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ABSTRACT

We describe an efficient method for the simulation of complex scenaitbsmillions of frictional contacts and mechanical
constraints. To this end, the GPU processors of the modern graphitsber@ used to solve the differential inclusion problem
that represents the most challenging part of the multi-rigid—body problémnk to the massive parallelism offered by GPU
boards, we are able to simulate sand, granular materials, soils andati@eg physical scenarios with a large speedup respect
to serial CPU-based algorithms.
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1 INTRODUCTION soil and rock dynamics, flow and packing of granular
The simulati f the d ; f lti-rigid-bod materials, could require too long computational times.
© simuiation of te dynhamics of Muti-rigid-bo y[gesults reported in [Mad07a] indicate that the most

systems is an useful tool in many areas, such as CA idel q ial soft f libodv d
engineering, virtual reality, videogames and in computWI €ly used commercial software for muftibody dy-

ergraphics in general (for instance, when physical sinflamics runs into significant difficulties when handling

ulation is used for special effects in 3D movies). simple problems involving hundreds of contact events,
Devices composed of rigid bodies interacting throug

thereas cases with thousands of contacts become in-
frictional contacts and mechanical joints representan r_a_ct_able. The methoq emt_)r_aced In this work can SOIVG
merical challenge because of the discontinuous natuggICIentIy problems with m!lllons of_contacts onasim-
of the motion; the dynamics is nonsmooth because e scalar CPU of the Pentium family, and an improved
the discontinuous nature of noninterpenetration, colli-
sion, and adhesion constraints. Actually, the require-
ment that parts must be rigid increases the difficulty o
the problem respect to the case of flexible parts such ¢
in spring-based approaches.

Even mechanisms composed of few hundreds of par:
and constraints may require lot of computational ef-
forts; indeed, more complicated scenarios such as v
hicles running on pebbles and sand such as in Fig. :

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without feeigeal
that copies are not made or distributed for profit or commeycial

advantage and that copies bear this notice and the fullasitan the | /-‘""""
first page. To copy otherwise, or republish, to post on ssrgetto . . . I T
redistribute to lists, requires prior specific permissiod/ana fee. Figure 1: Simulation of a complex multi-rigid-body

mechanism with contacts and joints.
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performance can be obtained with the GPU version pr@one must be solved at each time step in order to
posed herein, that can solve the contact dynamics wittetermine the system state configuration as well as
parallel computation. the Lagrange multipliers representing the reaction

Until recently, the massive computational poweiforces [Lot82a, Ste96a]. If the simulation entails a
of parallel supercomputers has been available to large number of contacts and rigid bodies, as is the
relatively small number of research groups, thusase of granular materials, the computational burden of
limiting the number of applications approached. Thiglassical LCP solvers can become significant. Indeed,
scenario is rapidly changing due to a trend set bg well-known class of numerical methods for LCPs
general-purpose computing on the graphics processitigsed onsimplex methodsalso known adirect or
unit (GPU). The CUDA libraries from NVIDIA allow pivoting methods [Cot68a], may exhibit exponential
to use the streaming microprocessors mounted Morst-case complexity [Bar94a]. = Moreover, the
high-end graphics cards as general-purpose computitftyee-dimensional Coulomb friction case leads to a
hardware. Presently, the raw computational powseronlinear complementarity problem (NCP): the use
of these multiprocessors is measured in terms off a polyhedral approximation to transform the NCP
Teraflops, that is hundreds of times the throughput of @to an LCP introduces unwanted anisotropy in friction
modern scalar CPU. cones [Ste96a, Ani97a).

Very few GPU projects are concerned with the dy- Inorder to circumvent the limitations imposed by the
namics of multibody systems and the two most siguse of classical LCP solvers and the limited accuracy
nificant are the Havok and the Ageia physics engined@ssociated with polyhedral approximations of the fric-
Both are commercial and proprietary libraries used ition cone, a parallel fixed-point iteration method with
the video-game industry. In this context, the goal ofrojection on a convex set has been proposed, devel-
this work was to implement a general-purpose multioped, and tested in [Ani0O8a]. The method is based on
body solver on GPU multiprocessors backed by cora time-stepping formulation that solves at every step a
vergence results that guarantee the accuracy of the sggne constrained optimization problem [AniO4a]. The
lution. Specifically, a parallel version was implementedime-stepping scheme has been proved to converge in
of a numerical scheme presented in [Tas08a, Ani08aj measure differential inclusion sense to the solution
which can robustly and efficiently approximate the bi-of the original continuous-time DVI. This paper illus-
laterally constrained dynamics of rigid bodies undergotrates how this problem can be solved in parallel by ex-
ing frictional contacts. ploiting the parallel computational resources available

Unlike the so-called penalty or regularization methon NVIDIAs GPU cards.
ods, where the frictional interaction can be represented
by a collection of stiff springs combined with damping
elements that act at the interface of the two bodies, th2e FORMULATION OF MULTIBODY
approach embraced herein relies on a different math- DYNAMICS

emgtical framgwork. Specifically, thg algorithms r(.erThe formulation of the equations of motion, that is the
on time-stepping proc_ed_ures producw_\g weak SOIut'onéquations that govern the time evolution of a multibody
of the differential variational inequality (DVI) prob- system, is based on the so-called absolute, or Cartesian,

Iem Fhat describes the_ time evolut_|on of rigid bo.d'e%presentation of the attitude of each rigid body in the
with impact, contact, friction, and bilateral constraints

stem.
When compared to penalty-methods, the DVI approac .
has a greater algorithmic complexity, but avoids the 'The stat.e. of the s;T/st?m IS ?engter by;f:e gener-
small time steps that plague the former approach. ~ &lizéd positionsy = [r1.&1, - ThyEn,] €R™ and

Early numerical methods based on DVI formulationgheir time derivatives| = [F],&] ,.. ',flb,ér{)f €R™,
can be traced back to [Mor83a, Lot82a, Mon93a]whereny is the number of bodies;; is the absolute
while the DVI formulation has been recently clas-position of the center of mass of theth body and
sified by differential index in [Pan03a]. Recentthe quaternions; are used to represent rotation and to
approaches based on time-stepping schemes haioid singularities. Instead of using quaternion deriva-
included both acceleration-force linear complementatives ing, it is more advantageous to work with angu-
ity problem (LCP) approaches [Bar93a, Pan96a] ank@r velocities: the method described will use theTvector
velocity-impulse LCP-based time-stepping method§f generalized velocities = [f],wf,...,i1 & ] €
[Ste96a, Ani97a, Ste00a]. Impulse-based method®®™. Note that the generalized velocity can be easily
such as the one in [Ben07a], are becoming popular iobtained as) = L(q)v, whereL is a linear mapping
the computer graphics field because of their robustnegbat transforms each into the corresponding quater-
The LCPs, obtained as a result of the introductiomion derivativeg; by means of the linear algebra for-
of inequalities in time-stepping schemes for DVI,mulag = %GT(q)(E, with 3x4 matrixG(q) as defined
coupled with a polyhedral approximation of the frictionin [Sha05a].
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Figure 2: The proposed method can simulate the dynamicsvifetewith motors, joints and contacts, such as in
the case of this size segregation machine that shakes tiisighsteel spheres.

We denote by (t,q,Vv) the set of applied, or external, instance when dealing with concave or faceted shapes

generalized forces. often used to represent parts of mechanical devices.
) . When a contact is active, that igbj(q) = 0, a nor-
Bilateral constraints mal force and a tangential friction force act on each

Bilateral constraints represent kinematic pairs, for exf the two bodies at the contact point. We use the
ample spherical, prismatic or revolute joints, and can bglassical Coulomb friction model to define these forces
expressed as algebraic equations constraining the relAni97a]. If the contact is not active, thatd(q) > 0,

tive position of two bodies. Assuming a setof con- N0 contact forces can exist, and viceversa: this is the
straints is present in the system, they lead to the scal&fgnorini condition®i(q) > 0, ¥in > 0, ®i(q)yin =0
equations;(q,t) =0, i€ B . Assuming smoothness that can be expressed using the complementarity nota-
of constraint manifoldW;(q,t) can be differentiated to tion [Ste96a]:®i(q) > 0Ly > 0.

obtain the JacobiaflqW; = [ﬁ‘Pi/dq]T. Given two bodies in goqtadk andB, let n; bfa the
Constraints are consistent at velocity-level provide@ormal at the contact pointing toward the exterior of the
that W v + 2% — 0, whereOWT = OWTL(q). body of lower index, which by convention is considered
: ot ’ : ari to be bodyA. Letu; andw; be two vectors in the contact
Contacts with friction plane such that;, u;,w; € R® are mutually orthonormal
vectors.

Given a large numb_e_r of rigid _bOdieS V‘_’ith different The frictional contact force is impressed on the sys-
shapes, modern collision detection algorithms are ab{gm by means of multiplier§i n > 0, Jiu, and Jiw

to find efficiently a set of contact points, that is pOimSWhich lead to the normal component of the foFeg —
where agap function®(q) can be defined for each pair 7 ani and the tangential component of the foR{er _
of near-enough shape features. Where defined, suclf‘a '

: _ _ VU VWi
gap function must satisfy the non-penetration conditio bulli + Wi

) ‘The Coulomb model imposes the following nonlinear
®(q) > 0 for all contact points.

; ! . . . constraints:
Note that a signed distance function, differentiable —~

at least up to some value of the interpenetration, can f’” =z 0 Al qj‘ (9)=0
be easily defined if bodies are smooth and convex HiVin = yﬁu+vﬁw
[Gue03a]. However, this is not always possible, for (Fit,vit)=—I|Fitll [lviT]]

Vil (it = /7 ¥Bu) =0

wherev; 7 is the relative tangential velocity. The con-
straint (Fi t,vit) = —||Fit|| ||viT|| requires that the
tangential force be opposite to the tangential velocity.
Note that the friction force depends on the friction co-
efficienty; € R™.

An equivalent convenient way of expressing this con-
straint is by using the maximum dissipation principle:

(Vo Ww) = argmin vy (Fuli +Hawi). (1)
Figure 3: Simulation of a tracked vehicle on a granular

soil: we used the GPU for both dynamics and collisiod" fact, the the first-order necessary Karush-Kuhn-
detection between tracks, sprockets and pebbles. Tucker conditions for the minimization problem
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i-th contact

t(+1 = t() 4 h by solving the following optimization
problem with equilibrium constraints [Tas08a]:

M vy = hit®, g0 v0D)+ 3 0w+

1EB

+Sica (VinDin+ViuDiu+VYwDiw), (4)

ieB: Ay n+owiviiy 2 — g (5)
iea :  0<ioi(qV)+ DI vIFY Lyl >0 (6)
(Vu,¥w) = argmin vT (V,uDiu+ YiwDiw) (7)
HiYn> VotV
Figure 4: Contact between two bodies ql+t = a® +hL (M), (8)

ABe{12...,ny}
Here, y represents the constraint impulse of a
contact constraint, that isg = hys, for s = n,u,w.

(1) correspond to the Coulomb model aboveThe 3®i(ql)) term achieves constraint stabilization,

[Mor88a, Mon93a]. and its effect is discussed in [Ani0O3a]. Similarly,
the term®;(qV) achieves stabilization for bilateral
The complete model constraints. The scheme converges to the solution of a

Considering the effects of both the set of frictional ~measure differential inclusion [AniO4a] when the step
contacts and the set of bilateral constraints, the time sizeh — 0.

evolution of the dynamical system is governed by the Several numerical methods can be used to solve (4)-
following differential variational inequality (a differe  (7) [Buc98a]. Our approach casts the problem as a
tial problem with set-valued functions and complemenmonotone optimization problem by introducing a re-

tarity constraints): laxation over the complementarity constraints, replac-
_ ing Eq. (6) withi e & :0< $;(q) + DI v+ —
q = L(gyv ti/(VTDiy)2+ (VT Diw)2 L ¥, > 0. The solution of

Mv = f(t,q,v)+ Y VpOWi+ e . ,
(t,a,v) iEzB b the modified time-stepping scheme will approach the

+ S (VinDin+¥iuDiu+ViwDiw) solution of the same measure differential inclusion for

. iea h — 0 as the original scheme [AniO4a].

'eB ipi (9.t)=0 Previous work [AniO8a] showed that the modified
tea  Mn= 0 L @i (1) 2 0, aAnd scheme is a Cone Complementarity Problem (CCP),
(M Yw) - = argmin_ v (MuDiu+YwDiw)  \hich can be solved efficiently by an iterative numer-

M=/ Hut ¥ ical method that rely on projected contractive maps.

(2)  Omitting for brevity some of the details discussed in
The tangent space generat®s=[Din, Diu, Diw] €  [Ani08a], introducingy = {yn, Vi Viw}T,i €A , the
RO%*3 are sparse and are defined given a pair of congigorithm makes use of the following vectors:
tacting bodieA andB as:

Eo— My hi® g0 O 9
T 0 .. AT, Al AgSe 0 .. b = {}®(@").00} iea, (0
where we usé\; , = [, Ui, w;] as theR3*3 matrix of b = twi,n+2% ies (11)

the local coordinates of thigh contact, and introduce
the vectorss o ands g as contact point positions in
body coordinates, see Fig. (4), with skew matriges

The solution, in terms of dual variables of the CCP
(the multipliers), is obtained by iterating the following
contraction maps until convergence:

ands g.
3 THE TIME-STEPPING SCHEME viea t YT =My [ —omi (B]V +bi)] (12)
We formulate the dynamical problem in terms of mea- vies : ¥ 5 =y —wn (OWV +b)  (13)

sure differential inclusions [Ste00a], whose numeri- ) ) )
cal solution can be obtained using the following time/At €ach iteratiorr, before repeating (12) and (13), also

stepping scheme based on the solution of a complemeWB primal variables (the velocities) are updated as:
tarity problem at each time step.

Given a positiory!) and velocity!) at the time-step r+1 _ ;-1
t(), the numerical solution is found at the new time-step

S D+ S Dwzy;+1+|2> (14)

ZEA zeB
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Note that the superscript+ 1) was omitted for brevity. ~ There is no need to store the entg matrix for the
The iterative process uses the metric projetter(-) it contact because it has zero entries for most of its
[Tas08a], which is a non-expansive mag :R®—R3 part, except for the two 12x3 blocks corresponding to
acting on the triplet of multipliers associated with thethe coordinates of the two bodies in contact. In fact,
i-th contact. Thus, if the multipliers fall into the fric- once the velocities of the two bodieg, wa,, fg and
tion cone, they are not modified; if they are in the polatws, have been fetched, the produtv' in Eq.(12) can
cone, they are set to zero; in the remaining cases thég performed as
are projected orthogonally onto the surface of the fric-

. . T — T T T o T
tion cone. The overrelaxation factarandn; parame-  Di V' = Diy,Ta + Dj o, Wa + iy + Di oy 0B
ters are adjusted to control the convergence. Interested . _ (19
readers are referred to [Ani08a] for a proof of the conWith the adoption of the following 3x3 matrices
vergence of this method. T _ AT T _ AT A%

The previous algorithm has been implemented on se- D'TVA B A'TA"P’ B'fwA B 'i'APTAAAS*ﬁ
rial computing architectures and proved to be reliable ~ive — TP o T i.p BS*B(16)
and efficient. In the following the time-consuming part_.. T AT .
of the methodology, that is the CCP iteration, will be re-S'nceDivVA = —Djy,, there is no need to store both ma-

formulated to take advantage of the parallel computinﬁ'fes’. S0 in each gonFact data struc.ture only'a matnx
is stored, which is then used with opposite signs

i iV,
resources available on GPU boards. for a5 oh of the two bodies.

4 PARALLEL SOLVER ON THE GPU Also the velocity update vectadkv;, needed for the
sum in Eq.(14) is sparse: it can be decomposed in small

Modern GPU processors can execute thousands gfhvectors. Specifically, given the masses and the iner-
threads in parallel, providing computating power injs tensors of the two bodiesy , Mg, Ja andJg, the

terms of Teraflops. These processors, usually devotggy, Av; will be computed and stored in four parts as
to the execution of pixel shading fragments for thregg)iows:

dimensional visualization, can be also exploited for

scientific computation thank to development environ- Afa =M 'Diy,AY ™, Awn = I3 Diw by

ments such as CUDA from NVIDIA, that provides Afg =mg'DiyAy ™,  Aws =Jz'DiwsAY

C++ functions to easily manage GPU data buffers and 17
kernels that is operations to executed in parallel on the Note that those four parts of thkv; terms are not
data. The proposed algorithm fits well into the GPUstored in thei-th contact data structure or in the data
multithreaded model because the computation can Isructure of the two referenced bodies (because multi-
splitin multiple threads each acting on a single contacple contacts may refer the same body, hence they would
or kinematic constraint, or rigid body depending on theverwrite the same memory position). These veloc-

stage of the computation. ity updates are instead stored in the reduction buffer,
which will be used to efficiently perform the summa-
Buffers for data structures tion in Eq.(14). This will be discussed shortly.

In the proposed approach, the data structures on theThe constraints buffer, shown in Fig. 6, is based on a
GPU are implemented as large arralysfferg to match ~ similar concept. Jacobiang¥; of all scalar constraints
the execution model associated with NVIDIA's CUDA. are stored in a sparse format, each corresponding to
Specifically, threads are grouped in rectangular thredaur rows OW,, OW; ., OWiyg, OWi . There-
blocks, and thread blocks are arranged in rectangulfere the producOW/v'" in Eq.(13) can be performed
grids. Four main buffers are used: the contacts buffeas the scalar valugW v’ = DLPI\,AM + lillPﬁwAwAi +
the constraints buffer, the reduction buffer, and the bodanIvaBi + DwIwaBi_ Also, the four parts of the
ies buffer. sparse vectav; can be computed and stored as
Special care should be paid to minimize the mem-
ory overhead caused by repeated transfers of large dataf o = m;ilDWi,vAAVi”l, Ao = J;iquJi,wAAYiHl
structures: we organized data structures in a way that\g, = mg'OW; Ay Y, Awg = Jg'OW; Ay
minimizes the number of fetch and store operations and (18)
maximizes the arithmetic intensity of the kernel code, Figure 7 shows that each body is represented by a
as recommended by the CUDA development guidedata structure containing the state (velocity and posi-
lines. tion), the mass moments of inertia and mass values, and
The data structure for the contacts has been mapptu external applied force; and torqueC;. Note that
into columns of four floats as shown in Fig. 5. Eacho speed the iteration, it is advantageous to store the
contact will reference its two touching bodies throughnverse of the mass and inertias rather than their origi-
the two pointersBa andBg, in the fourth and seventh nal values, because the operatidn® DiAy ! must be
rows of the contact data structure. performed multiple times.
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GPU contacts buffer

i-th contact data GPU reduction buffer Vix Viy Viz|O | Body 0
Constraint float4
Thread grid float4 oW [0 s Wiiy&id
— A Xjx Xjy Xj,
D‘th 1 AV pr 1y iz
: b Dwl, of BINCH Uy | TPITHITH EN el
| Dl b ETA & [ B
3 ivap bi, by g ] / I ERE Ic Xjx Xjy X4
BIV 071210 [0 | _: Av o L} Vi Viy V2|3 | Body 2
‘ 1A Constraint A [0 |TTTTTT—— i oy
Thread block.  Thread block 5 DiT&A oy, [0 T av Fi X"XXWXJ‘
: — T i ot
DW'TR —|A0 A1 A2 A3
: Bo ';( L ERERR Y
O 1
8 Df Hon R L Fix Fiy Fiz|
Thread o T b i | kS « Cix Gy Giz
i VpTlo] 2 . £
© ¥ Viu Vid 2o R
g
1 |Ra R.BI”\,A Nig *© = e

Figure 5: Grid of data structures for frictional contacts,

in GPU memory.

GPU constraints buffer
Thread grid

j-th constraint data

Ho float4
Ethe A~
Thread 1 Dq.IITvA Bial
Thread block Thread block - DLHT/R B

3 Dq{T%

T

4 Dq{ah

s by jm | ¥
6 Ra|Ris|[Mia[Nie

Figure 8: The reduction buffer avoids race conditions
in parallel updates of the same body state.

called theCCP contact iteration kernel and theCCP
constraint iteration kernel.

However, the sums in Eq.(14) cannot be performed
with embarrassingly-parallel implementations: it may
happen that two or more contacts need to add their
velocity updates to the same rigid body. A possi-
ble approach to overcome this problem is presented in
[Har07a], for a similar problem. We adopted an alterna-
tive method, with higher generality, based on plagal-
lel segmented scaalgorithm [Sen07a] that operates on
an intermediate reduction buffer (Fig.8); this method

Figure 6: Grid of data structures for scalar constraintsSums the values in the buffer using a binary-tree ap-

in GPU memory.

GPU bodies buffer
Thread grid

‘ Thread
Thread block Thread block

Figure 7: Grid of data structures for rigid bodies, in

GPU memory.

The Parallel Algorithm

A parallelization of computations in Eq.(12) and
Eq.(13) is easily implemented, by simply assigning

5 o e s W onh e

j-th body data

float4
—

- Vix Viy Viz|R
WLy
XjxXjyXjd
Ao P A2 A3
Ix Gy i my|
Fix Fiy Fi

CixGiy Gia

proach that keeps the computational load well balanced
among the many thread processors. In the example of
Fig.8, the first constraint refers to bodies 0 and 1, the
second to bodies 0 and 2; multiple updates to body 0 are
then accumulated with parallel segmented reduction.

Since collision detection is the biggest computational
overhead after the CCP solution, we also developed a
GPU-based parallel code for collision detection, obtain-
ing a 20x speedup factor when compared to the serial
code of the Bullet library. The GPU collision code
requires the use of multiple kernels and complex data
structures that we cannot describe here because of lim-
ited space; details are available in [Maz09a].

The following pseudocode shows the sequence of
main computational phases at each time step, for the
most part executed as parallel kernels on the GPU.

Algorithm 1: Time Stepping using GPU.

1. (GPU or hos} Perform collision detection between
bodies, obtaining, possible contact points within
a distance, as contact positiors a, s g on the two

one contact per thread (and, similarly, one constraint
per thread). In fact the results of these computations
would not overlap in memory, and it will never happen2.
that two parallel threads need to write in the same
memory location at the same time. These are the two
most numerically-intensive steps of the CCP solver,
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touching surfaces, and normails

(Host, seria) If needed, copy contact and body data
structures from host memory to GPU buffers. Copy
also constraint data (residudisand jacobians) into
the constraint buffer.



3. (GPU, body-parallglForce kernel. For each body, = Number CPU GPU Speedup Speedup

compute forcesf(t!), g v()), if any (example, of ccp ccp  CCP CD
gravity). Store these forces and torques ifand ~_ Podies [s] 8]
G 16000 7.11 0.57 12.59 4.67
32000 16.01 1.00 16.07 6.14
4. (GPU, contact-parallgl Contact preprocessing 64000 3460 197  17.58 10.35

kernel. For each contact, given contact normal and 128000 76.82 455  16.90 21.71
position, compute in-place the matriclé%vA, DIwA Table 1: Stress test of the GPU CCD solver and GPU
andD/,,_, then computey; and the contact residual collision detection.
bi:{%QJi(q)70,0}T. .
For the results of Tab.1, we simulated densely packed
5. (GPU, body-parallgl CCP force kernel. For each spheres that flow from a silo. The CPU is an Intel Xeon
body j, initialize body velocities|! ™" =hm*F;  2.66 GHz, the GPU is an NVIDIA Tesla C1060. The
andw!tY — hJ-1C.. simulation time increases linearly with the number of
! el bodies in the model. The GPU algorithm is at least one
6. (GPU, contact-parall@ICCP contact iteration ker-  order of magnitude faster than the serial algorithm.
nel. For each contadt do Other stress tests were performed with even larger
¥ =2 Ny, (¥ —owni (DIV +bi)) +(1—A)y. amounts of spheres, such as in the benchmark of Fig.10.
Note thatDv' is evaluated with sparse data, usingSimilarly, the test of Fig.9 simulates one million of
Eq. (15). Storeﬁyi”rl = yir+1 — ¥ in contact buffer. rigid bodies inside a tank being shaken horizontally (the
Compute sparse updates to the velocities of the twamount of available RAM on a single GPU board lim-
connected bodie& andB, and store them inthig o ited us to go beyond that limit).
andR,; g slots of the reduction buffer. Using the proposed GPU method we are already
able to simulate granular soil (pebbles, sand) under the
. . tracks of a vehicle, see Fig.3, in fact our GPU colli-
t|o+n1kernel. For each conTstrralrnt do sion detection code is able to handle nonconvex shapes
Ve = )‘H(Vir iffn‘ (D_kpi Vb)) 4 (1 Ay by performing spherical decomposition. To simulate
StoreAy = =y —y in contact buffer. Compute larger scenarios, with smaller grains of sand, future ef-
sparse updates to the velocities of the two connectggis will address the possibility of using domain de-

bodiesA andB, and store them in th& » andRis  composition, with clusters of multiple GPU boards on
slots of the reduction buffer. multiple host.

7. (GPU, constraint-parallelCCP constraint itera-

8. (GPU, reduction-slot-parallplSegmented reduc-
tion kernel. Sum all theAr;, Awy terms belonging 6 CONCLUSIONS
to the same body, in the reduction buffer. A parallel numerical method has been proposed for
] the simulation of multibody mechanical systems with
9. (GPU, body-parallg/Body velocity updates ker-  gictional contacts and bilateral constraints. The paral-
nel. For eachj body, add the cumulative veloc- 6| method is based on an iterative approach that falls
ity updates which can be fetched from the reductiofithin the mathematical framework of measure differ-

buffer, using the indeR;. ential inclusions and is backed by a rigorous conver-
10. Repeat from step 6 until convergence or until numdénce anaIyS|s_. _
ber of CCP steps reached> I'max Results obtained with the proposed method demon-
_ . _ strate that the GPU version of the dynamics solver
11. (GPU, body-parallgl Time integration kemel. is about 20x faster than the CPU version. A similar
F((I)L)eaCh“g body, (|)pe[|f(+)£)m time integration as speedup has been obtained for the collision detection.
aj ' =d; +hL(g;’)V;
12. (Host, serid) If needed, copy body, contact and
constraint data structures from GPU to host mem-
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Figure 9: Benchmark with one million of rigid bodies withdtion.

Figure 10: Benchmark: mixing of two granular materials.
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