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ABSTRACT 
Image-based rendering (IBR) techniques take the approach of rendering new images based on existing ones, 

effectively separating the rendering complexity from the geometric complexity of the scene they represent. With 

the increasing complexity of scenes currently created, these techniques have gained renewed interest. This paper 

presents a multi-cellular IBR approach, which uses orthographic rather than perspective projected pre-computed 

images. Specifically we extend our single cell orthographically projected IBR approach to a multi-cell system, 

and show how the pixel error can be further reduced with the use of smaller and more numerous cells. 
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1. INTRODUCTION 
Despite the fast advance of hardware capabilities, the 

complexity of the scenes to render has also grown 

extremely fast. Even with today’s modern hardware, 

complex scenes cannot be rendered in real-time by 

brute-force methods. 

This introduces the need of simplifying the scene to 

be rendered, reducing its inherent complexity to 

levels that can be rendered faster, with as little loss in 

visual quality as possible. 

While other efficient techniques have been described, 

to address the problem of massive data set viewing, 

they present some problems: they can be sensitive to 

the type of scene (some techniques don’t deal well 

with CAD, others don’t deal well with complex 

interiors, etc); some require manual intervention 

(selecting areas of interest) or have navigational 

constraints (i.e. the camera can only be placed in 

certain regions). As such, this paper presents an 

experiment to develop a method that does not suffer 

the aforementioned problems. 

 

In our approach, we opted for a class of techniques 

labeled image-based rendering. This class of 

techniques strives to render the scene from a certain 

viewpoint given renders of the scene from other 

viewpoints. From these other renders, information of 

the scene can be extracted and reprojected into the 

new viewpoint. In previous work, Saraiva et al. 

presented a single cell IBR approach based on 

perspective projection of pre-computed orthographic 

projected images [Saraiva09] and have shown that 

the system created less pixel error than perspective 

projecting perspective projected images (see Figure 1 

and 2 ). This gives the advantage of dealing well with 

any type of scene as long as it is renderable. 

 

Figure 1. The Bunny and David models. The left 

shows the original model triangle rendering, the 

middle is with a texture generated with an 

orthographic projection and right shows with the 

texture generated with a perspective projection. 

In this article we extend the system to a multi-cell 

IBR approach and show how the error is further redu- 
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Figure 2. Single cell IBR - Pixel Error: For each 

increasing relative distance to the model, a series 

of images were created and subtracted from 

perspective triangle rendering with a FOV of 40°. 

Top: the sum of all pixel differences, where pdif is 

the sum of absolute differences of each R,G,B 

components between both images. Bottom: the 

total error divided by the number of foreground 

bounding rectangle pixels. 

ced with more cells using our system. In section 2 we 

review previous work. In section 3 we present the 

outline of the multicell system. In section 4 we 

address implementation issues specific with the 

reprojection of multi-cell orthographic images. In 

section 5 we present results. Finally, we draw 

conclusions in section 6 we conclude and outline 

future work in section 7. 

2. PREVIOUS WORK 
In the category of image-based rendering techniques, 

many methods can be considered, ranging from those 

that use no geometry at all (like resampling a set of 

images given the viewing parameters [McMillan95a] 

to more hybrid approaches that use both geometry 

and images to represent the underlying scene 

[Jeschke02]. 

It is also important to note that image-based 

rendering can be more useful when dealing with 

certain types of scenes which are not handled so well 

with geometric level of detail techniques. An example 

of such a scenario is the representation of a model 

constituted by “rough” curves (like a fractal): too 

much triangle reduction and what is supposed to be a 

curve can become noticeably linear; too small of a 

reduction can result in a great number of triangles to 

draw. Most image-based techniques do not suffer 

from this problem, as they are independent of the 

scene. 

The techniques can also be classified by how the 

images are created: some use a predetermined set of 

possible viewing positions, creating images that 

represent more distant zones in the scene [Sajadi09]; 

others create images of objects or subvolumes of the 

scene and render the scene by representing each of 

the objects or subvolumes [Schaufler98]. 

This last category has the advantage that the scene 

can be represented from any viewpoint and not only a 

predetermined set. One possible approach useful for 

viewing models from an outside point of view is to 

render the model from a series of viewpoints and use 

those renders as textures placed into billboards, as 

seen in [Aliaga99]. 

In [Saraiva09], the camera positions for the 

generation of the impostors are chosen as the center 

of the triangles on an n-time subdivided icosahedron, 

enclosing the object (as seen in Figure 3, left), and at 

a distance (when using perspective) of the bounding 

sphere radius divided by the sine of half the field of 

view angle. For orthographic projection no 

displacement is made. 

 

Figure 3. The camera positions; a generated 

texture; after cropping the texture. 

Without correction, this technique can introduce 

distortion, since the projection of the scene into a 

plane done during the texture generation can differ 

from the projection used while viewing the scene 

with billboards. 

This correction is performed by reprojecting an 

image generated from known viewing conditions into 

another viewing condition. This reprojection is a 

function that maps a texel to a number of pixels in the 

final image. However, several texels can be mapped 

onto a single pixel, so the texel that has the closest 

projection is used. Some techniques employ a z-

buffer to this end; others are based on analysis of the 

image [McMillan95b]. 

Some methods of correction are CPU-based, where 

each texel in the original image is simply reprojected 

into the new viewpoint [McMillan97]. While highly 

parallel in nature, this kind of technique is not trivial 
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to reproduce in GPU using current graphical APIs, 

such as OpenGL or DirectX. 

In order to exploit the capabilities of modern GPUs, 

the reverse is usually attempted: finding which source 

element is the one used in the destination element and 

sampling it. This problem is not trivial to solve since 

there is the possibility of the existence of multiple 

solutions, therefore, a search must be performed for 

accurate calculation of the source method to use. 

These GPU-based methods change the sampled 

texture coordinate based on a structure that contains 

the displacement relative to the billboard’s normal, 

typically a texture called a height map (like seen in 

[Kaneko01]). 

Some techniques compensate for this displacement by 

applying an offset to the texture coordinate based on 

the view angle relative to the billboard and the height 

of the billboard at that point [Kaneko01]. While fast, 

this technique is not accurate and can present 

incorrect results. 

Other techniques strive for absolute correctness, at 

the cost of performance. Such techniques typically 

perform a short-distance raycast on the height map, 

considering points by an increasing order of distance 

to the camera. If no solutions are skipped due to a 

large step size, the first solution found is the correct 

one [Tatarchuk06][Policarpo05]. This raycast process 

can also be sped up with a pre-computed acceleration 

structure, as seen in [Baboud06] and [Policarpo07]. 

3. MULTI-CELL IBR 

3.1 Pre-processing 
As a first step, the scene is divided into an hierarchy 

of regular cubic volumes. This can be done by 

calculating the bounding box of the scene, making it 

cubic and applying the octree algorithm [Jackins80] 

to that bounding box, which serves as the root node 

of the octree. The maximum depth of the octree 

should be chosen based on the available memory 

resources, as discussed later. 

The second step pre-computes a series of impostor 

textures for each of these nodes. These impostors are 

generated using an orthographic projection, since 

they were found to have the least overall error. The 

method of generating these impostor textures is 

similar to the procedure of computing images in the 

single cell approach; the subdivided icosahedron used 

for calculating the camera positions is centered in the 

middle of the octree cell (instead of the centroid of 

the scene) which is circumscribed by the bounding 

sphere of the cell. 

3.2 Runtime 
The octree is traversed and nodes that are not framed 

by the camera can be culled. If a node that occupies 

an amount of screen space smaller than a certain 

threshold is reached, the impostor is used and the 

traversal stops. At close distances, for full detail, the 

original model triangle rendering could be used. 

However, if the choice to not use impostors was only 

based on distance, that would introduce problems, 

since then the approach would suffer from high 

polygonal densities (i.e. areas of the scene that have 

an extremely high polygon count). Therefore, the 

nodes that are indeed close enough to be represented 

geometrically are sorted by priority (distance to the 

camera) and rendered from the highest priority to the 

least, until a certain triangle budget is met. All 

remaining nodes are represented with the impostor 

with the smallest angle to the view direction. 

3.3 Preliminary analysis 
By using this approach of creating a representation of 

the cell as if viewed from the outside as in 

[Rusinkiewicz00], one gains freedom of navigation, 

since the camera no longer has to be constrained 

inside a cell. Also, the algorithm is almost automatic; 

the only manual intervention needed is setting 

parameters appropriate to the scene. 

Multi-cell IBR solutions, however, are likely to 

occupy large amounts of disk space. This is accepted 

due to the relative low cost of disk space in the 

current days. Also, the algorithm can have an upper 

limit of disk space usage imposed to it (with a 

possible loss of performance if the limit is too small 

for the scene complexity): one can sort the nodes by 

the amount of primitives they contain. Then, the 

image generation can be applied to the nodes with the 

greatest number of primitives, in order, until a disk 

space budget is reached. It should also be noted that 

the method should not be used solely with impostors. 

It uses them to remove most of the scene complexity, 

but it should be complemented with other techniques 

(like geometric LODs, for example). However in 

[Saraiva09] we were somewhat surprised at the visual 

quality that was possible up close when examining 

3D models with the reprojection of orthographic 

images, hence in this work we did not integrate LOD 

techniques, and aimed at improving the visual quality 

of less computationally intensive techniques such as 

IBR. Indeed in section 5 (results) we show that the 

combination of smaller IBR cells allows one to 

achieve this result. 

3.4 Summary of steps 
In pre-process: 1 – read geometry; 2 – create octree; 

3 – calculate camera positions using subdivided 

icosahedron; 4 – texture creation and cropping. 

At runtime: 1 – frustum culling; 2 – node sorting 

based on distance; 3 – for each node choose image 

with smallest angle to view direction. 

WSCG 2010 FULL Papers 223



4. MULTI-CELL IBR 

IMPLEMENTATION ISSUES 
In this section we address implementations issues that 

arise when assembling multiple cell images of 

orthographic projected images. In section 4.1 we 

present the problem, in section 4.2 we consider a run-

time solution using raycasting, and in section 4.3 our 

adopted solution. 

4.1 Inter cell artifacts 
A problem that arose on the multi-cellular approach 

(that was not present in the single-cell approach of 

[Saraiva09]) was the presence of “black line” 

artifacts on the model. An example of this artifact can 

be seen in Fig 4, which shows vertical and horizontal 

black lines spanning the Batalha monastery model. 

  

Figure 4. The incorrect sampling problem. The 

horizontal and vertical black lines artifact visible 

in the Batalha model (left). 

These black lines are actually the edges of the octree 

node. This is due to the fact that since no correction 

was performed, the coordinates used to sample the 

texture were too far away from the center. An 

illustration of what occurs is depicted in Fig.4 (right). 

In the image, the black box represents the region of 

space delimited by the octree node, and the red and 

green lines represent the mesh. The brown line 

represents the billboard plane and the blue line 

represents a ray from the camera into the volume. If it 

was done with the original model triangle rendering, 

the pixel would be colored green. However, since the 

geometry in the region is effectively flattened by the 

billboard process, the texture is sampled outside of 

the region, which is transparent (or non-existent, if it 

falls outside the billboard), generating the “black 

line” artifact, where one is actually seeing the 

background. 

This error lessens as the distance to the region 

increases, since the rays become more and more 

parallel and, therefore, closer to the orthographic 

projection that was used to create the image. In 

practice, one can limit the maximum amount of error 

in the sampled coordinates by choosing a large 

enough distance to the billboard. 

Attempts were made to correct this distortion. Like 

previously referred, this sort of correction can be 

done via CPU (highly undesirable) or the GPU. 

Attempts to minimize the error with small amounts of 

computation failed, as all solutions eventually 

degenerated to something similar to a raycast  

(presented in the next section). 

4.2 The impracticality of raycast solution 
Raycasting can be impractical, since it is a somewhat 

expensive operation, even in modern GPUs when 

using acceleration structures. On ideal conditions, the 

performance should depend only on the resolution of 

the display. However, this proved not to be true, due 

to the possibility of overdraw and limitations in the 

current graphics APIs. 

Since we have our space divided into regions, without 

having any sort of occlusion information, we have to 

render all the regions (at least those that pass the 

frustum culling operation). In ideal conditions, only 

one ray would need to be cast per pixel on the screen. 

Since we desire the first intersection for that pixel, 

one could think a way to minimize the number of 

raycasts would be to order the raycasts for that pixel 

by sub-volume proximity to the camera. Once a ray 

hit in a region, that pixel would no longer need to 

have further raycasts performed. 

However, the problem lies in how one can determine 

if that particular pixel has already seen an 

intersection. Usually to limit this sort of overdraw, 

two techniques are used: depth-testing and stencil-

testing. One could program the GPU to reject 

fragments with depth greater than the corresponding 

fragment on the depth buffer. Something similar 

applies to the stencil tests. This does not solve the 

problem, though, since these tests are performed after 

the pixel/fragment shader (and raycast) is run, hence 

the gain would be nullified since the objective is to 

not do the raycast at all. 

To lessen this effect (discarding fragments after an 

expensive pixel shader is run), graphics card 

manufacturers have applied a technique called Early-

Z. This technique does the depth buffer test after the 

vertex shader is run, but before the pixel shader. 

Therefore, it lessens the number of fragments that 

have to go through a possibly expensive pixel 

shading. 

This technique, however, is not part of the typical 

graphics pipeline, and so is not adjustable via an API. 

As such, the hardware can only apply this technique 

if it is sure that the final result is the same. This can 

only be done if one knows the depth of the fragment 

before the pixel shader is run. On most applications, 

this condition is verified; the depth of the fragment is 

the result of the interpolation of vertex depths. 
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By performing a raycast, we find out the correct 

depth of the fragment and can use that correct depth. 

But by doing so, one effectively is disabling Early-Z 

and increasing the overdraw rate significantly. 

Since one needs to know the depth of the fragment in 

the framebuffer while executing the pixel shader and 

given that one cannot read and write into the same 

texture (or a value in a memory array) on a single 

pass, the use of shaders would not solve the problem. 

It is possible that more general-purpose APIs (like 

CUDA) provide a solution, but that goes beyond the 

purpose of the paper, which is to determine if the 

approach is viable or if it should be simply discarded.  

The problem described, however, has a relatively 

simple workaround: although one might not know the 

exact depth of the fragment, one can usually bound 

that depth between two extreme values. If the Early-Z 

test fails on both extreme values, any value in 

between would also fail and the fragment could be 

discarded. This is not yet possible, however, due to 

limitations of current graphical APIs such as 

Direct3D and OpenGL, but is subject to change in the 

future. Even if we don’t change the depth of the 

fragment (but correct the sampling coordinates), 

problems can still arise. Without correct depth, 

interpenetrating objects can display artifacts and 

techniques that depend on correct depth (like shadow 

mapping) can become no longer viable. As such, we 

chose not to correct neither the depth nor the 

coordinates, to see the viability of the technique with 

no runtime correction performed at all. 

4.3 Cell growing solution 
As one can observe, the lines seen due to the artifact 

are very thin, since the coordinates are only slightly 

wrong (with an error of one texel, for example). In 

practice this problem only arises when viewing an 

object at very close distances. 

We found a solution that works well in practice. 

Instead of using only geometry inside the region to 

generate the images for the billboard, one can also 

use the surrounding geometry, which in essence “fills 

the gap”. An illustration of this can be seen in Fig. 6. 

 

Figure 6. Filling the gap. The thick lines delimit 

the cell considered. In the left, the geometry is 

only considered in the area inside the cell (gray), 

while on the right, the surroundings are also 

considered. 

Although visually incorrect, it tends to be an effective 

solution since the gap is generally small and color 

changes are usually smooth enough. To this end, the 

triangles considered to create the billboards were not 

only the ones in the cubic volume but the ones that 

intersect that cubic volume’s bounding sphere. In 

Figure 7 we see a render of the same model after this 

correction is applied. 

 

Figure 7. The “black line” artifact invisible, by 

filling the gap with surrounding geometry. 

5. RESULTS 
Figure 8 shows that the visual error associated with 

single cell orthographic projected IBR can be 

reduced by using more cells. 

The test was done with the David model (8 million 

triangles), using an octree of depth 4, for a total of 

218 cells (empty cells are ignored). The positions 

were chosen with a twice-divided icosahedron, which 

results in 320 images per cell. At a resolution of 

128×128, after cropping, the average size ended up at 

11MB per cell (2.41GB total). No compression was 

implemented, however a fast ZIP compression (using 

the deflate compression method [Deutsch96], with a 

32KB dictionary and a word size of 32) reduced that 

size to less than a fifth (~18%). A slower and better 

compression further halved that size. This high 

compressibility, along with the low cost of disk space 

on the current days, makes the uncompressed large 

disk space occupation more acceptable. 

 

Figure 8. The David model in a single cell (left) 

and multi cell (right) representation. The top 

shows the render, the bottom shows the difference 

to the original model triangle rendering. 
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To test the effectiveness of this multi-cellular 

approach in solving the problem seen in the David 

and Batalha models, due to their large range of 

depths at certain angles, the camera was placed so 

that the vertical component was greater (to maximize 

the error) while still being able to see most of the 

model, at a relative distance of 1. The result can be 

seen in Figures 9-13 (cropped to fit the content). 

 

Figure 9. The wireframes of the 218 nodes. 

 

Figure 10. The orthographic impostor approach, 

from another angle. 

 

Figure 11. From the same angle as figure 10, with 

the original model triangle rendering. 

 

Figure 12. The difference between figures 10&11. 

 

Figure 13. The outline of the 218 billboards used 

to generate figure 10. 

As one can see, this multi-cellular approach indeed 

lessened the problem of perspective error. This is due 

to two facts: 

• since there are more cells, each cell occupies 

a smaller arc in the field of view, bringing it 

closer to the “original” orthographic 

projection, the difference with perspective 

multi-cell IBR can be seen in  Figure 14. 

• since the cells are smaller, the available 

gamut of depths is also reduced and so the 

flattening of the mesh does not change the 

depth significantly. 

In terms of performance, the transfer of texture 

memory to the graphics card is fast enough to give 

the viewer 100+ FPS with a C++ implementation 

using OpenGL on an Intel E7200 with 2GB of main 

memory and a NVIDIA GeForce 8800GT. To stress 

the bandwidth limitations between the graphics card 

and main memory, the graphics card constantly 

deleted the textures after each render, requiring it to 

be reuploaded. A problem arises however in disk 

transfer bandwidth. When the camera rotates around 

the model too quickly, one texture for each of the 218 

cells has to be loaded from disk, bringing 

performance down to about an average of 5FPS. This 

problem can be alleviated by caching [Yoon05]. 

It is hypothesized that this bandwidth problem could 

be greatly lessened if the textures were compressed 

and if they were prefetched (like TetraPuzzles 

[Cignoni04] does). We also note that when rendering 

triangles over IBR, fewer textures are needed hence 

further speeding up performance. 

In terms of image quality, the lack of correction still 

brings some visual artifacts, as can be seen in the left 

wrist area in Figure 10 (with the difference clearly 

shown in Figure 12). This might not pose a problem, 

however: as the distance increases, these artifacts get 

smaller (in number and size), eventually making them 

unnoticeable. Since the technique should be 

complemented by some other method for nearby 

regions, these areas of larger distortion are replaced 

by correct pixels. An example of the triangle 
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Figure 14. Multi-cell IBR (50cells with 320 images each). From left to right, perspective projection with 

60° FOV of: Orthographic projected cells, Perspective projected cells of 40°, 60° and 90° respectively.

representation used at nodes where the center goes 

below a certain distance threshold to the camera (with 

impostors used in other cases) can be seen in Fig. 15. 

 

Figure 15. The impostor solution with and without 

triangles drawn over (right and left, respectively). 

Notice the artifact on the left wrist disappears. 

Figures 16-17 show the David model from another 

angle, but twice as close as the distance in Figures 9-

13. 

 

Figure 16. The David model, from yet another 

angle, but at a relative distance of 0.5 (impostor 

on the left and original model triangle rendering 

on the right). 

 

Figure 17. The difference between the two 

representations in figure 16. 

6. CONCLUSIONS  
In this paper, an experiment on the usage of simple 

multiple cell impostors (billboards) was described, in 

order to determine the feasibility of such a solution 

for real-time rendering of massive data sets. We have 

shown that with more cells the visual error is reduced 

when compared to single cell approaches.  

The solution implemented, as described, possesses 

some potentially great limitations: large use of disk 

space, bandwidth problems when the camera moves 

quickly, at close distances visual artifacts can become 

noticeable. However, being an image-based rendering 

approach, it also possesses one great quality: the 

performance of a cell is independent of the number of 

primitives it contains. 

Some of the limitations can be lessened: disk space 

usage and bandwidth issues can be lessened by the 

use of compression and caching. Other issues, like 

visual artifacts at short distances are not so easy to 

correct, requiring a significant amount of 

computational power (whether in CPU or GPU). 

However, if we limit the use of impostors to large 

distances, the bandwidth and artifact problems are 

greatly reduced: if an impostor is far away, one would 

have to move the camera at a very high speed in order 

to force a large number of texture loads from disk. 

Also, at great distances the visual artifacts are 

minimal or non-existing, since the camera “rays” are 

nearly parallel, like the orthographic projection which 

gave origin to the image used on the billboard. 

We have also concluded that for a multi-cell 

approach, an orthographic projection produces less 

error than a perspective projection, as visible in 

Figure 14. 

7. FUTURE WORK 
In terms of future work, there are quite a few avenues 

of possible improvement. In no particular order: 

• implementation and analysis of the effects of 

compression; 

• implementation of a caching mechanism; 
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• researching and implementing some form of 

correction that is less computationally 

expensive 

• implementing a current form of correction 

while exploiting future new capabilities 

given by APIs, like the range-limited Early-

Z mentioned; 

• integrate a complementary method to the 

solution described in order to see how well 

the technique performs in a more ideal 

situation; 

• research some more compact representation 

of the contents of the cell (like the view-

dependent voxel in Far Voxels [Gobbetti08]. 
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