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Motivation

Computer Animation

Synthesizing of natural looking movements and reactive behavior in
real-time is still an important problem.

1 Kinematic models driven by motion capture
(e.g. Gleicher, 1989; Bodenheimer and Rose, 1997; Arikan et al.; 2003, Safanova et al., 2004)

+ high degree of realism

− postprocessing is time consuming, much expertise is required, offline

2 Physical models for reactive behavior
(e.g. Hodgins et al., 1995; Grzeszczuk et al.; 1998; Shao et al., 2005 )

+ self-organized character behavior in real-time

− often lacking rich details and simplified movements

3 Combination of the two approaches (e.g. Hsu et al.; 2005, Chai & Hodgins, 2005)

⇒ Possibility to synthesize a realistic animation in real-time

⇒ Complex dynamic systems
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Motivation

The Idea of Synergies

Motor Control
Classical idea in motor control: Decomposition in low-dimensional
control units with few DOF ⇒ Synergies (e.g. Bernstein, 1967; Flash & Hochner, 2005)

Extraction of movement primitives from EMG data using unsupervised
learning methods like PCA, ICA (e.g. d’Avella et al., 2003; Ivanenko et al., 2005)

⇒ Few movement primitives sufficient to generate different movements

The concept of movement primitives can be transferred to computer
animation!
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Motivation

The Idea of Synergies

Motor Control
Classical idea in motor control: Decomposition in low-dimensional
control units with few DOF ⇒ Synergies (e.g. Bernstein, 1967; Flash & Hochner, 2005)

Extraction of movement primitives from EMG data using unsupervised
learning methods like PCA, ICA (e.g. d’Avella et al., 2003; Ivanenko et al., 2005)

⇒ Few movement primitives sufficient to generate different movements

The concept of movement primitives can be transferred to computer
animation!

A. Park, A. Mukovskiy, L. Omlor, M. Giese ( Laboratory for Action Representation and Learning Dept. for Cognitive Neurology Hertie Center for Clinical Brain Research University Tübingen )February 4th 2008 3 / 20



Main Goals

Main Goals

Learning of movement primitives from full-body MoCap data

Transformation of such trajectory models into a real-time capable
animation system

High-quality animation of complex human movements

Interactive behavior and crowd animation
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Synergy-Based Modelling Learning of Movement Primitives

Learning of Movement Primitives

Motion Capturing of natural,
emotional straight and cyclic walking

Extraction of primitives by using
ICA on full-body joint angles
⇒ Source signals very similar, but
time-shifted against each other

Generative mixing model: Superposition of

independent shift-invariant source signals

Unknowns: mixing weights wij , source signals sj , delays τ ij
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Synergy-Based Modelling New Blind Source Separation Algorithm

New Blind Source Separation Algorithm

New algorithm based on Wigner-Ville transformation. (Omlor & Giese, NIPS 2006)
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Synergy-Based Modelling New Blind Source Separation Algorithm

Approximation Quality

original new algorithm 3 sources PCA 6 sources
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Dynamics for Real-Time Animation Real-Time System

Real-Time System

Source signals are periodic
⇒ desired behavior must be
driven by a stable solution of a
nonlinear dynamical system:
Van der Pol Oscillator
ÿ (t) + λ(y(t)2 − k)| {z }

Amplitude-dependent damping term

ẏ (t) + ω2
0 y (t)

Mapping is realized by nonlinear
Support Vector Regression
sj(t − τij) = s̃ij(t) =
fij(yj(t), ẏj(t))

⇒ Generating trajectories by application of the mixing model

A. Park, A. Mukovskiy, L. Omlor, M. Giese ( Laboratory for Action Representation and Learning Dept. for Cognitive Neurology Hertie Center for Clinical Brain Research University Tübingen )February 4th 2008 8 / 20
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Coordinated Behavior Stabilization by Dynamic Coupling

Stabilization by Dynamic Coupling

Dynamic coupling between oscillators
to stabilize coordination

Form of coupling derived from
Lohmiller & Slotine (2000) permits design
of oscillator networks with a single
stable solution
⇒ Velocity coupling:

ÿ1 + λ
`
y2
1 − k

´
ẏ1 + ω2

0 y1 = α (ẏ2 − ẏ1) + α (ẏ3 − ẏ1)

ÿ2 + λ
`
y2
2 − k

´
ẏ2 + ω2

0 y2 = α (ẏ1 − ẏ2) + α (ẏ3 − ẏ2)

ÿ3 + λ
`
y2
3 − k

´
ẏ3 + ω2

0 y3 = α (ẏ1 − ẏ3) + α (ẏ2 − ẏ3)

⇒ Complex systems build from contracting elements are contracting
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⇒ Complex systems build from contracting elements are contracting

A. Park, A. Mukovskiy, L. Omlor, M. Giese ( Laboratory for Action Representation and Learning Dept. for Cognitive Neurology Hertie Center for Clinical Brain Research University Tübingen )February 4th 2008 10 / 20



Coordinated Behavior Coordinated Behavior of Crowds

Coordinated Behavior of Crowds

Dynamic coupling
of multiple avatars

Self-organized synchronized behavior

Translation and rotation is computed from
foot-ground contact events
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Autonomous Characters Interactive Behavior

Interactive Behavior

Modulation of walking speed by change of the
eigenfrequency ω0 dependent on the distance d(t) between characters

ω0(t) = f (d(t))

Example: Following behavior

A. Park, A. Mukovskiy, L. Omlor, M. Giese ( Laboratory for Action Representation and Learning Dept. for Cognitive Neurology Hertie Center for Clinical Brain Research University Tübingen )February 4th 2008 12 / 20



Autonomous Characters Style Morphing

Style Morphing

Same sources and delays for all styles

Styles (curved and emotional gaits) are defined by weight matrix

⇒ Style changes by blending weights using linear interpolation:

wij (t) = µ (t) wa
ij + (1− µ (t))wb

ij

Navigation as an example of style morphing:
morphing weights µ depend on the change of heading direction ϕi

µ(t) ∼ dϕi

dt
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Autonomous Characters Navigation

Navigation Dynamics

For interactive behavior a navigation model is required

Navigation dynamics from robotics (Schöner & Dose, 1995; Warren, 2006)

The change of the heading direction is determined by the sum of
three terms where pi denotes the position of the character i :

dϕi/dt =

hgoal
(
ϕi ,pi ,p

goal
i

)
︸ ︷︷ ︸

goal-finding term

+
∑

j

havoid
(
ϕi ,pi ,pj

)
︸ ︷︷ ︸

instantaneous obstacle avoidance

+
∑

j

hpcoll
(
ϕi , ϕj ,pi ,pj

)
︸ ︷︷ ︸
predictive obstacle avoidance
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The change of the heading direction is determined by the sum of
three terms where pi denotes the position of the character i :

dϕi/dt =

hgoal
(
ϕi ,pi ,p

goal
i

)
︸ ︷︷ ︸

goal-finding term

+
∑

j

havoid
(
ϕi ,pi ,pj

)
︸ ︷︷ ︸

instantaneous obstacle avoidance

+
∑

j

hpcoll
(
ϕi , ϕj ,pi ,pj

)
︸ ︷︷ ︸
predictive obstacle avoidance

A. Park, A. Mukovskiy, L. Omlor, M. Giese ( Laboratory for Action Representation and Learning Dept. for Cognitive Neurology Hertie Center for Clinical Brain Research University Tübingen )February 4th 2008 14 / 20



Autonomous Characters Navigation

Control of Walking Direction

1 Goal-finding term: (where ϕgoal
i is goal direction

angle of character i)

hgoal
“
ϕi , pi , p

goal
i

”
= sin(ϕgoal

i − ϕi )

2 Instantaneous obstacle avoidance:
havoid

`
ϕi , pi , pj

´
=

sin (ϕi − ϕij) · exp
“
− (ϕij−ϕi )

2

2σ2
ϕ

”
· exp

„
− d2

ij

2σ2
d

«
3 Predictive obstacle avoidance:

hpcoll
`
ϕi , ϕj , pi , pj

´
=

sin(ϕi − ϕpc
ij ) · exp

„
−

(ϕ
pc
ij −ϕi )

2

2σ2
ϕ

«
· exp

 
−

“
d
pc
ij

”2

2σ2
d

!
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Autonomous Characters Navigation

Navigation Demos

Navigation with emotional
changes (from neutral to sad)

Navigation with emotional
changes (from sad to happy)

A. Park, A. Mukovskiy, L. Omlor, M. Giese ( Laboratory for Action Representation and Learning Dept. for Cognitive Neurology Hertie Center for Clinical Brain Research University Tübingen )February 4th 2008 16 / 20



Autonomous Characters Application: Combination of Methods

Self-Organized Dancing Scenario of a ’Welsh Folk Dance’

Related work for synchron. dance perform. with music: (e.g. Takaaki Shiratori et al., 2006; Shinichiro Nakaoka et al., 2004)
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Conclusion and Future Work Conclusion

Conclusion

Simulation of realistic human movements based on learned
components of MoCap trajectories, inspired by the concept of
’synergies’

New more compact method of learning spatial components based on
ICA with time-delays

Real-time capable system: Mapping nonlinear dynamical systems onto
the source signals using SVR

Generating coordinated behavior by coupling dynamic primitives

Navigation as an example for interactive behavior
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Conclusion and Future Work Future Work

Future Work

Extension for non-periodic primitives and more complex movements

Application to facial movements
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