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ABSTRACT

We describe an efficient method for the simulation of complex scenarios with millions of frictional contacts and mechanical
constraints. To this end, the GPU processors of the modern graphic boards are used to solve the differential inclusion problem
that represents the most challenging part of the multi–rigid–body problem. Thank to the massive parallelism offered by GPU
boards, we are able to simulate sand, granular materials, soils and other complex physical scenarios with a large speedup respect
to serial CPU–based algorithms.
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1 INTRODUCTION
The simulation of the dynamics of multi-rigid-body
systems is an useful tool in many areas, such as CAD,
engineering, virtual reality, videogames and in comput-
ergraphics in general (for instance, when physical sim-
ulation is used for special effects in 3D movies).

Devices composed of rigid bodies interacting through
frictional contacts and mechanical joints represent a nu-
merical challenge because of the discontinuous nature
of the motion; the dynamics is nonsmooth because of
the discontinuous nature of noninterpenetration, colli-
sion, and adhesion constraints. Actually, the require-
ment that parts must be rigid increases the difficulty of
the problem respect to the case of flexible parts such as
in spring-based approaches.

Even mechanisms composed of few hundreds of parts
and constraints may require lot of computational ef-
forts; indeed, more complicated scenarios such as ve-
hicles running on pebbles and sand such as in Fig. 1,
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soil and rock dynamics, flow and packing of granular
materials, could require too long computational times.
Results reported in [Mad07a] indicate that the most
widely used commercial software for multibody dy-
namics runs into significant difficulties when handling
simple problems involving hundreds of contact events,
whereas cases with thousands of contacts become in-
tractable. The method embraced in this work can solve
efficiently problems with millions of contacts on a sim-
ple scalar CPU of the Pentium family, and an improved

 

Figure 1: Simulation of a complex multi-rigid-body
mechanism with contacts and joints.
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performance can be obtained with the GPU version pro-
posed herein, that can solve the contact dynamics with
parallel computation.

Until recently, the massive computational power
of parallel supercomputers has been available to a
relatively small number of research groups, thus
limiting the number of applications approached. This
scenario is rapidly changing due to a trend set by
general-purpose computing on the graphics processing
unit (GPU). The CUDA libraries from NVIDIA allow
to use the streaming microprocessors mounted in
high-end graphics cards as general-purpose computing
hardware. Presently, the raw computational power
of these multiprocessors is measured in terms of
Teraflops, that is hundreds of times the throughput of a
modern scalar CPU.

Very few GPU projects are concerned with the dy-
namics of multibody systems and the two most sig-
nificant are the Havok and the Ageia physics engines.
Both are commercial and proprietary libraries used in
the video-game industry. In this context, the goal of
this work was to implement a general-purpose multi-
body solver on GPU multiprocessors backed by con-
vergence results that guarantee the accuracy of the so-
lution. Specifically, a parallel version was implemented
of a numerical scheme presented in [Tas08a, Ani08a],
which can robustly and efficiently approximate the bi-
laterally constrained dynamics of rigid bodies undergo-
ing frictional contacts.

Unlike the so-called penalty or regularization meth-
ods, where the frictional interaction can be represented
by a collection of stiff springs combined with damping
elements that act at the interface of the two bodies, the
approach embraced herein relies on a different math-
ematical framework. Specifically, the algorithms rely
on time-stepping procedures producing weak solutions
of the differential variational inequality (DVI) prob-
lem that describes the time evolution of rigid bodies
with impact, contact, friction, and bilateral constraints.
When compared to penalty-methods, the DVI approach
has a greater algorithmic complexity, but avoids the
small time steps that plague the former approach.

Early numerical methods based on DVI formulations
can be traced back to [Mor83a, Lot82a, Mon93a],
while the DVI formulation has been recently clas-
sified by differential index in [Pan03a]. Recent
approaches based on time-stepping schemes have
included both acceleration-force linear complementar-
ity problem (LCP) approaches [Bar93a, Pan96a] and
velocity-impulse LCP-based time-stepping methods
[Ste96a, Ani97a, Ste00a]. Impulse-based methods,
such as the one in [Ben07a], are becoming popular in
the computer graphics field because of their robustness.
The LCPs, obtained as a result of the introduction
of inequalities in time-stepping schemes for DVI,
coupled with a polyhedral approximation of the friction

cone must be solved at each time step in order to
determine the system state configuration as well as
the Lagrange multipliers representing the reaction
forces [Lot82a, Ste96a]. If the simulation entails a
large number of contacts and rigid bodies, as is the
case of granular materials, the computational burden of
classical LCP solvers can become significant. Indeed,
a well-known class of numerical methods for LCPs
based onsimplex methods, also known asdirect or
pivoting methods [Cot68a], may exhibit exponential
worst-case complexity [Bar94a]. Moreover, the
three-dimensional Coulomb friction case leads to a
nonlinear complementarity problem (NCP): the use
of a polyhedral approximation to transform the NCP
into an LCP introduces unwanted anisotropy in friction
cones [Ste96a, Ani97a].

In order to circumvent the limitations imposed by the
use of classical LCP solvers and the limited accuracy
associated with polyhedral approximations of the fric-
tion cone, a parallel fixed-point iteration method with
projection on a convex set has been proposed, devel-
oped, and tested in [Ani08a]. The method is based on
a time-stepping formulation that solves at every step a
cone constrained optimization problem [Ani04a]. The
time-stepping scheme has been proved to converge in
a measure differential inclusion sense to the solution
of the original continuous-time DVI. This paper illus-
trates how this problem can be solved in parallel by ex-
ploiting the parallel computational resources available
on NVIDIA’s GPU cards.

2 FORMULATION OF MULTIBODY
DYNAMICS

The formulation of the equations of motion, that is the
equations that govern the time evolution of a multibody
system, is based on the so-called absolute, or Cartesian,
representation of the attitude of each rigid body in the
system.

The state of the system is denoted by the gener-
alized positionsq =

[
rT

1 ,εT
1 , . . . , rT

nb
,εT

nb

]T
∈ R

7nb and

their time derivativeṡq =
[
ṙT

1 , ε̇T
1 , . . . , ṙT

nb
, ε̇T

nb

]T
∈R

7nb,
wherenb is the number of bodies,r j is the absolute
position of the center of mass of thej-th body and
the quaternionsε j are used to represent rotation and to
avoid singularities. Instead of using quaternion deriva-
tives in q̇, it is more advantageous to work with angu-
lar velocities: the method described will use the vector
of generalized velocitiesv =

[
ṙT

1 , ω̄T
1 , . . . , ṙT

nb
, ω̄T

nb

]T
∈

R
6nb. Note that the generalized velocity can be easily

obtained aṡq = L(q)v, whereL is a linear mapping
that transforms each̄ωi into the corresponding quater-
nion derivativeε̇i by means of the linear algebra for-
mula ε̇i = 1

2GT(q)ω̄i , with 3x4 matrixG(q) as defined
in [Sha05a].
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Figure 2: The proposed method can simulate the dynamics of devices with motors, joints and contacts, such as in

the case of this size segregation machine that shakes thousands of steel spheres.

We denote byf (t,q,v) the set of applied, or external,
generalized forces.

Bilateral constraints
Bilateral constraints represent kinematic pairs, for ex-
ample spherical, prismatic or revolute joints, and can be
expressed as algebraic equations constraining the rela-
tive position of two bodies. Assuming a setB of con-
straints is present in the system, they lead to the scalar
equationsΨi(q, t) = 0, i ∈ B . Assuming smoothness
of constraint manifold,Ψi(q, t) can be differentiated to
obtain the Jacobian∇qΨi = [∂Ψi/∂q]T .

Constraints are consistent at velocity-level provided
that∇ΨT

i v+ ∂Ψi
∂ t = 0, where∇ΨT

i = ∇qΨT
i L(q).

Contacts with friction
Given a large number of rigid bodies with different
shapes, modern collision detection algorithms are able
to find efficiently a set of contact points, that is points
where agap functionΦ(q) can be defined for each pair
of near-enough shape features. Where defined, such a
gap function must satisfy the non-penetration condition
Φ(q) ≥ 0 for all contact points.

Note that a signed distance function, differentiable
at least up to some value of the interpenetration, can
be easily defined if bodies are smooth and convex
[Gue03a]. However, this is not always possible, for

 

Figure 3: Simulation of a tracked vehicle on a granular
soil: we used the GPU for both dynamics and collision

detection between tracks, sprockets and pebbles.

instance when dealing with concave or faceted shapes
often used to represent parts of mechanical devices.

When a contacti is active, that isΦi(q) = 0, a nor-
mal force and a tangential friction force act on each
of the two bodies at the contact point. We use the
classical Coulomb friction model to define these forces
[Ani97a]. If the contact is not active, that isΦi(q) > 0,
no contact forces can exist, and viceversa: this is the
Signorini conditionΦi(q) ≥ 0, γ̂i,n ≥ 0, Φi(q)γ̂i,n = 0
that can be expressed using the complementarity nota-
tion [Ste96a]:Φi(q) ≥ 0⊥γ̂i,n ≥ 0.

Given two bodies in contactA and B, let ni be the
normal at the contact pointing toward the exterior of the
body of lower index, which by convention is considered
to be bodyA. Letui andwi be two vectors in the contact
plane such thatni ,ui ,wi ∈R

3 are mutually orthonormal
vectors.

The frictional contact force is impressed on the sys-
tem by means of multiplierŝγi,n ≥ 0, γ̂i,u, and γ̂i,w,
which lead to the normal component of the forceFi,N =
γ̂i,nni and the tangential component of the forceFi,T =
γ̂i,uui + γ̂i,wwi .

The Coulomb model imposes the following nonlinear
constraints:

γ̂i,n ≥ 0 ⊥ Φi(q) ≥ 0

µi γ̂i,n ≥
√

γ̂2
i,u + γ̂2

i,w

〈Fi,T ,vi,T〉 = −||Fi,T || ||vi,T ||

||vi,T ||
(

µi γ̂i,n−
√

γ̂2
i,u + γ̂2

i,w

)
= 0

wherevi,T is the relative tangential velocity.The con-
straint 〈Fi,T ,vi,T〉 = −||Fi,T || ||vi,T || requires that the
tangential force be opposite to the tangential velocity.
Note that the friction force depends on the friction co-
efficientµi ∈ R

+.
An equivalent convenient way of expressing this con-

straint is by using the maximum dissipation principle:

(γ̂i,u, γ̂i,w) = argmin√
γ̂2
i,u+γ̂2

i,w≤µi γ̂i,n

vT
i,T (γ̂i,uui + γ̂i,wwi) . (1)

In fact, the the first-order necessary Karush-Kuhn-
Tucker conditions for the minimization problem
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Figure 4: Contacti between two bodies
A,B∈ {1,2, . . . ,nb}

(1) correspond to the Coulomb model above
[Mor88a, Mon93a].

The complete model
Considering the effects of both the setA of frictional
contacts and the setB of bilateral constraints, the time
evolution of the dynamical system is governed by the
following differential variational inequality (a differen-
tial problem with set-valued functions and complemen-
tarity constraints):

q̇ = L(q)v
Mv̇ = f (t,q,v)+ ∑

i∈B
γ̂i,b∇Ψi+

+ ∑
i∈A

(γ̂i,nDi,n + γ̂i,uDi,u + γ̂i,wDi,w)

i ∈ B : Ψi(q, t) = 0
i ∈ A : γ̂i,n ≥ 0 ⊥ Φi(q) ≥ 0, and

(γ̂i,u, γ̂i,w) = argmin
µi γ̂i,n≥

√
γ̂2
i,u+γ̂2

i,w

vT (γ̂i,uDi,u + γ̂i,wDi,w)

(2)
The tangent space generatorsDi = [Di,n, Di,u, Di,w]∈

R
6nb×3 are sparse and are defined given a pair of con-

tacting bodiesA andB as:

DT
i =

[0 . . . −AT
i,p AT

i,pAAs̃i,A 0 . . .

0 . . . AT
i,p −AT

i,pABs̃i,B 0 . . .]
(3)

where we useA i,p = [ni ,ui ,wi ] as theR
3×3 matrix of

the local coordinates of theith contact, and introduce
the vectorss̄i,A and s̄i,B as contact point positions in
body coordinates, see Fig. (4), with skew matricess̃i,A

ands̃i,B.

3 THE TIME-STEPPING SCHEME
We formulate the dynamical problem in terms of mea-
sure differential inclusions [Ste00a], whose numeri-
cal solution can be obtained using the following time-
stepping scheme based on the solution of a complemen-
tarity problem at each time step.

Given a positionq(l) and velocityv(l) at the time-step
t(l), the numerical solution is found at the new time-step

t(l+1) = t(l) + h by solving the following optimization
problem with equilibrium constraints [Tas08a]:

M(v(l+1) −v(l)) = hf(t(l),q(l)
,v(l))+ ∑

i∈B
γi,b∇Ψi +

+∑i∈A (γi,nDi,n + γi,uDi,u + γi,wDi,w) , (4)

i ∈ B : 1
hΨi(q(l)

, t)+∇ΨT
i v(l+1) + ∂Ψi

∂ t = 0 (5)

i ∈ A : 0≤ 1
hΦi(q(l))+ DT

i,nv(l+1) ⊥ γ i
n ≥ 0, (6)

(γi,u,γi,w) = argmin
µiγi,n≥

√
γ2
i,u+γ2

i,w

vT (γi,uDi,u + γi,wDi,w) (7)

q(l+1) = q(l) +hL(q(l))v(l+1)
. (8)

Here, γs represents the constraint impulse of a
contact constraint, that is,γs = hγ̂s, for s = n,u,w.
The 1

hΦi(q(l)) term achieves constraint stabilization,
and its effect is discussed in [Ani03a]. Similarly,
the term 1

hΦi(q(l)) achieves stabilization for bilateral
constraints. The scheme converges to the solution of a
measure differential inclusion [Ani04a] when the step
sizeh→ 0.

Several numerical methods can be used to solve (4)-
(7) [Buc98a]. Our approach casts the problem as a
monotone optimization problem by introducing a re-
laxation over the complementarity constraints, replac-
ing Eq. (6) with i ∈ A : 0 ≤ 1

hΦi(q(l)) + DT
i,nv(l+1) −

µi
√

(vT Di,u)2 +(vT Di,w)2 ⊥ γ i
n ≥ 0 . The solution of

the modified time-stepping scheme will approach the
solution of the same measure differential inclusion for
h→ 0 as the original scheme [Ani04a].

Previous work [Ani08a] showed that the modified
scheme is a Cone Complementarity Problem (CCP),
which can be solved efficiently by an iterative numer-
ical method that rely on projected contractive maps.
Omitting for brevity some of the details discussed in
[Ani08a], introducingγi = {γi,n,γi,u,γi,w}

T
, i ∈ A , the

algorithm makes use of the following vectors:

k̃ ≡ Mv (l) +hf(t(l),q(l)
,v(l)) (9)

bi ≡
{

1
hΦi(q(l)),0,0

}T
i ∈ A , (10)

bi ≡ 1
hΨi(q(l)

, t)+ ∂Ψi
∂ t , i ∈ B (11)

The solution, in terms of dual variables of the CCP
(the multipliers), is obtained by iterating the following
contraction maps until convergence:

∀i∈A : γ r+1
i = Πϒi

[
γ r
i −ωηi

(
DT

i vr +bi
)]

(12)

∀i∈B : γ r+1
i = γ r

i −ωηi
(
∇ΨT

i vr +bi
)

(13)

At each iterationr, before repeating (12) and (13), also
the primal variables (the velocities) are updated as:

vr+1 = M−1

(

∑
z∈A

Dzγ r+1
z + ∑

z∈B

∇Ψzγ r+1
z + k̃

)
(14)
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Note that the superscript(l +1) was omitted for brevity.
The iterative process uses the metric projectorΠϒi (·)

[Tas08a], which is a non-expansive mapΠϒi : R
3 → R

3

acting on the triplet of multipliers associated with the
i-th contact. Thus, if the multipliers fall into the fric-
tion cone, they are not modified; if they are in the polar
cone, they are set to zero; in the remaining cases they
are projected orthogonally onto the surface of the fric-
tion cone. The overrelaxation factorω andηi parame-
ters are adjusted to control the convergence. Interested
readers are referred to [Ani08a] for a proof of the con-
vergence of this method.

The previous algorithm has been implemented on se-
rial computing architectures and proved to be reliable
and efficient. In the following the time-consuming part
of the methodology, that is the CCP iteration, will be re-
formulated to take advantage of the parallel computing
resources available on GPU boards.

4 PARALLEL SOLVER ON THE GPU
Modern GPU processors can execute thousands of
threads in parallel, providing computating power in
terms of Teraflops. These processors, usually devoted
to the execution of pixel shading fragments for three
dimensional visualization, can be also exploited for
scientific computation thank to development environ-
ments such as CUDA from NVIDIA, that provides
C++ functions to easily manage GPU data buffers and
kernels, that is operations to executed in parallel on the
data. The proposed algorithm fits well into the GPU
multithreaded model because the computation can be
split in multiple threads each acting on a single contact,
or kinematic constraint, or rigid body depending on the
stage of the computation.

Buffers for data structures
In the proposed approach, the data structures on the
GPU are implemented as large arrays (buffers) to match
the execution model associated with NVIDIA’s CUDA.
Specifically, threads are grouped in rectangular thread
blocks, and thread blocks are arranged in rectangular
grids. Four main buffers are used: the contacts buffer,
the constraints buffer, the reduction buffer, and the bod-
ies buffer.

Special care should be paid to minimize the mem-
ory overhead caused by repeated transfers of large data
structures: we organized data structures in a way that
minimizes the number of fetch and store operations and
maximizes the arithmetic intensity of the kernel code,
as recommended by the CUDA development guide-
lines.

The data structure for the contacts has been mapped
into columns of four floats as shown in Fig. 5. Each
contact will reference its two touching bodies through
the two pointersBA andBB, in the fourth and seventh
rows of the contact data structure.

There is no need to store the entireDi matrix for the
ith contact because it has zero entries for most of its
part, except for the two 12x3 blocks corresponding to
the coordinates of the two bodies in contact. In fact,
once the velocities of the two bodiesṙAi , ωAi , ṙBi and
ωBi have been fetched, the productDT

i vr in Eq.(12) can
be performed as

DT
i vr = DT

i,vA
ṙAi +DT

i,ωA
ωAi +DT

i,vB
ṙBi +DT

i,ωB
ωBi

(15)
with the adoption of the following 3x3 matrices

DT
i,vA

= −AT
i,p, DT

i,ωA
= AT

i,pAA˜̄si,A

DT
i,vB

= AT
i,p, DT

i,ωB
= −AT

i,pAB˜̄si,B

(16)
SinceDT

i,vA
= −DT

i,vB
, there is no need to store both ma-

trices, so in each contact data structure only a matrix
DT

i,vAB
is stored, which is then used with opposite signs

for each of the two bodies.
Also the velocity update vector∆vi , needed for the

sum in Eq.(14) is sparse: it can be decomposed in small
subvectors. Specifically, given the masses and the iner-
tia tensors of the two bodiesmAi , mBi , JAi andJBi , the
term ∆vi will be computed and stored in four parts as
follows:

∆ṙAi = m−1
Ai

Di,vA∆γ r+1
i , ∆ωAi = J−1

Ai
Di,ωA∆γ r+1

i

∆ṙBi = m−1
Bi

Di,vB∆γ r+1
i , ∆ωBi = J−1

Bi
Di,ωB∆γ r+1

i
(17)

Note that those four parts of the∆vi terms are not
stored in thei-th contact data structure or in the data
structure of the two referenced bodies (because multi-
ple contacts may refer the same body, hence they would
overwrite the same memory position). These veloc-
ity updates are instead stored in the reduction buffer,
which will be used to efficiently perform the summa-
tion in Eq.(14). This will be discussed shortly.

The constraints buffer, shown in Fig. 6, is based on a
similar concept. Jacobians∇Ψi of all scalar constraints
are stored in a sparse format, each corresponding to
four rows ∇Ψi,vA, ∇Ψi,ωA, ∇Ψi,vB, ∇Ψi,ωB. There-
fore the product∇ΨT

i vr in Eq.(13) can be performed
as the scalar value∇ΨT

i vr = ∇ΨT
i,vA

ṙAi + ∇ΨT
i,ωA

ωAi +

∇ΨT
i,vB

ṙBi + ∇ΨT
i,ωB

ωBi . Also, the four parts of the
sparse vector∆vi can be computed and stored as

∆ṙAi = m−1
Ai

∇Ψi,vA∆γ r+1
i , ∆ωAi = J−1

Ai
∇Ψi,ωA∆γ r+1

i

∆ṙBi = m−1
Bi

∇Ψi,vB∆γ r+1
i , ∆ωBi = J−1

Bi
∇Ψi,ωB∆γ r+1

i
(18)

Figure 7 shows that each body is represented by a
data structure containing the state (velocity and posi-
tion), the mass moments of inertia and mass values, and
the external applied forceF j and torqueC j . Note that
to speed the iteration, it is advantageous to store the
inverse of the mass and inertias rather than their origi-
nal values, because the operationM−1Di∆γ r+1

i must be
performed multiple times.
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Figure 5: Grid of data structures for frictional contacts,
in GPU memory.
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The Parallel Algorithm

A parallelization of computations in Eq.(12) and
Eq.(13) is easily implemented, by simply assigning
one contact per thread (and, similarly, one constraint
per thread). In fact the results of these computations
would not overlap in memory, and it will never happen
that two parallel threads need to write in the same
memory location at the same time. These are the two
most numerically-intensive steps of the CCP solver,
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Figure 8: The reduction buffer avoids race conditions
in parallel updates of the same body state.

called theCCP contact iteration kernel and theCCP
constraint iteration kernel .

However, the sums in Eq.(14) cannot be performed
with embarrassingly-parallel implementations: it may
happen that two or more contacts need to add their
velocity updates to the same rigid body. A possi-
ble approach to overcome this problem is presented in
[Har07a], for a similar problem. We adopted an alterna-
tive method, with higher generality, based on theparal-
lel segmented scanalgorithm [Sen07a] that operates on
an intermediate reduction buffer (Fig.8); this method
sums the values in the buffer using a binary-tree ap-
proach that keeps the computational load well balanced
among the many thread processors. In the example of
Fig.8, the first constraint refers to bodies 0 and 1, the
second to bodies 0 and 2; multiple updates to body 0 are
then accumulated with parallel segmented reduction.

Since collision detection is the biggest computational
overhead after the CCP solution, we also developed a
GPU-based parallel code for collision detection, obtain-
ing a 20x speedup factor when compared to the serial
code of the Bullet library. The GPU collision code
requires the use of multiple kernels and complex data
structures that we cannot describe here because of lim-
ited space; details are available in [Maz09a].

The following pseudocode shows the sequence of
main computational phases at each time step, for the
most part executed as parallel kernels on the GPU.

Algorithm 1: Time Stepping using GPU.

1. (GPU or host) Perform collision detection between
bodies, obtainingnA possible contact points within
a distanceδ , as contact positionssi,A, si,B on the two
touching surfaces, and normalsni .

2. (Host, serial) If needed, copy contact and body data
structures from host memory to GPU buffers. Copy
also constraint data (residualsbi and jacobians) into
the constraint buffer.
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3. (GPU, body-parallel) Force kernel. For each body,
compute forcesf(t(l),q(l)

,v(l)), if any (example,
gravity). Store these forces and torques intoFj and
Cj .

4. (GPU, contact-parallel) Contact preprocessing
kernel. For each contact, given contact normal and
position, compute in-place the matricesDT

i,vA
, DT

i,ωA

andDT
i,ωB

, then computeηi and the contact residual

bi = {1
hΦi(q),0,0}T .

5. (GPU, body-parallel) CCP force kernel. For each

body j, initialize body velocities:̇r (l+1)
j = h m−1

j F j

andω(l+1)
j = h J−1

j C j .

6. (GPU, contact-parallel) CCP contact iteration ker-
nel. For each contacti, do
γ r+1
i = λ Πϒi

(
γ r
i −ωηi

(
DT

i vr +bi
))

+ (1− λ )γ r
i .

Note thatDT
i vr is evaluated with sparse data, using

Eq. (15). Store∆γ r+1
i = γ r+1

i − γ r
i in contact buffer.

Compute sparse updates to the velocities of the two
connected bodiesA andB, and store them in theRi,A

andRi,B slots of the reduction buffer.

7. (GPU, constraint-parallel) CCP constraint itera-
tion kernel. For each constrainti, do
γ r+1
i = λ

(
γ r
i −ωηi

(
∇ΨT

i vr +bi
))

+ (1 − λ )γ r
i .

Store∆γ r+1
i = γ r+1

i − γ r
i in contact buffer. Compute

sparse updates to the velocities of the two connected
bodiesA andB, and store them in theRi,A andRi,B

slots of the reduction buffer.

8. (GPU, reduction-slot-parallel) Segmented reduc-
tion kernel. Sum all the∆ṙ i , ∆ωi terms belonging
to the same body, in the reduction buffer.

9. (GPU, body-parallel) Body velocity updates ker-
nel. For each j body, add the cumulative veloc-
ity updates which can be fetched from the reduction
buffer, using the indexRj .

10. Repeat from step 6 until convergence or until num-
ber of CCP steps reachedr > rmax.

11. (GPU, body-parallel) Time integration kernel.
For each j body, perform time integration as

q(l+1)
j = q(l)

j +hL(q(l)
j )v(l+1)

j

12. (Host, serial) If needed, copy body, contact and
constraint data structures from GPU to host mem-
ory.

5 IMPLEMENTATION AND RESULTS
The GPU iterative solver and the GPU collision detec-
tion have been embedded in our C++ simulation soft-
ware Chrono::Engine. We tested the GPU-based paral-
lel method with benchmark problems and compared it,
in terms of computing time, with the serial method.

Number CPU GPU Speedup Speedup
of CCP CCP CCP CD

bodies [s] [s]
16000 7.11 0.57 12.59 4.67
32000 16.01 1.00 16.07 6.14
64000 34.60 1.97 17.58 10.35
128000 76.82 4.55 16.90 21.71

Table 1: Stress test of the GPU CCD solver and GPU
collision detection.

For the results of Tab.1, we simulated densely packed
spheres that flow from a silo. The CPU is an Intel Xeon
2.66 GHz, the GPU is an NVIDIA Tesla C1060. The
simulation time increases linearly with the number of
bodies in the model. The GPU algorithm is at least one
order of magnitude faster than the serial algorithm.

Other stress tests were performed with even larger
amounts of spheres, such as in the benchmark of Fig.10.
Similarly, the test of Fig.9 simulates one million of
rigid bodies inside a tank being shaken horizontally (the
amount of available RAM on a single GPU board lim-
ited us to go beyond that limit).

Using the proposed GPU method we are already
able to simulate granular soil (pebbles, sand) under the
tracks of a vehicle, see Fig.3, in fact our GPU colli-
sion detection code is able to handle nonconvex shapes
by performing spherical decomposition. To simulate
larger scenarios, with smaller grains of sand, future ef-
forts will address the possibility of using domain de-
composition, with clusters of multiple GPU boards on
multiple host.

6 CONCLUSIONS
A parallel numerical method has been proposed for
the simulation of multibody mechanical systems with
frictional contacts and bilateral constraints. The paral-
lel method is based on an iterative approach that falls
within the mathematical framework of measure differ-
ential inclusions and is backed by a rigorous conver-
gence analysis.

Results obtained with the proposed method demon-
strate that the GPU version of the dynamics solver
is about 20x faster than the CPU version. A similar
speedup has been obtained for the collision detection.
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Figure 9: Benchmark with one million of rigid bodies with friction.

    
Figure 10: Benchmark: mixing of two granular materials.
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