

Reliable Soft Shadows over Implicit Surfaces

Jorge Flórez-Díaz

Institut d’Informàtica i Aplicacions
Campus Montilivi

Universitat de Girona
 Spain (17071), Girona, Catalonia

jeflorez@ima.udg.edu

Mateu Sbert
Institut d’Informàtica i Aplicacions

Campus Montilivi
Universitat de Girona

 Spain (17071), Girona, Catalonia
mateu@ima.udg.edu

ABSTRACT
This paper introduces an efficient and reliable algorithm to create soft shadows for ray traced implicit surfaces.
In a classical soft shadow creation process, many rays have to be traced to calculate how much of the area light
is visible from a point. In our approach, we trace from a point a beam that covers the area light. If the beam is
not occluded, the point can be safely discarded because the use of Interval Arithmetic guarantees that the point is
fully lit by the area light. In this case, extra rays are not traced, thus extra intersection tests are not required. Our
soft shadow algorithm is then 38% to 59% faster than an algorithm based in a regular number of beams traced
for each point. Besides, the using of beams based on Interval Arithmetic guarantees that thin details of the
surfaces are not lost during the process.

Keywords
Soft shadows, Implicit Surfaces, Beam tracing, Interval Arithmetic.

1. INTRODUCTION
An implicit surface can be defined as the set of
points from the equation defined by f(x,y,x)=0, where
f : Ω R3 R. Finding methods to perform a
reliable ray tracing process of these surfaces has been
the subject of study by several authors in the last two
decades [Kal89a,Mit90a,Har97a]. However, the
most extended technique to perform such work is a
root finding process using Interval Arithmetic
[Mit90a,Cap00a,San03a].
Ray tracing of implicit surfaces is a slow process.
Furthermore, the use of Interval Arithmetic decreases
the performance of such algorithms. This is because
every interval operation requires many floating point
operations. For that reason, the creation of effects
like soft shadows are often avoided due to the vastly
increased number of rays required.
Another problem is that some special implicit
surfaces are still not correctly rendered. This occurs
because the rays miss the thin parts of the surfaces
crossing a pixel, causing aliasing problems. This is
more noticeable in the shadows produced by the

implicit surfaces.
In this paper, we propose an efficient and reliable
algorithm to create soft shadows for implicit surfaces
using Interval Arithmetic. Our method is based on
the use of shadow beams instead of rays, having the
following advantages:
 A shadow beam can be used to replace the

process of many shadow rays. If the beam is not
occluded by any object in the scene, then the
trace of the single rays is avoided, saving the
computational time required for such intersection
test.

 Our reliable beam can detect any feature (even
the smallest ones), avoiding aliasing problems in
the shadows.

Previous Works
There are a huge number of articles related with soft
shadows in literature. The most widely used
algorithms are based in rasterization techniques like
shadow maps [Kir03a,Arv04a,Ann08a], in which a
pre-filtered depth map of the shadows are created,
and shadow volumes [Asr03a,Leh06a] which defines
the shadow boundary using a geometric algorithm for
a silhouette extraction. Guennebaud et al [Gue06a]
developed an algorithm which computes a
percentage of light seen from every pixel in the
image. This is done by backprojecting the occluders
in a shadow map onto the light plane and
determining the magnitude of the occlusion. These
techniques can run very fast in graphics hardware.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2010 FULL Papers 151

However, they can not be easily adapted to work
with a pure ray tracing process for implicit surfaces.
An approach that can be easily applied to create soft
shadows for ray tracing is Monte Carlo sampling
[Coo84a]. Here, many rays have to be traced against
the area light, which is inefficient for implicit
surfaces where the root finding process is slow. To
solve that problem, coherence approaches can be
applied.
In pencil tracing [Shi87a], the rays nearby to a
special ray (called the axial ray) are grouped. These
rays (called paraxial rays) are represented by a 4D
matrix that represents the deviations in position and
direction from the axial ray. This matrix system can
be combined with the matrices for every surface in
the environment to represent the propagation of the
rays. The disadvantage of this method is that the
surfaces have to be smooth, because the system can
not deal with discontinuities. In those cases, the
method requires of individual rays instead of pencils.
In cone tracing [Ama8a], the rays are represented by
a cone conformed by an apex, a center line and a
spread angle. To calculate reflections and refractions,
the new center line is calculated using a standard ray
tracing technique. This technique can deal with the
aliasing problems in the soft shadows by means of
the calculation of the part of the cone blocked by the
objects. However, due to the complexity in the
calculation of intersections and parts of the cone
covered by the objects, the method only deals with
spheres, planes and polygons.
Beam tracing [Hec08a] replaces individual rays with
beams. A beam consists in a set of rays with a
common apex crossing planar polygons. When a
beam intersects an object, a new beam with a new
polygonal section is generated. The remainder of the
beam can be complex forms that require a method
that can operate with arbitrary polygons. However,
this technique is slow, only works for planar
polygons facets and require complex intersections
test.
There are some techniques that improve the beam
tracing process, which can be used to accelerate the
soft shadow generation. [Over07a] introduced a
technique based in algorithms for efficient beam-
triangle intersection, and beam-kd-tree traversal to
generate the soft shadows. In [Car09a] a frustum
tracing technique is introduced. Here, shadow rays
are generated in every frustum on demand. This
technique is well suited for SIMD architectures, and
was specially designed for the Larrabee architecture
of Intel. These techniques represent the beam by
means of four rays, which are traversed in the
acceleration structures. Those techniques can be
easily adapted to work with implicit surfaces.

However, they could miss small features of the
implicit surfaces that lie inside the beam represented
by four unconnected rays.
In [Over99a] there is a proposal to create an
approximation of the soft shadow for implicit
surfaces. However, it only works for simple implicit
surfaces and generates only approximations of the
shadows.

2. PRELIMINARIES
Our proposal is based in the use of beams and
Interval Arithmetic to accelerate the creation of the
soft shadows, as well to guarantee that any part of
the surfaces is not missed during the beam traversing.
Besides, our algorithm was implemented for GPU
using the Nvidia’s CUDA architecture to improve the
rendering time. Using a CPU, a ray tracer using
Interval Arithmetic could take minutes for naïve
implicit surfaces [Cap00a,San03a]. Other approaches
based on GPU have demonstrated that the rendering
time for the ray tracing of implicit surfaces could be
decreased up to 3 orders of magnitude
[Col08a,Woo04a].

Beam Definition
Using interval arithmetic, a beam is defined by:

)(xsx cXTcX

)(ysy cYTcY

)(zsz cZTcZ

Where X, Y, Z; Xs, Ys, Zs; T are intervals (in this
paper, intervals are defined as capital letters). (cx, cy,
cz) is the origin or view point; Xs, Ys, Zs are the
intervals defining the direction of the beam, and T is
the interval parameter of the beam, which determines
how much the beam is advancing in the direction Xs,
Ys, Zs.
The intersection between a beam and an implicit
surface defined by f(x, y, z) = 0, is defined by:

),,,(0 TZYXF sss

where F(Xs ,Ys ,T) is called the “inclusion function”
which is equivalent to:

))(),(),((zszysyxsx cZTccYTccXTcf

So, the intersection test for the beam consists in
finding a space of solutions (T) for all the rays that
conforms the beam. The value T can be found using
a classical Interval Bisection method or an Interval
Newton method [Cap00a].
Interval Arithmetic guarantees that for any value
xX, f(x) F(X), where F(X) is the inclusion
function. Hence, the advantage of the beam
definition using Interval Arithmetic is that any part

WSCG 2010 FULL Papers 152

of the surface crossed by the pixel is not missed (see
figure 1).
If 0 F(Xs ,Ys ,Zs ,T) then it is sure that there is not an
intersection between the beam and the surface for
any value t T.
If 0 F(Xs ,Ys ,Zs ,T) then it is possible that there are
some intersections between any of the rays included
in the beam and the implicit surface. In this case, if a
subdivision process is performed over the parameter
of the beam T, the current value of T must be
subdivided and every new interval evaluated again.
The subdivision algorithm needs to arrive to machine
precision because in that case 0 F(Xs ,Ys ,Zs ,T) is
often achieved [Cap00a].

Figure 1. (Left) Some rays can miss thin parts of
an implicit surface. (Right) Using beams, it is
possible to discover such thin details.

Acceleration Structure
In our implementation we use a regular grid to
accelerate the beam traversal. The nature of the
rendered scenes, composed by arbitrary implicit
surfaces uniformly distributed, makes a regular grid a
good candidate to accelerate the beam tracing
process [Fuj01a]. Moreover, using a regular grid the
complexity of the beam traversing is reduced.
We found that a regular grid is an approach that fits
perfectly in the SIMT architecture (Single-
Instruction, Multiple-threads) of CUDA. Here, each
independent thread can perform the evaluation of a
cell of the grid, so the evaluation of many cells can
be performed very fast. In our implementation this
time is meaningless compared with the time spent in
the rendering process.
To create the regular grid, the object space in the
scene is subdivided in a predefined number of boxes
or cells, and each one is scanned to look for the
implicit surfaces crossing them.
Having an implicit surface f(x,y,z)=0, to know if the
surface crosses a cell defined by the intervals (X,Y,Z),
the united extension F(X,Y,Z) is used. If 0F(X,Y,Z),

the region may be crossed by the surface. In the other
case, the region can be definitively discarded.

Beam Traversal
To determine the boxes intersected by the beam, the
direction of the beam in x, y or z (in space
coordinates) is selected. This is done taking the
normalized directions of the four vectors composing
the corners of the beam and selecting the one with
the bigger absolute value. The boxes are scanned
advancing in the coordinate selected as direction, but
only for the boxes covered by the other two
coordinates of the beam.
Figure 2 represents a 2D scenario to facilitate the
understanding of the process. In this case, the output
is a line instead of an area. The propagation direction
is supposed to be in the z axis. The adaptation of this
process to a 3D case is straightforward.

0

Selected
voxels

x , z
0

ZaZa

Z1Z1

Z2Z2

Z3Z3

Z4Z4

XX

XaXa

Figure 2. Traversing of a beam inside a regular
grid structure.
Every row in direction z is checked, but only the
cells covered by the interval X are considered for the
evaluation of the intersection test (cells in blue). The
interval covering the cells in x coordinate is
calculated as follows:

X = x0+T(Xa - x0)

having:

T = (Z - z0) / (Za - z0)

in which Xa and Za are the intervals representing the
direction of the beam, and x0, y0 are real values
representing the viewpoint. The value of Z is
obtained taken the minimum and maximum values of
z for the current row of cells in the grid.

WSCG 2010 FULL Papers 153

The algorithm continues looking for cells covered by
X in every row in the grid.
In every cell, the corresponding interval value of the
parameter of the beam (TC) must be calculated. This
value represents the minimum and maximum value in
which the roots are searched for the parameter T.
This value is calculated as:

],min[],,[max[xzxzC TTTTT ,

where
xz TT , are the lower bounds, and

xz TT , are the

upper bounds of the intervals . Moreover: xz TT ,

Tz = (Vz - z0) / (Za - z0), Tx = (Vx - x0) / (Xa - x0),

where the cell is defined by the intervals Vx and Vz.

Root Searching
When a beam intersects a cell crossing a part of a
surface, a root must be searched in the space Tc
corresponding to the current cell. Usually, recursion
is used for the root searching algorithms. However,
in the GPU the recursion is not allowed. For that
reason, we made an algorithm which work making
bisections over the value Tc and evaluating the
inclusion function in the two sections created in
every step. We use two variables to control the
bisection process: one variable, ns, keeps the number
of subdivisions currently performed over the
parameter Tc in power of two (number of bisections
= 2ns), and the other, cs, is pointing to the section
currently scanned. For instance, if ns = 2 and cs = 3,
then Tc is currently subdivided in four sections, and
the section in which the inclusion function is
evaluated is the third one. This means that cs < 2ns
during the bisection process.
The subdivision process must start with ns = 1 (Tc is
subdivided in two sections), and cs = 1 (pointer to
the first section). If we find that 0 F(Xs, Ys, T) (the
root could be in the current section), the current
section is bisected, the level of subdivision is
incremented (ns = ns + 1) and the cs is set to the first
section of the current subdivision level (cs = cs*2 -
1).
If for the current section 0 F(Xs, Ys, T) (there are
no roots in this section), then we must check if the
pointer is in the first or the second section. If the
remainder of cs/2 is different than 0, then cs is
pointing to the first section. In this case, cs is set to
the next section (cs = cs + 1). If the remainder of cs/2
is equal than 0, then cs is in the second section of the
current subdivision. In that case, the two sections are
rejected, the level of subdivision is reduced (ns = ns -
1), and two new sections are selected, just following
the two evaluated sections in the last step (cs = cs/2 +
1).

The process continues evaluating pairs of sections
until a section reached a predefined small size. In our
implementation, we finish the process when the
width of the currently evaluated section is less than
10-5. The process is also finished if cs > 2ns. This
occurs when the bisection process did not find any
intersection between the beam and the surface.

3. ALGORITHM SPECIFICATION
In our implementation, a PBO (Pixel Buffer Object)
is created and sent to the GPU. We use the PBO to
keep the final color values corresponding to every
pixel of the window. After that, the surface to be
rendered can be defined by the user. The surfaces
were previously loaded, so the user only has to
define an index indicating which surface has to be
rendered. Once the surface is defined, the CUDA
programs are executed, and the CPU waits until the
results are collected from the GPU. Finally, OpenGL
is used to show the contents of the PBO in a window.

Creation of the Grid
In our algorithm, the first step performed in the GPU
is the definition of a grid to accelerate the beam
tracing process. This task can be performed directly
in CUDA or can be performed in CPU. For the last
case, the data of the grid must be saved in an array to
be sent to the GPU.

Beam Casting Process
Having the grid in the GPU, a beam casting process
is performed, tracing a beam for every pixel in the
screen. The objective is to trace a beam covering all
the area of the pixel, and traverse the beam to find
the intersections with the surfaces. For this task, we
divided the screen in many tiles, which are sent to the
GPU to be processed in one block each one. The
result of this task is saved in an array with size equal
to the number of pixels in the screen. The array has
two floats for each position. Those values are used to
keep the lower and upper bounds of the space of
solutions (T) for the corresponding pixel. This value
can be replaced in the definition of the beam to
obtain the corresponding intersection values for X, Y
and Z.
Because the intersection points are intervals, we use
the midpoints to obtain the initial point of the shadow
beam.

Soft Shadow Beam Tracing
Having the initial point, a shadow beam is traced
from the initial point at a distance to avoid self
intersections. The beam must cover all the area of the
light.
In our implementation, we define the area lights as
squares that are parallel to the x,y or z axis. We use
three intervals to define the light (Lx,Ly,Lz), but one

WSCG 2010 FULL Papers 154

of them is a point-wise interval. The intervals
defining the light are used as the direction of the
beam.
We use the shadow beam to analyze what happens
with the rays included in the beam. There are two
possible situations:
 Case 1: An occluder is not found between the

initial point and the light. It means that all the
rays inside the beam are not occluded by any
surface in the scene.

 Case 2: the beam intersects a surface in the
scene. It means that some or all the rays that
conform the beam are occluded by an object.

In the first case, the point is not covered by a
shadow. This means that further rays are not needed;
so we finish for this point and continue with the next.
This represents a lot of time saved in the calculation
of the intersection test for new rays, which is the
more expensive step in a ray tracing process (see
figure 4).

Case 1 Case 2

Light

Case 1 Case 2

Light

Figure 4. Two cases detected during the beam
tracing process. Case 2 can represent a lot of
points in a scene, saving the tracing of new rays.
For the second case more rays are needed. It is
possible to apply a classical Monte Carlo sampling or
any other method based in rays. In our
implementation, we opt to trace more sub-beams
instead or rays to guarantee that small features are
not missed. Our idea is to avoid aliasing problems in
the visualization of the shadow (see figure 5).
If the beam intersects any of the surfaces in the
scene, the area light is subdivided in many tiles.
Many sub-beams starting in the same point are traced
against these tiles. The count of sub-beams hitting
surfaces over the total number of traced beam is used
to create an index of the percent of the area of the
point under the shadow. The value of this index
varies from 0 for points not covered by shadow, to 1
for surfaces in the umbra

In our implementation, the light is subdivided in a
regular number of tiles, tracing new beams against
them. Initially, we thought that subdivision process
like a quadtree could reduce the number of beams
needed, and hence reducing the processing time.
However, we found that our implementation using a
quatree for the subdivision of the light, was up to 1.5
times slower than an implementation using a regular
subdivision. This occurs because GPU is faster with
a completely parallel approach, in which every beam
can be traced independently of the others. A quadtree
requires more conditionals, and its irregular structure
makes this approach slower than the tracing of a
regular and predefined number of sub-beams against
the light.

Figure 5. A twister surface with thin features.
Left: using rays, the shadow is not well defined.
Right: using beams, the thin details are revealed
in the shadow.

4. EXPERIMENTATION
To test our algorithm, we used four surfaces:
Orthocircle, Chubs, Kusner Schmitt and McMullen
(figure 6).
The soft shadows were generated using 49 sub-
beams. We found that this number of beams is good
enough to obtain the results in figure 6. We use an
area light of 0,1 of the size of the area of the screen.
The images were generated at a resolution of
512x512 pixels in a GPU NVIDIA 9600M GT.
Table 1 shows the results of our algorithm compared
to an algorithm in which 49 sub-beams are traced for
every intersection found during the beam casting
process. Our method can drastically reduce the
number of beams needed for the soft shadow
creation. Time reduction in all the cases is over 38%
(arriving up to 59% for the Orthocircle) for the
shadow creation process.
In Table 1, the column “initial beams occluded”
indicates the number of initial beams traced, for
which an occlusion was detected. Note that the
number of “pixels in shadow”, which are detected
when the sub-beams are traced, is smaller than the
pixels detected by the “initial beam occluded”. This
occurs because the overestimation of the intervals
produces a beam that increases its real size. For that

WSCG 2010 FULL Papers 155

reason, some pixels are detected to be in a shadow
but they are not (see figure 7).

Figure 6. Surfaces used in our experimentation,
from left to right and top to bottom: Chubs,
Kusner-Schmitt, McMullen and Orthocircle.
The overestimation is proportional to the width of the
used intervals. In this algorithm, this effect depends
of the size of the light: for a bigger light, more pixels
will be detected to be in a shadow when they really
are not. However, if the intervals are subdivided, and
each one is computed independently, the effect of
overestimation is reduced [rev05a]. In our algorithm,
when the small beams are traced (the size of the
intervals is smaller) a correct representation of the
soft shadow is found. The overestimation represents
an extra cost in the rendering time, because 49 rays
are traced from some points fully lit by the light.
However, this matter does not affect the quality of
the image. In the case of a really big light, instead of
tracing an initial beam, it is possible to trace four,
and perform the same analysis presented in this
paper.
The efficiency of the algorithm is related to the
number of pixels covered by a shadow. For example,
the Orthocircle have a 5% of the pixels under a
shadow, and the improvement is 59% over the
approach based in a regular number of beams. For
the McMullen surface, the shadow covers the 21% of
the pixels, with an improvement of 38%.
Another issue to be taken into account is that a beam
detects pixels under a shadow where a ray can miss
thin features of the surface. The same occurs for the
borders of the surface: the beam detects more pixels
under a shadow than an approach based in rays.
Indeed some of these pixels could be fully lit. The
overestimation contributes to obtain this effect.

However, this issue does not affect the quality of the
images obtained (see figure 6).

Figure 7. Left: The blue and red regions indicate
the pixels detected to be in a shadow by the initial
beams. The red region indicates the pixels that are
indeed under the shadow. Right: the surface and
its soft shadow.

5. CONCLUSIONS
In this paper we introduced a reliable soft shadow
algorithm for implicit surfaces. Here, we propose the
use of beams based on interval beam arithmetic to
accelerate the rendering process and to detect thin
features of the implicit surfaces.
We prove that using beams, the creation of soft
shadows can be accelerated. Using only one beam it
is possible to detect if a pixel is under a shadow. If
occlusions are not detected, then the tracing of more
rays for the same point are avoided, thus saving
computational time. This is more efficient than
tracing many rays to detect the soft shadows in every
intersection found during a ray casting process.
Besides, Interval Arithmetic allows the creation of
convex hulls in which none of the solutions is lost. A
beam based on Interval Arithmetic can guarantee that
either small or thin parts of the surfaces are not
missed in the final image.
As a future work, we are going to study the
application of Affine Arithmetic in order to improve
the computational time. Affine arithmetic promises to
reduce overestimation problems, and to keep all the
advantages of the interval arithmetic.

6. ACKNOWLEDGEMENTS
This work has been partially funded by the Spanish
Government (Plan Nacional de Investigación
Científica, Desarrollo e Innovación Tecnológica,
Ministerio de Ciencia y Tecnología) through the co-
ordinated research project MEC TIN2007-68066-
C04-01 and by the government of Catalonia through
2009 SGR643.

7. REFERENCES
[Ama8a] Amanatides J. Ray Tracing with Cones.

Computer Graphics 1984, 18, 3, 129-185.

WSCG 2010 FULL Papers 156

Our method

 (using initial beams) Using 49 beams

Surface

Beam
casting
(secs.)

Pixels in
shadow

Initial
beams

occluded
Time
(secs.)

No.
Beams

Time
(secs.)

No.
Beams

%time
saved

Orthocircle 1,23 13.328 14.961 1,66 719.859 4,08 7.101.962 59%
Chubs 1,53 21.932 27.357 3,82 1.340.493 6,57 7.343.091 42%
Kusner Schmitt 2,24 22.374 44.979 5,65 2.203.971 9,44 7.395.374 40%
McMullen 2,28 55.231 73.386 6,84 4.085.914 11,06 8.749.244 38%

Table 1. Results of the experimentation.
[Ann08a] Annen, T., Dong, Z., Mertens, T.,

Bekaert, P., Seidel, H., and Kautz, J. 2008.
Real-Time All-Frequency Shadows in Dynamic
Scenes. ACM Transactions on Graphics. 27, 3,
1–8. 2008

[Arv04a] Arvo J. and Westerholm J. Shadows
Using a Single Light Sample Hardware
Accelerated Soft Shadows using Penumbra
Quads. Journal of WSCG, Vol.12, No.1-3, 2004

[Asr03a] Assarsson U., Akenine-Möller T.: A
geometry based soft shadow volume algorithm
using graphics hardware. ACM Transactions on
Graphics. 22, 3. 511–520. 2003

[Cap00a] Capriani O., Hvidegaard L., Mortensen
M. and Schneider T. Robust and efficient ray
intersection of implicit surfaces. Reliable
Computing. 1, 6,, 9-21, 2000.

 [Car09a] Carsten B. and Wald I. Efficient Ray
Traced Soft Shadows using Multi-Frusta
Tracing. Proceedings of the Conference on
High Performance Graphics. 135-144. 2009.

[Col08a] Collange S., Flórez J. and Defour D.
Interval Library based in Boost Interval.
Proceedings of the International Conference on
Real Numbers and Computers, 61-72. 2008

[Coo84a] Cook, R., Porter, T., and Carpenter, L.
Distributed Ray Tracing. Computer Graphics
(Proc. of SIGGRAPH ’84) 18, 3, 137–144.

[Fuj01a] Fujimoto, A. Tanaka, T. Iwata, K. ARTS:
Accelerated Ray-Tracing System. IEEE
Computer Graphics and Applications. 6,4,16-
26, 1986.

[Gue06a] Guennebaud G., Barthe L., and Paulin M.
Realtime soft shadow mapping by
backprojection. In Eurographics Symposium on
Rendering, 227–234, 2006.

[Har97a] Hart J. Sphere tracing: A geometric
method for the antialiased ray tracing of
Implicit Surfaces. The Visual Computer, 12,
10:527–545, 1997.

[Hec8a] Heckbert P. and Hanrahan P. Beam
Tracing polygonal Objects. Computer Graphics
1984, 18 (3), 119 – 127.

[Kal89a] Kalra D. and Barr A. Guaranteed ray
intersection with implicit surfaces. Computer
Graphics (Siggraph proceedings), 23:297–206,
1989.

[Kir03a] Kirsch F. and Döllner J. Real-Time Soft
Real-time soft shadows using a single light
sample. Journal of WSCG (Winter School on
Computer Graphics 2003), 11, 1, 2003.

[Leh06a] Lehtinen, J., Laine, S., and Aila, T. 2006.
An Improved Physically-Based Soft Shadow
Volume Algorithm. Computer Graphics Forum
(Proceedings of Eurographics ’06) 25, 3.

[Mit90a] Mitchell, D. Robust ray intersection with
interval arithmetic. Proceedings on Graphics
Interface ’90, 68–74, 1990.

[Over07a] Overbeck R., Ramamoorthi R.,and Mark
W. A Real-time Beam Tracer with Application
to Exact Soft Shadows. Eurographics
Symposium on Rendering 2007.

[Over99a] Overveld K., Mark T. and and Wyvill B.
Soft Shadows for Soft Objects. Proceedings of
Fourth Eurographics Workshop on Implicit
Surfaces, Bordeaux, France. 1999.

[Rev05a] Revol, N. and Rouillier, F. Motivations
for an Arbitrary Precision Interval Arithmetic
and the MPFI Library. Reliable Computing, 11,
4, 275-290, 2005

[San03a] Sanjuan-Estrada J., Casado L. and García
I. Reliable algorithms for ray intersection in
computer graphics based on Interval Arithmetic.
XVI Brazilian Symposium on Computer
Graphics. 35 – 44, 2003.

[Shi87a] Shinya M., Takahashi T. and Naito S.
Principles and applications of pencil tracing.
Computer Graphics 1987, 21, 4, 45-54.

[Wil78a] L. Williams. Casting curved shadows on
curved surfaces." SIGGRAPH '78, pp. 270-274.
New York, USA, 1978.

[Woo04a] Wood A, Brendan M. and Scott K. Ray
tracing arbitrary objects on the GPU.
Proceedings of Image and Vision Computing,
21-23, 2004.A GPU

WSCG 2010 FULL Papers 157

WSCG 2010 FULL Papers 158

	!_Full.pdf
	E11-full.pdf
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. PRELIMINARIES
	Beam Definition
	Acceleration Structure
	Beam Traversal
	Root Searching

	3. ALGORITHM SPECIFICATION
	Creation of the Grid
	Beam Casting Process
	Soft Shadow Beam Tracing

	4. EXPERIMENTATION
	5. CONCLUSIONS
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

