

A Multi-Cellular Orthographic Projection Approach to

Image-Based Rendering

Carlos Saraiva

IST/INESC-ID

carlos.saraiva@ist.utl.pt

João Fradinho Oliveira

IST/INESC-ID
Rua Alves Redol, 9
1000-029 Lisboa

joao.oliveira@vimmi.inesc-id.pt

João Madeiras Pereira

IST/INESC-ID

jap@inesc.pt

ABSTRACT
Image-based rendering (IBR) techniques take the approach of rendering new images based on existing ones,

effectively separating the rendering complexity from the geometric complexity of the scene they represent. With

the increasing complexity of scenes currently created, these techniques have gained renewed interest. This paper

presents a multi-cellular IBR approach, which uses orthographic rather than perspective projected pre-computed

images. Specifically we extend our single cell orthographically projected IBR approach to a multi-cell system,

and show how the pixel error can be further reduced with the use of smaller and more numerous cells.

Keywords
Image-based rendering, orthographic projection, multi-cellular, real-time, impostors

1. INTRODUCTION
Despite the fast advance of hardware capabilities, the

complexity of the scenes to render has also grown

extremely fast. Even with today’s modern hardware,

complex scenes cannot be rendered in real-time by

brute-force methods.

This introduces the need of simplifying the scene to

be rendered, reducing its inherent complexity to

levels that can be rendered faster, with as little loss in

visual quality as possible.

While other efficient techniques have been described,

to address the problem of massive data set viewing,

they present some problems: they can be sensitive to

the type of scene (some techniques don’t deal well

with CAD, others don’t deal well with complex

interiors, etc); some require manual intervention

(selecting areas of interest) or have navigational

constraints (i.e. the camera can only be placed in

certain regions). As such, this paper presents an

experiment to develop a method that does not suffer

the aforementioned problems.

In our approach, we opted for a class of techniques

labeled image-based rendering. This class of

techniques strives to render the scene from a certain

viewpoint given renders of the scene from other

viewpoints. From these other renders, information of

the scene can be extracted and reprojected into the

new viewpoint. In previous work, Saraiva et al.

presented a single cell IBR approach based on

perspective projection of pre-computed orthographic

projected images [Saraiva09] and have shown that

the system created less pixel error than perspective

projecting perspective projected images (see Figure 1

and 2). This gives the advantage of dealing well with

any type of scene as long as it is renderable.

Figure 1. The Bunny and David models. The left

shows the original model triangle rendering, the

middle is with a texture generated with an

orthographic projection and right shows with the

texture generated with a perspective projection.

In this article we extend the system to a multi-cell

IBR approach and show how the error is further redu-

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2010 FULL Papers 221

Figure 2. Single cell IBR - Pixel Error: For each

increasing relative distance to the model, a series

of images were created and subtracted from

perspective triangle rendering with a FOV of 40°.

Top: the sum of all pixel differences, where pdif is

the sum of absolute differences of each R,G,B

components between both images. Bottom: the

total error divided by the number of foreground

bounding rectangle pixels.

ced with more cells using our system. In section 2 we

review previous work. In section 3 we present the

outline of the multicell system. In section 4 we

address implementation issues specific with the

reprojection of multi-cell orthographic images. In

section 5 we present results. Finally, we draw

conclusions in section 6 we conclude and outline

future work in section 7.

2. PREVIOUS WORK
In the category of image-based rendering techniques,

many methods can be considered, ranging from those

that use no geometry at all (like resampling a set of

images given the viewing parameters [McMillan95a]

to more hybrid approaches that use both geometry

and images to represent the underlying scene

[Jeschke02].

It is also important to note that image-based

rendering can be more useful when dealing with

certain types of scenes which are not handled so well

with geometric level of detail techniques. An example

of such a scenario is the representation of a model

constituted by “rough” curves (like a fractal): too

much triangle reduction and what is supposed to be a

curve can become noticeably linear; too small of a

reduction can result in a great number of triangles to

draw. Most image-based techniques do not suffer

from this problem, as they are independent of the

scene.

The techniques can also be classified by how the

images are created: some use a predetermined set of

possible viewing positions, creating images that

represent more distant zones in the scene [Sajadi09];

others create images of objects or subvolumes of the

scene and render the scene by representing each of

the objects or subvolumes [Schaufler98].

This last category has the advantage that the scene

can be represented from any viewpoint and not only a

predetermined set. One possible approach useful for

viewing models from an outside point of view is to

render the model from a series of viewpoints and use

those renders as textures placed into billboards, as

seen in [Aliaga99].

In [Saraiva09], the camera positions for the

generation of the impostors are chosen as the center

of the triangles on an n-time subdivided icosahedron,

enclosing the object (as seen in Figure 3, left), and at

a distance (when using perspective) of the bounding

sphere radius divided by the sine of half the field of

view angle. For orthographic projection no

displacement is made.

Figure 3. The camera positions; a generated

texture; after cropping the texture.

Without correction, this technique can introduce

distortion, since the projection of the scene into a

plane done during the texture generation can differ

from the projection used while viewing the scene

with billboards.

This correction is performed by reprojecting an

image generated from known viewing conditions into

another viewing condition. This reprojection is a

function that maps a texel to a number of pixels in the

final image. However, several texels can be mapped

onto a single pixel, so the texel that has the closest

projection is used. Some techniques employ a z-

buffer to this end; others are based on analysis of the

image [McMillan95b].

Some methods of correction are CPU-based, where

each texel in the original image is simply reprojected

into the new viewpoint [McMillan97]. While highly

parallel in nature, this kind of technique is not trivial

WSCG 2010 FULL Papers 222

to reproduce in GPU using current graphical APIs,

such as OpenGL or DirectX.

In order to exploit the capabilities of modern GPUs,

the reverse is usually attempted: finding which source

element is the one used in the destination element and

sampling it. This problem is not trivial to solve since

there is the possibility of the existence of multiple

solutions, therefore, a search must be performed for

accurate calculation of the source method to use.

These GPU-based methods change the sampled

texture coordinate based on a structure that contains

the displacement relative to the billboard’s normal,

typically a texture called a height map (like seen in

[Kaneko01]).

Some techniques compensate for this displacement by

applying an offset to the texture coordinate based on

the view angle relative to the billboard and the height

of the billboard at that point [Kaneko01]. While fast,

this technique is not accurate and can present

incorrect results.

Other techniques strive for absolute correctness, at

the cost of performance. Such techniques typically

perform a short-distance raycast on the height map,

considering points by an increasing order of distance

to the camera. If no solutions are skipped due to a

large step size, the first solution found is the correct

one [Tatarchuk06][Policarpo05]. This raycast process

can also be sped up with a pre-computed acceleration

structure, as seen in [Baboud06] and [Policarpo07].

3. MULTI-CELL IBR

3.1 Pre-processing
As a first step, the scene is divided into an hierarchy

of regular cubic volumes. This can be done by

calculating the bounding box of the scene, making it

cubic and applying the octree algorithm [Jackins80]

to that bounding box, which serves as the root node

of the octree. The maximum depth of the octree

should be chosen based on the available memory

resources, as discussed later.

The second step pre-computes a series of impostor

textures for each of these nodes. These impostors are

generated using an orthographic projection, since

they were found to have the least overall error. The

method of generating these impostor textures is

similar to the procedure of computing images in the

single cell approach; the subdivided icosahedron used

for calculating the camera positions is centered in the

middle of the octree cell (instead of the centroid of

the scene) which is circumscribed by the bounding

sphere of the cell.

3.2 Runtime
The octree is traversed and nodes that are not framed

by the camera can be culled. If a node that occupies

an amount of screen space smaller than a certain

threshold is reached, the impostor is used and the

traversal stops. At close distances, for full detail, the

original model triangle rendering could be used.

However, if the choice to not use impostors was only

based on distance, that would introduce problems,

since then the approach would suffer from high

polygonal densities (i.e. areas of the scene that have

an extremely high polygon count). Therefore, the

nodes that are indeed close enough to be represented

geometrically are sorted by priority (distance to the

camera) and rendered from the highest priority to the

least, until a certain triangle budget is met. All

remaining nodes are represented with the impostor

with the smallest angle to the view direction.

3.3 Preliminary analysis
By using this approach of creating a representation of

the cell as if viewed from the outside as in

[Rusinkiewicz00], one gains freedom of navigation,

since the camera no longer has to be constrained

inside a cell. Also, the algorithm is almost automatic;

the only manual intervention needed is setting

parameters appropriate to the scene.

Multi-cell IBR solutions, however, are likely to

occupy large amounts of disk space. This is accepted

due to the relative low cost of disk space in the

current days. Also, the algorithm can have an upper

limit of disk space usage imposed to it (with a

possible loss of performance if the limit is too small

for the scene complexity): one can sort the nodes by

the amount of primitives they contain. Then, the

image generation can be applied to the nodes with the

greatest number of primitives, in order, until a disk

space budget is reached. It should also be noted that

the method should not be used solely with impostors.

It uses them to remove most of the scene complexity,

but it should be complemented with other techniques

(like geometric LODs, for example). However in

[Saraiva09] we were somewhat surprised at the visual

quality that was possible up close when examining

3D models with the reprojection of orthographic

images, hence in this work we did not integrate LOD

techniques, and aimed at improving the visual quality

of less computationally intensive techniques such as

IBR. Indeed in section 5 (results) we show that the

combination of smaller IBR cells allows one to

achieve this result.

3.4 Summary of steps
In pre-process: 1 – read geometry; 2 – create octree;

3 – calculate camera positions using subdivided

icosahedron; 4 – texture creation and cropping.

At runtime: 1 – frustum culling; 2 – node sorting

based on distance; 3 – for each node choose image

with smallest angle to view direction.

WSCG 2010 FULL Papers 223

4. MULTI-CELL IBR

IMPLEMENTATION ISSUES
In this section we address implementations issues that

arise when assembling multiple cell images of

orthographic projected images. In section 4.1 we

present the problem, in section 4.2 we consider a run-

time solution using raycasting, and in section 4.3 our

adopted solution.

4.1 Inter cell artifacts
A problem that arose on the multi-cellular approach

(that was not present in the single-cell approach of

[Saraiva09]) was the presence of “black line”

artifacts on the model. An example of this artifact can

be seen in Fig 4, which shows vertical and horizontal

black lines spanning the Batalha monastery model.

Figure 4. The incorrect sampling problem. The

horizontal and vertical black lines artifact visible

in the Batalha model (left).

These black lines are actually the edges of the octree

node. This is due to the fact that since no correction

was performed, the coordinates used to sample the

texture were too far away from the center. An

illustration of what occurs is depicted in Fig.4 (right).

In the image, the black box represents the region of

space delimited by the octree node, and the red and

green lines represent the mesh. The brown line

represents the billboard plane and the blue line

represents a ray from the camera into the volume. If it

was done with the original model triangle rendering,

the pixel would be colored green. However, since the

geometry in the region is effectively flattened by the

billboard process, the texture is sampled outside of

the region, which is transparent (or non-existent, if it

falls outside the billboard), generating the “black

line” artifact, where one is actually seeing the

background.

This error lessens as the distance to the region

increases, since the rays become more and more

parallel and, therefore, closer to the orthographic

projection that was used to create the image. In

practice, one can limit the maximum amount of error

in the sampled coordinates by choosing a large

enough distance to the billboard.

Attempts were made to correct this distortion. Like

previously referred, this sort of correction can be

done via CPU (highly undesirable) or the GPU.

Attempts to minimize the error with small amounts of

computation failed, as all solutions eventually

degenerated to something similar to a raycast

(presented in the next section).

4.2 The impracticality of raycast solution
Raycasting can be impractical, since it is a somewhat

expensive operation, even in modern GPUs when

using acceleration structures. On ideal conditions, the

performance should depend only on the resolution of

the display. However, this proved not to be true, due

to the possibility of overdraw and limitations in the

current graphics APIs.

Since we have our space divided into regions, without

having any sort of occlusion information, we have to

render all the regions (at least those that pass the

frustum culling operation). In ideal conditions, only

one ray would need to be cast per pixel on the screen.

Since we desire the first intersection for that pixel,

one could think a way to minimize the number of

raycasts would be to order the raycasts for that pixel

by sub-volume proximity to the camera. Once a ray

hit in a region, that pixel would no longer need to

have further raycasts performed.

However, the problem lies in how one can determine

if that particular pixel has already seen an

intersection. Usually to limit this sort of overdraw,

two techniques are used: depth-testing and stencil-

testing. One could program the GPU to reject

fragments with depth greater than the corresponding

fragment on the depth buffer. Something similar

applies to the stencil tests. This does not solve the

problem, though, since these tests are performed after

the pixel/fragment shader (and raycast) is run, hence

the gain would be nullified since the objective is to

not do the raycast at all.

To lessen this effect (discarding fragments after an

expensive pixel shader is run), graphics card

manufacturers have applied a technique called Early-

Z. This technique does the depth buffer test after the

vertex shader is run, but before the pixel shader.

Therefore, it lessens the number of fragments that

have to go through a possibly expensive pixel

shading.

This technique, however, is not part of the typical

graphics pipeline, and so is not adjustable via an API.

As such, the hardware can only apply this technique

if it is sure that the final result is the same. This can

only be done if one knows the depth of the fragment

before the pixel shader is run. On most applications,

this condition is verified; the depth of the fragment is

the result of the interpolation of vertex depths.

WSCG 2010 FULL Papers 224

By performing a raycast, we find out the correct

depth of the fragment and can use that correct depth.

But by doing so, one effectively is disabling Early-Z

and increasing the overdraw rate significantly.

Since one needs to know the depth of the fragment in

the framebuffer while executing the pixel shader and

given that one cannot read and write into the same

texture (or a value in a memory array) on a single

pass, the use of shaders would not solve the problem.

It is possible that more general-purpose APIs (like

CUDA) provide a solution, but that goes beyond the

purpose of the paper, which is to determine if the

approach is viable or if it should be simply discarded.

The problem described, however, has a relatively

simple workaround: although one might not know the

exact depth of the fragment, one can usually bound

that depth between two extreme values. If the Early-Z

test fails on both extreme values, any value in

between would also fail and the fragment could be

discarded. This is not yet possible, however, due to

limitations of current graphical APIs such as

Direct3D and OpenGL, but is subject to change in the

future. Even if we don’t change the depth of the

fragment (but correct the sampling coordinates),

problems can still arise. Without correct depth,

interpenetrating objects can display artifacts and

techniques that depend on correct depth (like shadow

mapping) can become no longer viable. As such, we

chose not to correct neither the depth nor the

coordinates, to see the viability of the technique with

no runtime correction performed at all.

4.3 Cell growing solution
As one can observe, the lines seen due to the artifact

are very thin, since the coordinates are only slightly

wrong (with an error of one texel, for example). In

practice this problem only arises when viewing an

object at very close distances.

We found a solution that works well in practice.

Instead of using only geometry inside the region to

generate the images for the billboard, one can also

use the surrounding geometry, which in essence “fills

the gap”. An illustration of this can be seen in Fig. 6.

Figure 6. Filling the gap. The thick lines delimit

the cell considered. In the left, the geometry is

only considered in the area inside the cell (gray),

while on the right, the surroundings are also

considered.

Although visually incorrect, it tends to be an effective

solution since the gap is generally small and color

changes are usually smooth enough. To this end, the

triangles considered to create the billboards were not

only the ones in the cubic volume but the ones that

intersect that cubic volume’s bounding sphere. In

Figure 7 we see a render of the same model after this

correction is applied.

Figure 7. The “black line” artifact invisible, by

filling the gap with surrounding geometry.

5. RESULTS
Figure 8 shows that the visual error associated with

single cell orthographic projected IBR can be

reduced by using more cells.

The test was done with the David model (8 million

triangles), using an octree of depth 4, for a total of

218 cells (empty cells are ignored). The positions

were chosen with a twice-divided icosahedron, which

results in 320 images per cell. At a resolution of

128×128, after cropping, the average size ended up at

11MB per cell (2.41GB total). No compression was

implemented, however a fast ZIP compression (using

the deflate compression method [Deutsch96], with a

32KB dictionary and a word size of 32) reduced that

size to less than a fifth (~18%). A slower and better

compression further halved that size. This high

compressibility, along with the low cost of disk space

on the current days, makes the uncompressed large

disk space occupation more acceptable.

Figure 8. The David model in a single cell (left)

and multi cell (right) representation. The top

shows the render, the bottom shows the difference

to the original model triangle rendering.

WSCG 2010 FULL Papers 225

To test the effectiveness of this multi-cellular

approach in solving the problem seen in the David

and Batalha models, due to their large range of

depths at certain angles, the camera was placed so

that the vertical component was greater (to maximize

the error) while still being able to see most of the

model, at a relative distance of 1. The result can be

seen in Figures 9-13 (cropped to fit the content).

Figure 9. The wireframes of the 218 nodes.

Figure 10. The orthographic impostor approach,

from another angle.

Figure 11. From the same angle as figure 10, with

the original model triangle rendering.

Figure 12. The difference between figures 10&11.

Figure 13. The outline of the 218 billboards used

to generate figure 10.

As one can see, this multi-cellular approach indeed

lessened the problem of perspective error. This is due

to two facts:

• since there are more cells, each cell occupies

a smaller arc in the field of view, bringing it

closer to the “original” orthographic

projection, the difference with perspective

multi-cell IBR can be seen in Figure 14.

• since the cells are smaller, the available

gamut of depths is also reduced and so the

flattening of the mesh does not change the

depth significantly.

In terms of performance, the transfer of texture

memory to the graphics card is fast enough to give

the viewer 100+ FPS with a C++ implementation

using OpenGL on an Intel E7200 with 2GB of main

memory and a NVIDIA GeForce 8800GT. To stress

the bandwidth limitations between the graphics card

and main memory, the graphics card constantly

deleted the textures after each render, requiring it to

be reuploaded. A problem arises however in disk

transfer bandwidth. When the camera rotates around

the model too quickly, one texture for each of the 218

cells has to be loaded from disk, bringing

performance down to about an average of 5FPS. This

problem can be alleviated by caching [Yoon05].

It is hypothesized that this bandwidth problem could

be greatly lessened if the textures were compressed

and if they were prefetched (like TetraPuzzles

[Cignoni04] does). We also note that when rendering

triangles over IBR, fewer textures are needed hence

further speeding up performance.

In terms of image quality, the lack of correction still

brings some visual artifacts, as can be seen in the left

wrist area in Figure 10 (with the difference clearly

shown in Figure 12). This might not pose a problem,

however: as the distance increases, these artifacts get

smaller (in number and size), eventually making them

unnoticeable. Since the technique should be

complemented by some other method for nearby

regions, these areas of larger distortion are replaced

by correct pixels. An example of the triangle

WSCG 2010 FULL Papers 226

Figure 14. Multi-cell IBR (50cells with 320 images each). From left to right, perspective projection with

60° FOV of: Orthographic projected cells, Perspective projected cells of 40°, 60° and 90° respectively.

representation used at nodes where the center goes

below a certain distance threshold to the camera (with

impostors used in other cases) can be seen in Fig. 15.

Figure 15. The impostor solution with and without

triangles drawn over (right and left, respectively).

Notice the artifact on the left wrist disappears.

Figures 16-17 show the David model from another

angle, but twice as close as the distance in Figures 9-

13.

Figure 16. The David model, from yet another

angle, but at a relative distance of 0.5 (impostor

on the left and original model triangle rendering

on the right).

Figure 17. The difference between the two

representations in figure 16.

6. CONCLUSIONS
In this paper, an experiment on the usage of simple

multiple cell impostors (billboards) was described, in

order to determine the feasibility of such a solution

for real-time rendering of massive data sets. We have

shown that with more cells the visual error is reduced

when compared to single cell approaches.

The solution implemented, as described, possesses

some potentially great limitations: large use of disk

space, bandwidth problems when the camera moves

quickly, at close distances visual artifacts can become

noticeable. However, being an image-based rendering

approach, it also possesses one great quality: the

performance of a cell is independent of the number of

primitives it contains.

Some of the limitations can be lessened: disk space

usage and bandwidth issues can be lessened by the

use of compression and caching. Other issues, like

visual artifacts at short distances are not so easy to

correct, requiring a significant amount of

computational power (whether in CPU or GPU).

However, if we limit the use of impostors to large

distances, the bandwidth and artifact problems are

greatly reduced: if an impostor is far away, one would

have to move the camera at a very high speed in order

to force a large number of texture loads from disk.

Also, at great distances the visual artifacts are

minimal or non-existing, since the camera “rays” are

nearly parallel, like the orthographic projection which

gave origin to the image used on the billboard.

We have also concluded that for a multi-cell

approach, an orthographic projection produces less

error than a perspective projection, as visible in

Figure 14.

7. FUTURE WORK
In terms of future work, there are quite a few avenues

of possible improvement. In no particular order:

• implementation and analysis of the effects of

compression;

• implementation of a caching mechanism;

WSCG 2010 FULL Papers 227

• researching and implementing some form of

correction that is less computationally

expensive

• implementing a current form of correction

while exploiting future new capabilities

given by APIs, like the range-limited Early-

Z mentioned;

• integrate a complementary method to the

solution described in order to see how well

the technique performs in a more ideal

situation;

• research some more compact representation

of the contents of the cell (like the view-

dependent voxel in Far Voxels [Gobbetti08].

8. ACKNOWLEDGMENTS
We would like to thank INESC-ID and its VIMMI

research group for the resources made available in the

writing of this paper.

We would also like to thank Instituto Português do

Património Arquitectónico (IPPAR), now

incorporated in Instituto de Gestão do Património

Arquitectónico e Arqueológico (IGESPAR) and

“Artescan, Tridimensional Digitization” for the

scanned model of the Batalha monastery. For the

David scanned model, we also thank the Stanford

University. The work presented in this paper was

funded by the Portuguese Foundation for Science and

Technology (FCT, which we also thank), VIZIR

project grant (PTDC/EIA/66655/2006).

9. REFERENCES
[Aliaga99] Aliaga, D. Automatically reducing and

bounding geometric complexity by using images.

PhD thesis, University of North Carolina at

Chapel Hill, 1999.

[Baboud06] Baboud, L., Décoret, X. Rendering

geometry with relief textures. Proceedings of

Graphics Interface 2006, 2006, pages 195-201.

[Cignoni04] Cignoni, P., Ganovelli, F. et al. Adaptive

TetraPuzzles – efficient out-of-core construction

and visualization of gigantic polygonal models.

SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers,

2004, 796-803.

[Gobbetti08] Gobbetti, E., Kasik, D. et al. Technical

strategies for massive model visualization. SPM

’08: Proceedings of the 2008 ACM symposium n

Solid and physical modeling, 2008, 405-415.

[Jackins80] Jackins, C., Tanimoto, S. Oct-trees and

their use in representing three-dimensional

objects. Computer Graphics and Image

Processing, 1980, 249-270.

[Jeschke02] Jeschke, S., Wimmer, M., Schuman, H.

Layered environment-map impostors for arbitrary

scenes. Proc. of Graphic Interface, 2002, 1-8.

[Kaneko01] Kaneko, T. Takahei, T. et al. Detailed

Shape Representation with Parallax Mapping.

Proceedings of the ICAT 2001, 2001, 205-208.

[McMillan95a] McMillan, L., Bishop, G. Plenoptic

Modeling: An Image-Based Rendering System.

Proceedings of the 22
nd
 annual conference on

Computer graphics and interactive techniques,

1995, 39-46.

[McMillan95b] McMillan, L., Bishop, G. Head-

tracked stereoscopic display using image warping.

Proceedings of SPIE, 2409 (1995), 21-30.

[McMillan97] McMillan, L. An image-based

approach to three-dimensional computer graphics.

PhD thesis, Universityof North Carolina at Chapel

Hill, 1997.

[Policarpo05] Policarpo, F., Oliveira, M. et. al. Real-

time relief mapping on arbitrary polygonal

surfaces. Proceedings of the symposium on

Interactive 3D graphics and games 2005,155-162.

[Policarpo07] Policarpo, F., Oliveira, M. Relaxed

cone stepping for relief mapping. 2007,GPU

Gems3.

[Rusinkiewicz00] Rusinkiewicz, S., Levoy, M.

Qsplat: a multiresolution point rendering system

for large meshes. SIGGRAPH ’00: Proceedings of

the 27th annual conference on Computer graphics

and interactive techniques, 2000, 343-352.

[Sajadi09] Sajadi, B., Huang, Y. et al. A Novel Page-

Based Data Structure for Interactive

Walkthroughs. Proceedings of the symposium on

Interactive 3D graphics and games, 2009, 23-29.

[Saraiva09] Saraiva, C., Oliveira, J., Pereira, J.,

Araújo, B. A Comparison of Orthographic and

Perspecive Projections in the Generation of

Textures for Billboards. Proceedings of Encontro

Português de Computação Gráfica, (17), 2009.

[Schaufler98] Schaufler, G. Image-based

representation by layered impostors. Proceedings

of the ACM symposium on Virtual reality

software and technology, 1998, 99-104.

[Tatarchuk06] Tatarchuk, N. Dynamic Parallax

Occlusion Mapping with Approximate Soft

Shadows. Proceedings of the ACM SIGGRAPH

Symposium on Interactive 3D Graphics and

Games, 2006, 63-69.

[Yoon05] Yoon, S.-E. Interactive visualization and

collision detection using dynamic simplification

and cache-coherent layouts. PhD thesis,

University of North Carolina at Chapel Hill,2005.

WSCG 2010 FULL Papers 228

	!_Full.pdf
	F67-full.pdf

