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1. Catmull-Rom Spline (CRS)

» Catmull-Rom Spline is & continuous curve. Cardinal spline interpolates
piecewise cubics for each segment.

» A CRS segment is defined by four control points, iR.,1, Pj, Pj+1 and
Pj_|_2.

« The j'" segment of Cardinal spline interpolates betweenmiadle control

points i.e.,P; andPj;1. Theend control pointsi.e.,P;_; andPj,, are used
to calculate the tangent & andPj 1.
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Catmull-Rom Spline

Qj(ti) = [( F—t)P—1
[312,3 5t2 + 2] PJ (1)
[ 3t3+4t ‘|‘t|]PH_]_

+ (_t|3 i )PH—2]7
wheret; is parameter of interpolation ,€0t; < 1. In order to generate points
betweerP; andP; 1 inclusive, the parametéris divided into(n— 1) intervals
between 0 and 1 inclusive, aiy (tj) is evaluated ah values oft;.
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. Quadratic Bezier Curve (QBC)

» Quadratic Bzier curve (QBC) is &° continuous curve.

o A QBC segment, is defined by three control points, B, P, andP.. Py
andP, are callecend control point¢ECP), while P; called amiddle control
point (MCP).

e To generate continuous QBC that interpolatel pointsk curve segments
are used. Equation of a QBC segment can be written as follows:

Qt)) = (1—t)*Po+ 2t (1L — ;) P+ 2Py, 2)

wheret; is a parameter of interpolation ,<0t; < 1. In order to generate
points betweery andP. inclusive, the parametéris divided into(n— 1)
intervals between 0 and 1 inclusive, aQg;) is evaluated a values oft;.
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\d
. QBC Least Square Fitting

Middle control poin(MCP) i.e., P, of QBC is obtained by least square method.
Least square method gives thestvalue of MCP that minimizes the squared
distance between the original and the fitted data. If theraradata points

in a segment, an@; andQ(t;) are values of original and approximated points [ . ppe
respectively then we can write the least square equation as follows:

m
U="Y[0i-Qt)?

i; | |

Substituting the value d(t;) from Eq. @) in Eq. (3) yields:
U= Z 1—1)%Po+ 26 (1 — )P+ t7Po)%

Differentiating Eq. 4) partially with respect td”; yields:

JU

a—Pl — O.

Solving Eq. b) for P, gives:

S [P — (1—6)*R—t7Ps]

"= St 2i(1-t)

o
3)
|
L
(4)
(5)
(6)
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4. Video Data Compression

e Prevalent temporal video data compression methods are are called moti
estimation (ME) or motion compensation (MC) methods.

o ME algorithms are based on temporal changes in intensities of sequence
frames.

e It is quite possible that there is change in intensities without actual motio
e.g., camera movements or illumination conditions changes.

e We developed a method of lossy temporal video data compression usi
spline fitting.

e Spline based intensity approximation methods are more robust because t
work in both situations i.e., changes in intensities with or without actua

motion. Whereas conventional motion compensation methods based ¢

block matching are dependent on actual motion of object (block) to find th
matching block.
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Video Data Compression

e Digital video data consists of sequence of frames (images) in temporal d
mension. Each frame consists of rectangle 2D array of pixels.

e Intensity or color values are associated with each pixel.

e Value of a pixel in a frame can be considered as a point in Euclidean spac
R! or R® for intensity and color respectively.

e If a video consists of a sequenceMfframes then for each pixel we have
a set of valueq p1, p2,...,pm}, i.e., pj =1j or pj = (X|,Yj,Zj) , where
1< j <M. |isintensity andXY Zcan be pixel values iRGB Y GC; or
HSV color space.
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5. Fitting Strategy

e Fitting process is applied to temporal data of each pixel individually. We
have to approximate thHd values of each pixeD = {p1, p2,..., pm} (Orig-
inal data) by spline fitting.

o Input: (1)upper limit of erroré'™t j.e., maximum allowed square distance
between original and fitted data, e.§'™ = 100 (2)initial breakpoint in-
terval A, i.e., pixel after evenA!" frames is taken as and control point
e.g.,A =12 then set of initial keypixelK is K = {p1, p13, P25, P37, - - -, Pn}-

e The fitting process divides the data into segments based on keypixels.
segment is set of all points (pixels) between two consecutive keypixels

e.0.S = {p1,P2---, P13}, S ={p13,P14,-- -, P25}
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6. Fitting Strategy

e Fitting process is applied to temporal data of each pixel individually. Colo
or luminance value of a pixel at frames p;, where 0< p; < 255 and
1<i<n We have to approximate the values of each pixeD =
{p1, P2,---, Pn} (Original data) by spline fitting.

o Input: (1) upper limit of error &' j.e., maximum allowed square dis-
tance between original and fitted data, e5§™ = 100 (2)initial keyframe
interval 4, i.e., pixel after evenyA" frames is taken as aend control
point of CRS or QBC, e.g.A = 12 then set of initial keypixelK is

K = {p1, P13, P25, P37, - -, Pn}-

e The fitting process divides the data into segments based on keypixels.
segment is set of all points (pixels) between two consecutive keypixels
e.0.S = {p1,P2, ..., P13}, S = { P13, P14, - .-, P25}.




Fitting Strateqgy

e Spline interpolation is performed for each segment ainterpolated val-
ues (approximated dat® = {Qq1,dp, .. .,0n} are obtained.

e Then we compute the error, i.e., squared distance between each po e | m
of original data and its corresponding point on approximated data KRS
| P —qu2, 1 <i<n. Among all error values we compute the maximum
error EM™> = Max (d?,d3,...,d?). If EMis greater thart'™ then we add
a point (new keyframe) from original data in the set of keyframes where th
error is maximum between original and approximated data.

e Due to addition of a new keyframe a segment is split and replace
by two new segments. For example §f"® = dZ then segmeng; is Quit
split and a new keyframe 6 is inserted between keyframes 1 and
(K ={1,6,13,25,37,...,n}) and two new segmentsps, p2,..., Ps} and
{pe, P7,- - -, P13} replaceS;. The fitting process is repeated with new set of
keyframes untiE ™2is less than or equal ©'™ for each segment.
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Catmull-Rom spline fitting to luminance values in 80 frames of a video,
Eimt — 21,8 = 79, PSNR=43.845-dB.
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Quadratic Ezier curve fitting to luminance values in 80 frames of a video,
gim— 21,6 =79, PSNR=45.115-dB.
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/. EXxperiments and Results

Details of input video sequences.

Video Name

Format

Number of
Frames

Bit-rate

Salesman
(luminance)

CIF
352x 288

45

Foreman
(luminance)

SIF
352x 288

44

Darius

(RGB)

SIF
352x 288

44

Performance comparison of TSS, CRS and QBC.

Method
Name

PSNR

Salesman

Bit-rate

PSNR

Foreman
Bit-rate

TSS
CRS
QBC

38.
38.
38.

132
244
291

1.7768
0.8574
0.8578

35.875
35.589
35.812

2.7509
2.0687
2.2516
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30" frame ofSalesmarwideo sequencé'™ = 100. Top: CRS approximated
frame, 38.68-dB, 0.92991-bpp. Bottom: QBC approximated frame,
39.968-dB, 1.0796-bpp.
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30" frame ofForemanvideo sequencé'™ = 100. Top: CRS approximated
frame, 37.591-dB, 2.401-bpp. Bottom: QBC approximated frame, 38.191- dE
2.7374-bpp.
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30" frame ofDarius video sequencé&'™ = 100. Top: CRS approximated
frame, 41.838-dB, 4.4234-bpp. Bottom: QBC approximated frame,
42.272-dB, 4.9813-bpp.
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8. Conclusion & Future Work

+ We presented a method of compression of temporal video data by Catmu R
Rom Spline and Quadratic&ier Curve Fitting.

+ Experimental results show that the proposed method yields very good resu
both in terms of objective and subjective quality measurement parameters, |
bit-rate/PSNR and human visual acceptance, without causing any blocking &
tifacts..
+ Compression of spatial video data by spline/curve fitting is under investiga

tion.
THANKING YOU
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