ,Ys ,T)  is called the “inclusion function” 
which is equivalent to: 

))(),(),(( zszysyxsx cZTccYTccXTcf   

So, the intersection test for the beam consists in 
finding a space of solutions (T) for all the rays that 
conforms the beam. The value T can be found using 
a classical Interval Bisection method or an Interval 
Newton method [Cap00a]. 
Interval Arithmetic guarantees that for any value 
xX, f(x)  F(X), where F(X) is the inclusion 
function. Hence, the advantage of the beam 
definition using Interval Arithmetic is that any part 
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of the surface crossed by the pixel is not missed (see 
figure 1). 
If 0  F(Xs ,Ys ,Zs ,T) then it is sure that there is not an 
intersection between the beam and the surface for 
any value t T.  
If 0  F(Xs ,Ys ,Zs ,T) then it is possible that there are 
some intersections between any of the rays included 
in the beam and the implicit surface. In this case, if a 
subdivision process is performed over the parameter 
of the beam T, the current value of T must be 
subdivided and every new interval evaluated again. 
The subdivision algorithm needs to arrive to machine 
precision because in that case 0  F(Xs ,Ys ,Zs ,T) is 
often achieved [Cap00a]. 

 
Figure 1. (Left) Some rays can miss thin parts of 
an implicit surface. (Right) Using beams, it is 
possible to discover such thin details. 

Acceleration Structure 
In our implementation we use a regular grid to 
accelerate the beam traversal. The nature of the 
rendered scenes, composed by arbitrary implicit 
surfaces uniformly distributed, makes a regular grid a 
good candidate to accelerate the beam tracing 
process [Fuj01a]. Moreover, using a regular grid the 
complexity of the beam traversing is reduced.  
We found that a regular grid is an approach that fits 
perfectly in the SIMT architecture (Single-
Instruction, Multiple-threads) of CUDA. Here, each 
independent thread can perform the evaluation of a 
cell of the grid, so the evaluation of many cells can 
be performed very fast. In our implementation this 
time is meaningless compared with the time spent in 
the rendering process. 
To create the regular grid, the object space in the 
scene is subdivided in a predefined number of boxes 
or cells, and each one is scanned to look for the 
implicit surfaces crossing them.  
Having an implicit surface f(x,y,z)=0, to know if the 
surface crosses a cell defined by the intervals (X,Y,Z), 
the united extension F(X,Y,Z) is used. If 0F(X,Y,Z), 

the region may be crossed by the surface. In the other 
case, the region can be definitively discarded. 

Beam Traversal 
To determine the boxes intersected by the beam, the 
direction of the beam in x, y or z (in space 
coordinates) is selected. This is done taking the 
normalized directions of the four vectors composing 
the corners of the beam and selecting the one with 
the bigger absolute value. The boxes are scanned 
advancing in the coordinate selected as direction, but 
only for the boxes covered by the other two 
coordinates of the beam. 
Figure 2 represents a 2D scenario to facilitate the 
understanding of the process. In this case, the output 
is a line instead of an area. The propagation direction 
is supposed to be in the z axis. The adaptation of this 
process to a 3D case is straightforward. 

0

Selected 
voxels

x , z
0

ZaZa

Z1Z1

Z2Z2

Z3Z3

Z4Z4

XX

XaXa

 
Figure 2. Traversing of a beam inside a regular 
grid structure. 
Every row in direction z is checked, but only the 
cells covered by the interval X are considered for the 
evaluation of the intersection test (cells in blue). The 
interval covering the cells in x coordinate is 
calculated as follows: 

X = x0+T(Xa - x0) 

having: 

T = (Z - z0) / (Za - z0)  

in which Xa and Za are the intervals representing the 
direction of the beam, and x0, y0 are real values 
representing the viewpoint. The value of Z is 
obtained taken the minimum and maximum values of 
z for the current row of cells in the grid. 
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The algorithm continues looking for cells covered by 
X in every row in the grid. 
In every cell, the corresponding interval value of the 
parameter of the beam (TC) must be calculated. This 
value represents the minimum and maximum value in 
which the roots are searched for the parameter T. 
This value is calculated as: 

],min[],,[max[ xzxzC TTTTT  , 

where 
xz TT ,  are the lower bounds, and 

xz TT , are the 

upper bounds of the intervals . Moreover:  xz TT ,

Tz = (Vz - z0) / (Za - z0),   Tx = (Vx - x0) / (Xa - x0), 

where the cell is defined by the intervals Vx and Vz. 

Root Searching 
When a beam intersects a cell crossing a part of a 
surface, a root must be searched in the space Tc 
corresponding to the current cell. Usually, recursion 
is used for the root searching algorithms. However, 
in the GPU the recursion is not allowed. For that 
reason, we made an algorithm which work making 
bisections over the value Tc and evaluating the 
inclusion function in the two sections created in 
every step. We use two variables to control the 
bisection process: one variable, ns, keeps the number 
of subdivisions currently performed over the 
parameter Tc in power of two (number of bisections 
= 2ns), and the other, cs, is pointing to the section 
currently scanned. For instance, if ns = 2 and cs = 3, 
then Tc is currently subdivided in four sections, and 
the section in which the inclusion function is 
evaluated is the third one. This means that cs < 2ns 
during the bisection process. 
The subdivision process must start with ns = 1 (Tc is 
subdivided in two sections), and cs = 1 (pointer to 
the first section). If we find that 0  F(Xs, Ys, T) (the 
root could be in the current section), the current 
section is bisected, the level of subdivision is 
incremented (ns = ns + 1) and the cs is set to the first 
section of the current subdivision level (cs = cs*2 - 
1). 
If for the current section 0  F(Xs, Ys, T) (there are 
no roots in this section), then we must check if the 
pointer is in the first or the second section. If the 
remainder of cs/2 is different than 0, then cs is 
pointing to the first section. In this case, cs is set to 
the next section (cs = cs + 1). If the remainder of cs/2 
is equal than 0, then cs is in the second section of the 
current subdivision. In that case, the two sections are 
rejected, the level of subdivision is reduced (ns = ns - 
1), and two new sections are selected, just following 
the two evaluated sections in the last step (cs = cs/2 + 
1). 

The process continues evaluating pairs of sections 
until a section reached a predefined small size. In our 
implementation, we finish the process when the 
width of the currently evaluated section is less than 
10-5. The process is also finished if cs > 2ns. This 
occurs when the bisection process did not find any 
intersection between the beam and the surface. 

3. ALGORITHM SPECIFICATION 
In our implementation, a PBO (Pixel Buffer Object) 
is created and sent to the GPU. We use the PBO to 
keep the final color values corresponding to every 
pixel of the window. After that, the surface to be 
rendered can be defined by the user. The surfaces 
were previously loaded, so the user only has to 
define an index indicating which surface has to be 
rendered. Once the surface is defined, the CUDA 
programs are executed, and the CPU waits until the 
results are collected from the GPU. Finally, OpenGL 
is used to show the contents of the PBO in a window.  

Creation of the Grid 
In our algorithm, the first step performed in the GPU 
is the definition of a grid to accelerate the beam 
tracing process. This task can be performed directly 
in CUDA or can be performed in CPU. For the last 
case, the data of the grid must be saved in an array to 
be sent to the GPU.  

Beam Casting Process  
Having the grid in the GPU, a beam casting process 
is performed, tracing a beam for every pixel in the 
screen. The objective is to trace a beam covering all 
the area of the pixel, and traverse the beam to find 
the intersections with the surfaces. For this task, we 
divided the screen in many tiles, which are sent to the 
GPU to be processed in one block each one. The 
result of this task is saved in an array with size equal 
to the number of pixels in the screen. The array has 
two floats for each position. Those values are used to 
keep the lower and upper bounds of the space of 
solutions (T) for the corresponding pixel. This value 
can be replaced in the definition of the beam to 
obtain the corresponding intersection values for X, Y 
and Z. 
Because the intersection points are intervals, we use 
the midpoints to obtain the initial point of the shadow 
beam.  

Soft Shadow Beam Tracing 
Having the initial point, a shadow beam is traced 
from the initial point at a distance  to avoid self 
intersections. The beam must cover all the area of the 
light.  
In our implementation, we define the area lights as 
squares that are parallel to the x,y or z axis. We use 
three intervals to define the light (Lx,Ly,Lz), but one 
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of them is a point-wise interval. The intervals 
defining the light are used as the direction of the 
beam. 
We use the shadow beam to analyze what happens 
with the rays included in the beam. There are two 
possible situations: 
 Case 1: An occluder is not found between the 

initial point and the light. It means that all the 
rays inside the beam are not occluded by any 
surface in the scene. 

 Case 2: the beam intersects a surface in the 
scene. It means that some or all the rays that 
conform the beam are occluded by an object. 

In the first case, the point is not covered by a 
shadow. This means that further rays are not needed; 
so we finish for this point and continue with the next. 
This represents a lot of time saved in the calculation 
of the intersection test for new rays, which is the 
more expensive step in a ray tracing process (see 
figure 4).  

Case 1 Case 2

Light

Case 1 Case 2

Light

 
Figure 4. Two cases detected during the beam 
tracing process. Case 2 can represent a lot of 
points in a scene, saving the tracing of new rays. 
For the second case more rays are needed. It is 
possible to apply a classical Monte Carlo sampling or 
any other method based in rays. In our 
implementation, we opt to trace more sub-beams 
instead or rays to guarantee that small features are 
not missed. Our idea is to avoid aliasing problems in 
the visualization of the shadow (see figure 5). 
If the beam intersects any of the surfaces in the 
scene, the area light is subdivided in many tiles. 
Many sub-beams starting in the same point are traced 
against these tiles. The count of sub-beams hitting 
surfaces over the total number of traced beam is used 
to create an index of the percent of the area of the 
point under the shadow. The value of this index 
varies from 0 for points not covered by shadow, to 1 
for surfaces in the umbra 

In our implementation, the light is subdivided in a 
regular number of tiles, tracing new beams against 
them. Initially, we thought that subdivision process 
like a quadtree could reduce the number of beams 
needed, and hence reducing the processing time. 
However, we found that our implementation using a 
quatree for the subdivision of the light, was up to 1.5 
times slower than an implementation using a regular 
subdivision. This occurs because GPU is faster with 
a completely parallel approach, in which every beam 
can be traced independently of the others. A quadtree 
requires more conditionals, and its irregular structure 
makes this approach slower than the tracing of a 
regular and predefined number of sub-beams against 
the light. 

  
Figure 5. A twister surface with thin features. 
Left: using rays, the shadow is not well defined. 
Right: using beams, the thin details are revealed 
in the shadow. 

4. EXPERIMENTATION 
To test our algorithm, we used four surfaces: 
Orthocircle, Chubs, Kusner Schmitt and McMullen 
(figure 6).  
The soft shadows were generated using 49 sub-
beams. We found that this number of beams is good 
enough to obtain the results in figure 6. We use an 
area light of 0,1 of the size of the area of the screen. 
The images were generated at a resolution of 
512x512 pixels in a GPU NVIDIA 9600M GT. 
Table 1 shows the results of our algorithm compared 
to an algorithm in which 49 sub-beams are traced for 
every intersection found during the beam casting 
process. Our method can drastically reduce the 
number of beams needed for the soft shadow 
creation. Time reduction in all the cases is over 38% 
(arriving up to 59% for the Orthocircle) for the 
shadow creation process.  
In Table 1, the column “initial beams occluded” 
indicates the number of initial beams traced, for 
which an occlusion was detected. Note that the 
number of “pixels in shadow”, which are detected 
when the sub-beams are traced, is smaller than the 
pixels detected by the “initial beam occluded”. This 
occurs because the overestimation of the intervals 
produces a beam that increases its real size. For that 
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reason, some pixels are detected to be in a shadow 
but they are not (see figure 7).  

 
Figure 6. Surfaces used in our experimentation, 
from left to right and top to bottom: Chubs, 
Kusner-Schmitt, McMullen and Orthocircle. 
The overestimation is proportional to the width of the 
used intervals. In this algorithm, this effect depends 
of the size of the light: for a bigger light, more pixels 
will be detected to be in a shadow when they really 
are not. However, if the intervals are subdivided, and 
each one is computed independently, the effect of 
overestimation is reduced [rev05a]. In our algorithm, 
when the small beams are traced (the size of the 
intervals is smaller) a correct representation of the 
soft shadow is found. The overestimation represents 
an extra cost in the rendering time, because 49 rays 
are traced from some points fully lit by the light. 
However, this matter does not affect the quality of 
the image. In the case of a really big light, instead of 
tracing an initial beam, it is possible to trace four, 
and perform the same analysis presented in this 
paper.  
The efficiency of the algorithm is related to the 
number of pixels covered by a shadow. For example, 
the Orthocircle have a 5% of the pixels under a 
shadow, and the improvement is 59% over the 
approach based in a regular number of beams. For 
the McMullen surface, the shadow covers the 21% of 
the pixels, with an improvement of 38%. 
Another issue to be taken into account is that a beam 
detects pixels under a shadow where a ray can miss 
thin features of the surface. The same occurs for the 
borders of the surface: the beam detects more pixels 
under a shadow than an approach based in rays. 
Indeed some of these pixels could be fully lit. The 
overestimation contributes to obtain this effect. 

However, this issue does not affect the quality of the 
images obtained (see figure 6).   

 
Figure 7. Left: The blue and red regions indicate 
the pixels detected to be in a shadow by the initial 
beams. The red region indicates the pixels that are 
indeed under the shadow. Right: the surface and 
its soft shadow. 

5. CONCLUSIONS 
In this paper we introduced a reliable soft shadow 
algorithm for implicit surfaces. Here, we propose the 
use of beams based on interval beam arithmetic to 
accelerate the rendering process and to detect thin 
features of the implicit surfaces.  
We prove that using beams, the creation of soft 
shadows can be accelerated. Using only one beam it 
is possible to detect if a pixel is under a shadow. If 
occlusions are not detected, then the tracing of more 
rays for the same point are avoided, thus saving 
computational time. This is more efficient than 
tracing many rays to detect the soft shadows in every 
intersection found during a ray casting process. 
Besides, Interval Arithmetic allows the creation of 
convex hulls in which none of the solutions is lost. A 
beam based on Interval Arithmetic can guarantee that 
either small or thin parts of the surfaces are not 
missed in the final image. 
As a future work, we are going to study the 
application of Affine Arithmetic in order to improve 
the computational time. Affine arithmetic promises to 
reduce overestimation problems, and to keep all the 
advantages of the interval arithmetic. 
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