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ABSTRACT

We present a new method for extracting features of a 3D object targeted to CAD modeling directly from the point cloud of its
surface scan. The objective is to obtain an editable CAD model that is manufacturable and describes accurately the structure
and topology of the point cloud. The entire process is carried out with the least human intervention possible. First, the point
cloud is sliced interactively in cross sections. Each cross section consists of a 2D point cloud. Then, a collection of segments
represented by a set of feature points is derived for each slice, describing the cross section accurately, and providing the basis
for an editable feature-based CAD model. For the extraction of the feature points, we exploit properties of the convex hull and
the Voronoi diagram of the point cloud.
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1 INTRODUCTION

2005January 31 – February 4
Many applications in manufacturing, medicine, ge-

ography, design, and entertainment require scanning of
rather complex three-dimensional objects for the pur-
poses of incorporating them into a computer-based or
computer-aided processing system, a technique com-
monly known as Reverse Engineering or Digital Re-
construction [Vara97, Thom99, Benk01, Thom96]. 3D
scanning of a solid object yields a representation that
consists of the coordinates of several points of the sur-
face of the object. Advanced measuring techniques
have been developed that produce a large amount of
points lying on the object surface. Such a point set rep-
resenting the boundary of a three-dimensional object
is often called a point cloud. Point clouds do not in-
clude structural or connectivity information, and there-
fore they do not provide editable models.

We present a method for dividing the point cloud into
several slices (cross-sections), which we process sepa-
rately to extract local structural information. This in-
formation is used to detect local features of the object.
Such features describe holes, extrusions or protrusions
on the object, symmetrical or similar parts, or flipped
and arbitrarily transformed versions of already known
features. More specifically, our method uses a subset of
the point cloud each time, which is subsequently used
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to extract a feature locally [Gumh01]. This is accom-
plished by dividing the point cloud into several slices.
The points of each slice can be considered to be co-
planar, and so we process each slice as a 2D set of
points allowing us to develop very efficient and accurate
local feature extraction techniques. The set of points
of each slice are processed with efficient algorithms
and are represented with a sequence of feature points
derived with advanced computational geometry based
techniques. We call this sequence of feature points fea-
ture polyline. A closed cubic B-Spline curve is then
computed, which interpolates the feature points. The
local per slice feature representation is then combined
with information provided from several adjacent slices,
to reconstruct the global structure and morphology of
the object.

In a nutshell, our paper makes the following technical
contributions:

• Presents an interactive technique for segmenting the
point cloud into slices. This process is supported by
optimization algorithms for correct placement and
user-intuitive visualization techniques.

• Introduces a fast technique for detecting characteris-
tic points that describe the shape of a slice based on
iterative application of the convex hull and Voronoi
diagram algorithms.

• Establishes a novel theoretical formulation for char-
acterizing structural properties of 2D point sets.

• Provides an editable representation of the 2D point
sets with the use of closed cubic B-Spline curves.

The rest of this paper is structured as follows. Section
2 presents related work. Section 3 presents the interac-
tive slicing technique. Section 4 introduces the theoret-
ical formulation for morphology analysis and presents a
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Figure 1: A point cloud of a cycladean idol, and the original model. The point cloud was acquired using a base
Scanny 3d color laser scanner [Scan08].

convex hull and Voronoi-diagram based method to de-
tecting feature point sets. Section 5 describes the B-
Spline curve interpolation. Section 6 presents a perfor-
mance analysis of the methods and Section 7 offers a
summary of our results.

2 RELATED WORK
Several methods have been developed that extract fea-
tures from a point cloud. Some of these methods are
applied on mechanical objects, and others on freeform
objects. While mechanical objects are easy to de-
scribe with a standard a set of features, representing
freeform objects necessitates the expansion of the usual
repertoire of features and operation with innovative
constraint-based features. Jeong et al. [Jeon02] use
an automated procedure to fit a hand-designed generic
control mesh to a point cloud of a human head scan. A
hierarchical structure of displaced subdivision surfaces
is constructed, which approximates the input geometry
with increasing precision, up to the sampling resolution
of the input data. Sithole and Vosselman [Sith03] have
developed a method for detecting urban structures in an
irregularly spaced point-cloud of an urban landscape.
Their method is designed for detecting structures that
are extensions to the bare-earth (e.g., bridges, ramps),
and it involves a segmentation of a point-cloud followed
by a classification. Au and Yuenb [Au99] use a method
that fits a generic feature model of a human torso to a
point cloud of a human torso scan. The features are rec-
ognized within the point cloud by comparison with the
generic feature model. This is achieved by optimizing
the distance between the point cloud and the feature sur-
face, subject to continuity requirements. This is a pow-
erful approach when we have a priori knowledge of the
set of features. Amenta et al. [Amen98] proposed the
crust algorithm, which combines the point cloud with

the vertices of the Voronoi diagram, and computes the
Delaunay tetrahedralization of the combined point set.
The triangles where all vertices are sample points (not
Voronoi vertices) are considered to form the object sur-
face. Attene and Spagnuolo [Atte00] use properties of
geometric graphs. The Euclidean minimum spanning
tree is used as a constraint during the sculpturing of
the Delaunay tetrahedralization of the data set, and in
addition another constraint is used, the so-called Ex-
tended Gabriel Hypergraph (EGH). These approaches
are very interesting and with many application in com-
puter graphics.

These methods however provide a triangular repre-
sentation with the capability of only local editing by al-
tering interactively the positioning of triangle vertices.
Such models are not appropriate for editing and reman-
ufacturing in the context of computer aided design.

Fayolle et. al. [Shap04] propose a method which
helps to fit existing parameterized function represen-
tation (FRep) models to a given dataset of 3D surface
points. Best fitted parameters of the model are obtained
by using a hybrid algorithm combining simulated an-
nealing and Levenberg-Marquardt methods. Ohtake et.
al. [Ohta03] construct surface models using piecewise
quadratic functions that capture the local shape of the
surface, and weighting functions that blend together the
local shape functions. These works process the entire
3D cloud to detect the object’s constructive logic.

Related work on deformable models is described
in [Terz87, Meta93, Mill91, Mall95, McIn96]. These
methods are quite general and have been applied in
determining contours. To our knowledge there is no
efficient method developed for extracting features
based on deformable models in this context. However
this is a promising direction that requires further
research.
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Figure 2: A point cloud can be sliced in any desired di-
rection. Slice thickness is determined adaptively (point
cloud of a hip bone [Cybe99]).

3 SLICING THE POINT CLOUD
Processing the point cloud is performed in two impor-
tant steps:

• choosing an appropriate slicing direction and

• determining the proper thickness of a slice.

The direction along which we choose to divide the ob-
ject in slices may influence the process of feature ex-
traction and the resulting model. Thus, a major issue
in point cloud segmentation is determining the slicing
direction. To illustrate this, consider an object that con-
tains a cylindrical hole. If the slicing direction matches
the cylinder axis, the points of the slice located near the
hole would form a circular region. If the slicing direc-
tion is different than the cylinder axis, the points of the
slice would form an elliptical region or even a single
line segment.

The effectiveness of the editability of the resulting
CAD model also depends on the selection of the slicing
direction. To this end we can either align interactively
the object to the desired direction, or seek automatically
a transformation of the object that minimizes a target
function, e.g. PCA [Joll02]. We use a combination of
automated and interactive methods.

Another key issue is to determine the proper thick-
ness for a slice. When a slice is too thick, the points
that belong to it will not provide useful information, as
we might get many features tangled together. To avoid
this we can split it into two new slices with reduced
thickness. On the other hand, if the points of two adja-
cent slices carry almost the same information, or if the
points of a slice are not enough to describe this part of
the object resulting in discontinuities, we can merge the
two slices into one slice with increased thickness. The
thickness of a slice may also differ from slice to slice,
if we require more detailed processing in some parts of
the point cloud than the rest.

To avoid performing a morphological analysis of the
3D point cloud in the preprocessing phase, we have
chosen to initially slice the point cloud in slices of equal
thickness, by setting the slice thickness manually. We
may also determine the ideal slice thickness adaptively,
as described in [Wu04, Ma04, GHLi02, Star05]. The
distance between two slices can also be a parameter, but
as we do not want to omit any information from points
located between two slices, we set each slice to start ex-
actly where the previous slice ends (and thus there is no
empty space between adjacent slices).

Once we have divided the point cloud into slices, the
points that belong to each slice are projected on a plane
that is perpendicular to the slicing axis. After this pre-
processing we may use 2D techniques for processing
the points of the slice. Figure 2 illustrates an exam-
ple of a sliced point cloud of a hip bone from Cyber-
ware [Cybe99], while Figure 3 illustrates the points of
a slice, which are projected to the highlighted plane.
Figure 2 also depicts a snapshot of the user interface
of the prototype that we have developed to evaluate the
effectiveness of method.

Figure 3: A slice of the cloud is highlighted, and the
points of this slice are projected on a plane that is per-
pendicular to the slicing direction.

4 IDENTIFYING FEATURE POINTS
In reverse engineering, a point cloud usually consists
of a very large amount of points, depending on the size
and shape of the prototype object, and also on the accu-
racy that was used to scan the object. The large amount
of points makes it difficult to process this raw informa-
tion. Thus, we need to reduce the number of points in
the cloud while retaining most of the topology implied
provided by these points.

If the points of a slice form a 2D shape that is con-
vex, then we simply compute the convex hull of the
points. This will accurately describe the shape with a
polyline consisting usually of much fewer vertices than
the points of the slice. For example, if the points of a

WSCG 2009 Full papers proceedings 139 ISBN 978-80-86943-93-0



slice lie on a rectangle, the convex hull consists of only
four vertices and four edges, while the slice may consist
of thousands of points.

However, if the shape implied by the points in a slice
is not convex then fitting a polyline to these points
needs additional information beyond the convex hull.
We start by computing the convex hull [Barb96] of the
points as shown in Figure 4, to identify some initial fea-
ture points. We partition the points in regions, one for
each line segment of the convex hull.

Some of these regions may consist exclusively of
points very close to the convex hull (convex regions),
while other regions contain of points located far from
it (concave regions). Before treating these concave re-
gions any further, we need to check wether each point is
assigned to the proper region, since there may be cases
in which a point is closest to one region, but belongs to
another region, for example the one that is located on
the opposite side of the closed feature polyline(e.g. see
Figure 5). To avoid having such erroneous assignments
we define:

Definition 1 A point pN is a neighbor point of a point p
if it lies within distance smaller or equal to some char-
acteristic constant ε .

ε is called the neighborhood radius which is a charac-
teristic of the point cloud and is derived from statisti-
cally processing the topology of the slice.

Definition 2 We call separability tolerance d > ε of the
point cloud, the minimum number with the property that
for any pair of points p1, p2 that belong to different
non-adjacent regions it holds ||p1− p2|| ≤ d.

d is a characteristic of the point cloud derived from sta-
tistically processing the topology of the cross-section.

Then we have,

Definition 3 The shortest neighbor path between two
points s1 and sn of the point cloud slice is a sequence of

Figure 4: The convex hull of the slice points in 2D.
The vertices of the convex hull are identified as feature
points for this slice (cycladean idol cloud [Scan08]).

Figure 5: The points in the highlighted area (small cir-
cle) are located closer to a region other than they should
be assigned to (d2 < d1). We use the information of
their neighboring points to assign them to the correct
region (point cloud of a boat [Cybe99]).

points [s1,s2, . . . ,sn] such that each point is neighbor to
the next and

n−1

∑
i=1
||si− si+1||

is minimized.

Then given a point sequence P = [p1, p2, . . . pk] that
segments the slice into regions [r1,r2, . . .rk] we calcu-
late the shortest neighbor paths between each adjacent
pair of points (pi, p(i+1)mod n).

Definition 4 The initial seed of a region ri is the short-
est path between pi and p(i+1)mod n.

Finally, we assign each point q of the point cloud to a
region ri such that the initial seed of ri contains a point
s j that minimizes the shortest neighbor path length from
q.

Definition 5 For a point cloud point q the region of q
is defined as the region ri such that the initial seed of ri
contains a point s j that minimizes the shortest neighbor
path length from q.

Now that we have ensured that each point is asso-
ciated to the correct region, we can treat the concave
regions further by computing the Voronoi diagram of
their points, and using a property called the largest
empty circle [De B97, ORou98].

The idea is to have a circle of variable radius and
throw it towards the point cloud from a given direc-
tion (the general idea includes a sphere on the three-
dimensional space). When it touches a point of the
region, this point is fixed and the circle continues to
move around it, until a second point is touched. When
the circle touches the second point, it is also fixed, and
the only free variable is the radius, which now starts
decreasing, until the circle touches a third point. The
third point is also fixed, and the circle cannot move any
more. The three points of contact are added to the fea-
ture point set. The center of the circle is one of the
Voronoi vertices of the region.
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Thus, if we compute the Voronoi diagram for the
point cloud region each Voronoi vertex located out-
side the point cloud area is a candidate center for a
largest empty circle that is touching three or more re-
gion points. We can use this property for detecting
empty largest circles that have their center on a Voronoi
region that is far from the point cloud region and to-
wards the outside. Then the feature points are the points
of contact of such largest empty circles.

The number of Voronoi vertices that can be used as
centers for largest empty circles is still large, and we
have to choose those vertices that will provide suit-
able feature points. We do not look for Voronoi ver-
tices located very close to the point cloud, because
they would provide feature points located very close to
each other, which can be useful only in cases where
we need increased detail. We do not look for Voronoi
vertices located very far from the points of the cloud
either, because they would provide feature points lo-
cated far from each other, leading to lower detail re-
sults. Also, we do not look for Voronoi vertices lo-
cated close to each other, because they would provide
the same feature points, or feature points very close to
each other as in the first case. Furthermore, Voronoi
vertices on the wrong side of the point cloud are also
being excluded, because we are interested in feature
points on the boundary of the point cloud. What we
need is to choose several Voronoi vertices evenly dis-
tributed along the region points, at an intermediate dis-
tance from the region points. Figure 6 (right) illustrates
the candidate Voronoi vertices for two concave regions.

By combining the initial convex hull with the feature
points provided by the selected Voronoi vertices of each
region, we get a feature polyline that interpolates the
points of the slice adequately in most regions. We can
perform this operation repeatedly for the rest of the re-
gions until all regions consist of points that are located
near the fitting polyline (for a termination criterion see
for example [Said02]). The final result of the fitting
feature polyline is illustrated in Figure 7 (right).

The method is summarized in Algorithm 1. Note that
L is a plane perpendicular to the slicing axis.

The use of the Voronoi diagram and the largest empty
circle for identifying feature points is also known as the
rotating ball technique [Bern99], and the feature points
form the so called alpha shape of the point set [Edel94].

5 INTERPOLATING FEATURE
POINTS WITH CUBIC B-SPLNE
CURVES

The feature polyline we have extracted so far may pro-
vide useful information concerning the topology of the
2D point set, but it does not include smoothness re-
quirements. As discussed in [Lee99], it is a common
practice to use B-Spline curves, because they are easy to
compute and capable of representing adequately most

Input: a set P of points, Slice i
Output:an ordered set Fi of feature points
(P(3D)

i ,L) = slice(i,P)
Pi = pro ject(P(3D)

i ,S)
Fi = qconvex(Pi)
Fi j = /0
repeat

for each region Pi j of Fi do
if avg_dist(Pi j,Fi j) > e then

Vi = qvoronoi(Pi j)
Vcandidate = Vi− excluded Voronoi ver-
tices
Fi j = largest_empty_circle(Vcandidate,Pi j)

Fi = Fi∪Fi j
until Fi j 6= /0
return Fi

Algorithm 1: The algorithm for the feature point extrac-
tion.

3D objects. Thus we choose to interpolate a closed
cubic B-Spline curve through the feature points of the
cross-section.

We employ curves of degree 3, because it is the low-
est degree satisfying second-order continuity, and at the
same time ensuring that we have G1 continuity. The
knot vector, the parameter values and the control points
of the interpolating curve are determined according to
the method described in [Lee99].

Once we have acquired the curve that describes the
cross-section, we proceed to the next cross-section and
repeat the same process, until all cross-sections have
been processed, and the point cloud is described by a
sequence of B-Spline contours. Figure 8 illustrates an
example of such a sequence.

So far, we have managed to represent the point cloud
in an editable form, so that a designer may apply mod-
ifications to the 3d model.If the point cloud is a scan
of a mechanical object, CAD features such as pockets,
grooves, gears, holes could be extracted with further
processing of the curve set. This would allow for higher
level modifications to the model. But if the point cloud
is a scan of a freeform object, such CAD features are
not present, and the designer can only use the curve set
for modifications. In this paper we focus on the use of
cross sectional features and we may detect sub features
such as pockets and holes by further post processing.
Future work also includes using a skinning technique
to reconstruct the surface between adjacent curves.

6 PERFORMANCE ANALYSIS
It is not possible to derive an exact evaluation of the
complexity of our approach since this depends on the
shape of the object. Thus in this section we provide an
estimation of the expected complexity as a function of
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Figure 6: (Left)Voronoi vertices that lie reasonably far from the point cloud are used to identify the next set of
feature points of this region. (Right) Only Voronoi vertices that are located outside the 2D area of interest are used
for feature extraction. Here, this is illustrated for two regions (cross-section of the hip point cloud [Cybe99]).

Figure 7: For the feature polyline to fully describe a region, several iterations may be required. (Left) The first
iteration of our method applied on a region. (Center) The second iteration for the same region. (Right) After the
second iteration the region is described as expected.

the number of points in the point cloud. The complex-
ity is measured in point operation as we have a large
number of points in the point cloud and most of the
processing is performed point-wise.

Before we apply our method to a point cloud, three
standard steps are required, which require O(n) point
operations each (where n is the number of points in the
cloud). These are (a) loading the cloud into memory,
(b) slicing the cloud, and (c) projecting the slice points
on the slice. Slicing the cloud requires O(n) because
each point has to be assigned to a slice, so the whole
cloud has to be processed, regardless of the number of
slices. The same applies for projecting the points to a
slice.

The convex hull of each slice requires O(ni logni) op-
erations (ni being the number of points in slice i). But
since we compute the convex hull for all slices, it sums
up to O(∑s

i=1 ni logni) where s is the number of slices,
which is bounded by O(n logn), since ∑s

i=1 ni = n.
At this point, we have to isolate the regions of the

slice points according to the convex hull, and compute
the Voronoi diagram only for those regions, which are
not adequately described by the feature polyline. This
step depends on the shape of the slice points, and may
require computation for up to all regions (or for no re-

gion at all, if the points of the slice form a convex poly-
gon).

Considering the case where we have to repeat the pro-
cess for all regions, it would take O(n j logn j) point op-
erations for the n j points of region j. This means that
we need O(∑r

j=1 n j logn j) operations for slice i, where
r is the number of regions, and O(∑s

i=1 ∑r
j=1 ni j logni j)

for all slices. This is also bounded by O(n logn), since

s

∑
i=1

r

∑
j=1

ni j = n

One issue is the number of iterations required to fully
fit the feature polyline to the slice points. It depends
on the shape of the points, and in the worst case it may
require up to O(logni) steps to process the ni points of
slice i, i.e. O(logn) for all slices. In practice, it usually
takes only a constant number of steps.
To select the Voronoi vertices in all regions and all
slices, it requires O(n), and to identify the next feature
points and update the feature polyline it requires a con-
stant number of point operations.

To fully update the feature polyline in all slices and to
identify all feature points we need O(logn) iterations of
either O(1), O(n), or O(n logn) point operations. So, in
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Figure 8: The curves of the entire cycladean idol point cloud (100 cross-sections).

conclusion, to derive descriptive feature point sets for
all slices of the point cloud takes O(n log2 n) time.

For the curve interpolation of a slice, the worst case
includes all the points of the slice. Then we need O(ni)
time to compute the knot vector, O(ni) for the parame-
ter values, and O(n) for the control points, since it re-
quires solving a triagonal linear system of equations. In
conclusion, for the whole point cloud to be processed,
it requires O(n log2 n) time.

7 SUMMARY
We have developed a method for representing cross sec-
tions (slices) of a point cloud, by identifying the a set
of feature points for each cross-section. Future work
includes building a solid model of the objects by us-
ing skinning techniques on the derived B-Spline cross-
sections.
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