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ABSTRACT

We present a new method for smooth global analysis and representation of image-based motion data with topological methods
for flow fields, useful for further activity analysis. A video sensor captures motion of subjects and yields discrete samples of
velocity vectors in the image domain. We show how to construct a smooth, continuous, globally defined bidirectional flow field
which approximates the directional part of given samples. We then apply a topological analysis of this continuous flow field
which yields a segmentation into regions of similar flow behavior, i.e., regions of similar motion. This segmentation (topology)
can be seen as global model of typical motions and used for further analysis like detecting atypical motions. We tested our
method empirically and provide results for two different scenarios with human motion and traffic motion, respectively.
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1 INTRODUCTION
Motion analysis is an important research topic in com-
puter vision with a great variety of applications. In the
present scenario, our goal is to "learn" typical motion
within a spatial domain that is captured by digital video.
Such analysis provides the fundamentals to classify mo-
tion and to decide algorithmically whether subjects are
moving in an admissible way.

There are many applications for such a tool. Exam-
ples are automatic monitoring of traffic, e.g., in a fac-
tory environment with self-directed vehicles and human
workers interacting. The aim is to detect potentially
dangerous situations such that action can be taken to
avoid any damage or injuries.

Another example is automatic control of security ar-
eas like airports, where atypical behavior of subjects
within the moving crowd is detected. It is quite easy to
imagine that vector fields may provide a good tool to
model such crowd movement.

In this paper, we present a method for motion analy-
sis based on vector field topology which was introduced
in [4]. The input is a video sequence from which trajec-
tories of moving subjects are extracted. Figure 1 shows
example scenes, arrows indicate possible motion direc-
tions. The set of all trajectories are converted into a flow
field, more specifically into a tensor field as vector ori-
entation, i.e., their sign, should not have any influence.
We then regard the topology of the tensor field to seg-
ment it into regions of similar flow behavior. The result-
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ing segmentation may serve as basis, e.g., for methods
that detect atypical flow. A typical result of our method
is shown in Figure 10.

The remainder of the paper is organized as follows.
In Section 2 we start with previous work on the field
of image-based motion detection and trajectories clas-
sification. In Section 3 we describe the data acquisition
process. Section 4 presents our approach to generate
a bidirectional vector field from scattered vector sam-
ples. Topology extraction is discussed in Section 5, and
we show experimental results in Section 6. Section 7
concludes the paper with a summary and discussion on
future work.

2 RELATED WORK
Video-based analysis systems generally have a very
complex structure. They span different levels of ab-
straction: from the low-level detection and tracking
of moving objects in video streams (trajectories) to
the high-level behavior analysis (scene understanding)
[16]. A common aim is to describe the observed data
and to detect atypical or threatening events in real-time,
i.e., to find a high-level interpretation. This becomes
complicated when complex situations (i.e. scenes con-
taining many objects and interactions) in a completely
unsupervised ways are observed and evaluated.

Our work can be seen as bridge between these two
levels. The input to our method are extracted trajecto-
ries, and the output is a global representation as the so-
called topological skeleton of these motion data, which
provides a segmentation.

Analysis of human motion and analysis of traffic are
two big areas of research. We refer to surveys in [7] and
[11] for detailed overview of human and traffic motion
analysis respectively.
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Figure 1: Motion scenes of persons (left) and vehicles (right)

Most related to our work is the approach of Hu et
al. [6] which considers environments where tracking
of individual objects is hard or even impossible (i.e.
crowds): first, flow vectors are computed for each video
frame, then after some filtering a global motion flow
field is generated, and representative modes (sinks) for
each motion pattern are extracted and tracked. A col-
lective global representation of the discovered motion
patterns (super tracks) is used for event-based video
matching. This approach is suitable when no individ-
ual analysis of moving objects is required. In contrast
our method provides potential for both, global and in-
dividual analysis.

Figure 2: Raw motion data

Motion data analysis using trajectory data gained in-
creasing interest recently [8, 10]. A lot of trajectory
classification methods have been developed in the fields
of pattern recognition [1] and video surveillance [14].
One important characteristic of those methods are that
they use the shapes of whole trajectories to do classifi-
cation. For example such as the hidden Markov model
(HMM) [1] by modeling a whole trajectory with a sin-
gle mathematical function.

Many approaches employ neural networks such as
self-organizing maps (SOM) and use whole trajectories
for classification. For instance in [14], each trajectory

is encoded to a feature vector using its summary infor-
mation (e.g., the maximum speed). But some valuable
information (e.g., time, motion direction, etc.) could be
lost due to this encoding.

Moving-object anomaly detection is a hot topic of
research and very closely related to trajectory classi-
fication. Li et al. [10] propose an anomaly detection
method based on motifs (i.e., trajectory features). This
method is limited to extracting motifs without taking
other attributes into account.

Morris and Trivedi [12] learn topology scene descrip-
tors (POI) and modeled the activities among POIs with
HMMs. The approach is suitable to detect abnormal
activities and shows good performance when used in
structured scenes.

Pusiol et al. [17] propose a method to learn scene
logical regions (scene topology) in an unsupervised
way. Topology of the scene is learned using the regions
where the person usually stands and stops, so-called
slow regions. Transitions among these slow regions are
learned as primitive events from which histograms are
generated to recognize activities of other subject.

Generation of semantic-based trajectories can be
used to simulate real-world behavior. Pfoser and
Theodoridis [15] present several examples of how
real-world movement characteristics can be described
with appropriate semantics. While we do not aim at a
semantic analysis in this work, we are confident that
our resulting global model of motion may serve as
basis for such analysis.

Another approach to classify trajectories is clustering
(see, e.g., [8]). However, significant features are likely
to appear only locally at parts of trajectories, they do not
characterize trajectories globally as a whole. Also dis-
criminative features appear not only as common move-
ment patterns but also as regions.

In contrast to this, we propose a different approach
based on a global model: significant features are ex-
tracted as topology of motion data which are repre-
sented by a smooth flow field.
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3 DATA ACQUISITION
We use a video camera in combination with optical flow
to extract motion data from a video sequence. We chose
an off-the-shelf video sensor Vitracom SiteView EP for
this purpose.

In our setup the sensor is fixed and captures a certain
region (see Figure 1). For any detected motion of any
subject we are provided with a sequence of a subject’s
id, its positions in image-space and a time-stamp. These
data can be used to construct trajectories of individual
subjects. All our computations are performed in image-
space which is sufficient for our purpose as in this work
we do not combine data from multiple sensors.

Due to the complexity of the scene the acquired data
suffers from disturbing effects like distortion, overlap-
ping, occlusion, or fusion of moving objects. In order to
extract reliable raw data, we apply a smoothing step on
the individual trajectories. The rationale for this prepro-
cess consists firstly in the fact that filtering in this way
respects the temporal and spatial coherence as motions
are processed individually. Secondly, we can rely on a
simple and efficient finite differences scheme for curve
smoothing rather than smoothing scattered vector data.
In order to achieve this, we minimize a certain bending
energy for trajectory smoothing.

Finally, we overlay velocity samples from all trajec-
tories within the image domain. The result is a set of
vector samples scattered in the domain. Figure 2 shows
such raw data.

4 VECTOR FIELD GENERATION
While the scattered vector samples describe our vector
field, we cannot apply them directly for topology
extraction and segmentation. We need to generate a
suitable continuous parametric model from the given
discrete set of data points. A standard approach is
least-squares approximation of a bivariate function,
e.g., tensor-product B-spline.

Unfortunately, this approach does not work in our
setting: our goal is fitting a bidirectional vector field (or
a tensor field), i.e., we want to fit accurately the direc-
tion of velocity vectors but not their orientation. This
orientation-invariance cannot be modeled by a linear
least-squares fit.

In the following, we provide a different formulation
of the problem which leads to solving an eigenvalue
problem.

Given are samples of velocity vectors vi = (ui,vi)
> ∈

IR2, i = 1, . . . ,m at points (xi,yi)
> in the image plane.

We want to find a parametric vector field

w(x,y) =
n

∑
j=1

b j(x,y)(U j,Vj)
> , (1)

such that w(xi,yi) is as parallel as possible to vi. Here,
b j(·) represent any suitable bivariate basis functions,

e.g., tensor-product B-splines. And we have to deter-
mine the unknown coefficients U j,Vj, j = 1 . . . ,n.

Note that we are only interested in matching the di-
rection of vectors and disregard both, orientation and
magnitude. The first property is essential to our ap-
proach, while the latter one can easily be restored in
a second step by a linear least-squares fit of a scalar
magnitude field.

4.1 Eigenvalue problem
In order to model the problem as a minimization, we
reformulate it: instead of w and v being parallel, we re-
quire that w(xi,yi) are as orthogonal to v⊥i =: (−vi,ui)

>

as possible, where (·)⊥ denotes a rotation by π

2 . For the
best fitting bidirectional vector field we have

E =
m

∑
i=1

(
w(xi,yi)

>v⊥i
)2
→min , (2)

i.e., we penalize non-orthogonality. We rewrite (2) in
matrix notation such that

E = r>r .

Then we have each element of r ∈ IRm as

ri = w(xi,yi)
>v⊥i

= −vi b(xi,yi)
>U + ui b(xi,y j)

>V

=
(

uib(xi,yi)
>
)

V −
(

vib(xi,yi)
>
)

U .

Here, we write the two components of w(x,y) in (1)
as scalar products b(xi,yi)

>U and b(xi,y j)
>V, respec-

tively, with a vector b = (b1(x,y), . . . ,bn(x,y))> of ba-
sis functions and coefficient vectors U = (U1, . . . ,Un)

>

and V = (V1, . . . ,Vn)
>.

Then r is expressed as

r = CV+DU = (C,D) (U,V)> ,

and the definition of the matrices C,D ∈ IRm×n is given
by the element-wise notation above.

For the quadratic energy term E = r>r we obtain

E = (V>,U>)
(

C>C C>D
D>C D>D

) (
V
U

)
=: x>Ax> .

It is obvious that the global minimum E = 0 is attained
at x> = (V>,U>) = 0. This trivial solution, however, is
not the one we are looking for. By adding the additional
constraint ||x||2 = 1 we avoid the trivial solution.

(Note that we are interested only in directions of vec-
tors and not in their magnitude, so there is an infinite
number of feasible solutions which differ only in scale.
Hence, we may restrict the above norm of x to any pos-
itive number.)
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Figure 3: Vector field without (left) and with (right) regularization.

Introducing the Lagrange multiplier λ the minimiza-
tion problem now reads as

E ′ = x>Ax> −λ (x>x−1)→min

The matrix A is symmetric and positive definite, and
we find the minimum by setting the gradient ∇E ′ = 0,
which yields

Ax−λx = 0 ,

and which in turn means that the minimum is attained
for an eigenvector of A. In fact, we are looking for the
eigenvector corresponding to the smallest eigenvalue.

There are efficient numerical methods for solving the
eigenvalue problem, i.e., for computing the smallest
eigenvalue and hence a single eigenvector.

While the dimensions of the matrix A ∈ IR2m×2m can
be rather large — on a N ×N grid we have m = N2

— A is sparse if the basis functions b j(x,y) have local
support which is the case for B-splines. State-of-the
art algorithms exploit the sparsity pattern of the system
matrix [9].

In summary, we compute a parametric vector field
w(x,y) from discrete samples vi by solving an eigen-
value problem. The solution satisfies the condition that
w is as parallel as possible to vectors vi in least-squares
sense.

4.2 Regularization
There may be relatively large parts of the domain,
which do not contain any vector samples. We are aware
of the fact that the approximation method described
above may not be able to “interpolate” meaningful
vectors across such regions. (Instead, the solution to
the eigenvalue problem yields arbitrary vectors of very
small magnitude, see Figure 3 (left).)

This is a well-known effect that depends on the par-
ticular choice of basis functions: roughly speaking, one
cannot expect a contribution from basis functions with-
out having enough samples within their support. For B-
splines, this means the Schoenberg-Whitney conditions
should be satisfied, which is generally not the case in
our setup (see, e.g., [5]) The standard approach to solve
this problem is adding a regularization term, i.e., taking

into account additional constraints usually on smooth-
ness. We penalize the norm of first order partials. The
eigenvalue problem then reads as

(A+αR>R)x−λx = 0 ,

where R>R captures the regularization term, and α > 0
is a small weight. Figure 3 shows the effect of regular-
ization.

4.3 Velocity bias
The formulation as is effectively yields a weighted
least-squares approximation: (2) does not strictly
penalize angles but includes the magnitude of the
samples. For our purpose, such weighting is neither
meaningful nor does it provide better results. There is
no reason, why faster movement should influence the
fitting of the directional component. For this reason, we
normalize all samples such that ||vi|| = 1, i = 1, . . . ,m.
Note that this does not interfere with recovering speed
as a scalar value: this would be second step resulting in
least-squares fitting a scalar field. As we are interested
in vector field topology, speed is currently not of
interest to us.

4.4 Discussion of our setting
The formulation of the problem allows for an arbi-
trary choice of basis functions b j. A natural and well-
established choice are tensor product B-splines. Higher
polynomial degree q yields higher order smoothness,
i.e., Cq−1 continuity, of the bidirectional flow field w
as well as higher order approximation. In our experi-
ments with q = 1,2,3 we found that in fact the simplest
choice q = 1, i.e., a bi-linear function w shows suffi-
ciently good results. At the same time, this is the most
efficient model to evaluate. In some situations we even
observed that higher order smoothness does not capture
“turbulent” regions of the sample set as well, because
due to larger support, more samples with potentially di-
verging directions are taken into account.

Regions without any data, i.e., regions with no ob-
served motion, should be masked out for our appli-
cation, they provide trivial segments. Regularization
generally yields plausible data for such regions and
improves vector field near these segment boundaries.
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Figure 4: Example of a topological skeleton of a vector
field

However, we found that for our purpose the difference
in using or not using a regularization term is not signif-
icant.

5 TOPOLOGY EXTRACTION
In this section we show how to extract the topologi-
cal skeleton of the smooth bidirectional flow field w.
This skeleton provides the segmentation of the image
domain in regions of similar motion.

5.1 Topological skeleton
One of the most important features of a vector field is
its topological skeleton which has been introduced as a
visualization tool in [4]. The topological skeleton of a
2d vector field v(x,y) essentially consists of a collection
of critical points, i.e., v(x,y) = 0 and special stream
lines called separatrices which separate the flow into
areas of different flow behavior.

The attractiveness of the topological skeleton as a vi-
sualization tool lies in the fact that even a complex flow
behavior can be expressed (and visualized) by using
only a limited number of graphical primitives. At the
same time, the topological skeleton yields a segmenta-
tion of the domain.

Helman and Hesselink [4], consider first order criti-
cal points, i.e. critical points with a non-vanishing Jaco-
bian. Based on an eigenvector analysis of the Jacobian
matrix, these critical points are classified into sources,
sinks, centers and saddles. For the description of the
topology, saddle points are of particular interest. In ad-
dition so called boundary switch points [2] may sepa-
rate regions of different inflow/outflow behavior across
the boundary of the flow.

Figure 4 shows an example of a vector field together
with the topological skeleton. For an excellent intro-
duction to vector field topology and related computa-
tional methods we refer to [19].

5.2 Extraction of the topological skeleton
For extracting the topological skeleton, we proceed in
two steps. First, we find critical points. Then we in-

tegrate streamlines staring from critical points to con-
struct separatrices and hence segment boundaries.

Finding critical points.
We consider a bidirectional flow which is essentially a
2nd order symmetric tensor field T(x,y) where

T =

(
w1(x,y)2 w1(x,y)w2(x,y)

w1(x,y)w2(x,y) w2(x,y,)2

)
,

with w(x,y) = (w1(x,y),w2(x,y))>.

Figure 5: Cell subdivision into triangles

Then critical points (or degenerate points) are points
(xc,yc) in the domain where the eigenvalues λ1 and λ2
of T(xc,yc) are equal and hence we have

T(xc,yc) = Q
(

λ 0
0 λ

)
Q> =

(
λ 0
0 λ

)
,

where λ = λ1 = λ2 [3, 18]. This means, in degenerate
points any vector is an eigenvector to T. This is valid in
any coordinate system Q>.

Such points are characterized by the two conditions{
T11(xc,yc)−T22(xc,yc) = 0
T12(xc,yc) = 0

Finding critical points corresponds to finding roots of
the two components of the above equations.

Finally, critical points are classified in wedges or tri-
sectors based on certain partials:

a =
∂

∂x
(T11−T22), b =

∂

∂y
(T11−T22),

c =
∂

∂x
T12, d =

∂

∂y
T12,

(see [3]), with δ = ab− cd, for a wedge δ > 0 and for
a trisector: δ < 0.

The detection of critical points consists essentially of
a numerical root finding algorithm. As we are not inter-
ested in finding higher order critical points, we simplify
the setting such that elements of the tensor field T are
interpolated independently.

Even more, we prefer linear interpolation to bi-linear
interpolation within grid cells (or generally higher or-
der interpolation). For linear interpolation we subdi-
vide each quad cell uniformly into either two (inserting
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Figure 6: Detected degenerate points for linear (left) and bilinear (right) interpolation.

the diagonal) or four (inserting the quad’s barycenter,
Figure 5) triangles and formulate the above condition
in terms of barycentric coordinates. This is due to two
reasons: firstly, we have to consider a lower polynomial
degree for root finding, which makes this task more ef-
ficient. And secondly, the number of detected critical
points decreases, and we find exactly one or no (first
order) critical point within each linear piece.

Figure 6 compares amount and distribution of criti-
cal points for linear and bi-linear interpolation. In this
example, we detect 62 and 145 degenerate points for
linear interpolation splitting each cell into two or four
(as shown in the Figure 5) triangles, respectively. Bi-
linear interpolation yields 228 degenerate points. For
our results we use linear interpolation and 1 : 4 subdi-
vision of cells as this constitutes a good compromise
between efficiency and finding all relevant points.

Finding separatrices.

Separatrices are streamlines which emanate from de-
generate points in two (wedge) or three (trisector) di-
rections. We use a 4th order Runge-Kutta method for
numerical integration on w. The standard algorithm for
vector field integration is modified such that the orien-
tation is chosen at the starting point and kept consistent
during integration.

6 RESULTS
We tested our approach with two real-world data sets
where motion of vehicles and motion of human sub-
jects were captured, respectively (see also [13]). The
video sensor is fixed for both setups and provides a per-
spective view of the scenes (Figure 8 and 10, right).

The vehicle data was acquired over a 24 hour pe-
riod. Vehicle motion is more homogeneous in this case.
Humans were captured in the area where many people
walk in different directions over a 30 minutes time in-
terval.

The motion data is rather complex: there are several
obstacles, and persons can move freely around them, in
general. However, we expect most motion along several

paths though the region. Computations were performed
on 56× 56 (vehicles) and 53× 53 (human subjects)
grids, respectively. Our current, non-optimized imple-
mentation requires approximately 5 seconds for com-
putation of each, the flow field and the critical points.
Integration of separatrices takes about 20 seconds.

Figure 7 (left) shows the raw data of vehicle move-
ments as acquired from the sensor. The least-squares
approximated bidirectional vector field is shown in Fig-
ure 7 (right). There are homogeneous regions in the
scattered raw data, such as the region near the gateway,
which results in homogeneous vector field regions. Re-
gions of less homogeneous motion, e.g, where particu-
lar trajectories intersected, are less homogeneous in the
bidirectional vector field. Regions without motion data
yield zero vectors in the vector field. This shows effec-
tiveness of the bidirectional vector field model and its
generation.

Figure 8 visualizes the extracted tensor field topol-
ogy for the moving vehicles on the grid (left) and as
an overlay on the perspective image (right). Regions
of similar motion are well-separated, and this example
shows nicely that the topological skeleton (black) con-
veys the properties of the vector field very well with
only a limited number of primitives. There are rather
smooth regions where vehicles enter the scene at the
gateway. Fundamental motions such as vehicles turn-
ing are present. There are also several regions with high
amount of degenerate points: in fact, these regions rep-
resent critical regions within the domain. The white
circle marks an area with a barrier that lets the cars in
and out. The region near the trash cans marked by the
black circle is highly frequented by both, vehicles and
human subjects.

The motion of human subjects shown in Figure 9 is
more complex, hence the resulting vector field is less
homogeneous. Figure 10 visualizes topology of the
motion and makes it straightforward to detect regions
with no motion, homogeneous and less homogeneous
motion. The white circle marks a region where differ-
ent directions of motion intersect, and hence this region
shows a rather complex behavior. Note that such arbi-
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Figure 7: Raw data (left) and generated vector field (right)

Figure 8: Topology of vehicles motion trajectories

trary intersections cannot be represented accurately by
the underlying tensor field. In fact the whole region
should be represented by a single (higher order) critical
point. Such interpretation of the results and classifica-
tion is left for future work.

In summary, we observe that the topological skeleton
provides a meaningful segmentation of motion within
the scene and give a global representation of the moni-
tored area.

7 CONCLUSIONS
We demonstrated how methods for analyzing flow
fields can be applied to analysis of motion data. In
order to achieve this, we first approximate scattered
velocity data with a smooth bidirectional vector field,
i.e., essentially with a tensor field. Then we extract its
topological structure for segmentation of the domain
into regions of similar motion. Topological skeleton is
an appropriate global representation of typical motions
in a monitored area. Our results prove the efficiency of
this approach.

The output of our method may serve as a basis for
further analysis. Assume that the extracted topological
skeleton reflects a typical or normal condition for the
observed region. The change of the skeleton, i.e. the
deviation from normal movements can then be quickly

identified. Another application of our method is classi-
fication of individual movements or extraction of basic
movements. This requires additional object tracking.

For future work we plan to extract fundamental mo-
tions of our data which enables on-the-fly classifica-
tion of trajectories in categories of similar motion. At
the same time newly acquired motion should be inte-
grated in the current segmentation, i.e. real-time update
of topological skeleton. Conversely, such classification
could be used to fit flow fields for every motion category
which in turn can be used to improve the segmentation.
It might be useful to simplify and/or smooth the topo-
logical skeletons, especially when data from multiple
sensors or data from a moving sensor are combined.

An ultimate goal is to infer specific actions from mo-
tion data in order to identify non-admissible actions in
any kind of security area.
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