Interactive Cutting Operations for Generating Anatomical Illustrations from Volumetric Data Sets

Jörg Mensmann Timo Ropinski Klaus Hinrichs

Visualization and Computer Graphics Research Group University of Münster, Germany

WSCG 2008

1 Anatomical Illustrations

- Motivation
- Occlusion Handling

2 Deformation Approach

- Requirements
- Related Work
- Technical Realization

3 Interactive Cutting and Deformation

4 Results

5 Conclusions

Going back in time to the 16th century ...

Going back in time to the 16th century ...

Andreas Vesalius: De humani corporis fabrica, 1543

Going back in time to the 16th century ...

Andreas Vesalius: De humani corporis fabrica, 1543

Fast forward 450 years ...

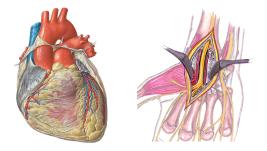
Fast forward 450 years ...

What has changed?

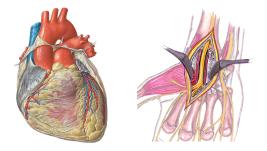
Fast forward 450 years ...

Fast forward 450 years ...

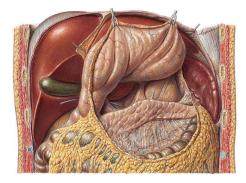
- Overall style similar
- Illustrations still mainly hand-drawn
- Not using data from imaging techniques like CT or MRI


Fast forward 450 years ...

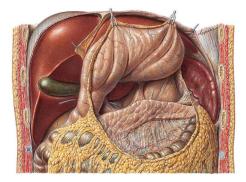
- Overall style similar
- Illustrations still mainly hand-drawn
- Not using data from imaging techniques like CT or MRI


Fast forward 450 years ...

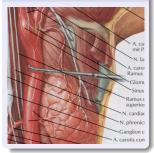
- Overall style similar
- Illustrations still mainly hand-drawn
- Not using data from imaging techniques like CT or MRI



Fast forward 450 years ...


- Overall style similar
- Illustrations still mainly hand-drawn
- Not using data from imaging techniques like CT or MRI

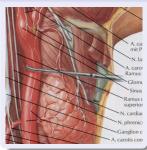
Occlusion Handling


Occlusion Handling

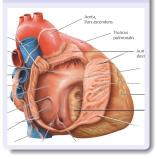
Anatomical atlases use:

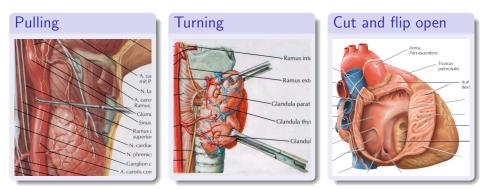
- cutaways ubiquitously
- no transparency or ghosting techniques
- deformations

Pulling



Pulling




Pulling

Cut and flip open

Source	Pull	Turn	Cut/Flip
Netter	19	6	6
Sobotta	33	7	23
Prometheus	22	16	15
Total	74	29	44

Goals/Requirements

Goals

- Create deformation illustrations directly from data generated by CT, MRI, PET, ...
- Support adaption to biological variance / non-typical cases

Goals

- Create deformation illustrations directly from data generated by CT, MRI, PET, ...
- Support adaption to biological variance / non-typical cases

Requirements for generating illustrative deformations

- Retain full data set resolution
- Interactive manipulation
- Physically comprehensible behaviour
- No preprocessing, no segmentation
- Optional support for transparency

Geometry-based

- ▶ Free-Form-Deformation (Sederberg and Parry, 1986)
- Ray Deflectors (Kurzion and Yagel, 1997)
- Feature Aligned Volume Manipulation (Correa et al., 2006)
- \rightarrow Difficult to generate complex deformations

Geometry-based

- ▶ Free-Form-Deformation (Sederberg and Parry, 1986)
- Ray Deflectors (Kurzion and Yagel, 1997)
- Feature Aligned Volume Manipulation (Correa et al., 2006)
- \rightarrow Difficult to generate complex deformations

Physically-based

- Mass-Spring Systems
- Finite Element Method (FEM)
- \rightarrow Exact but slow

Geometry-based

- Free-Form-Deformation (Sederberg and Parry, 1986)
- Ray Deflectors (Kurzion and Yagel, 1997)
- Feature Aligned Volume Manipulation (Correa et al., 2006)
- \rightarrow Difficult to generate complex deformations

Physically-based

- Mass-Spring Systems
- Finite Element Method (FEM)
- \rightarrow Exact but slow

Physically-inspired

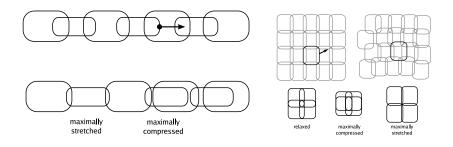
- 3D ChainMail algorithm (Gibson, 1997)
- \rightarrow Good compromise

ChainMail Algorithm (Gibson, 1997)

- Linked volume representation
- Each volume element linked to its 6 neighbors
- Constraints limit relative movement
- Cutting by removing links
- Runtime proportional to number of deformed elements

ChainMail Algorithm (Gibson, 1997)

- Linked volume representation
- Each volume element linked to its 6 neighbors
- Constraints limit relative movement
- Cutting by removing links
- Runtime proportional to number of deformed elements

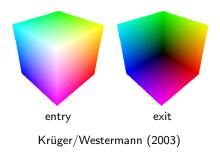


maximally stretched

maximally compressed

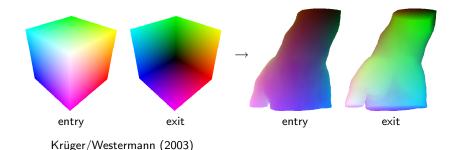
ChainMail Algorithm (Gibson, 1997)

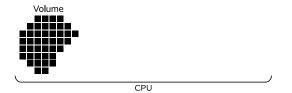
- Linked volume representation
- Each volume element linked to its 6 neighbors
- Constraints limit relative movement
- Cutting by removing links
- Runtime proportional to number of deformed elements

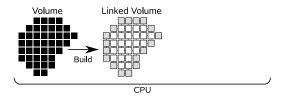


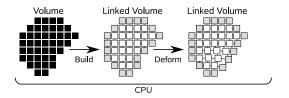
Idea

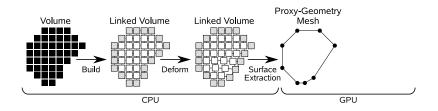
- Integrate into existing GPU ray-casting infrastructure
- Typically a box is used as proxy geometry
- Use surface extracted from ChainMail data structure instead

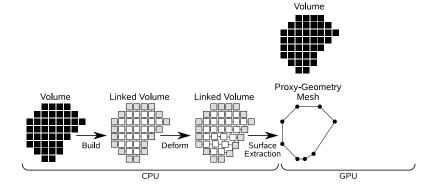

Idea

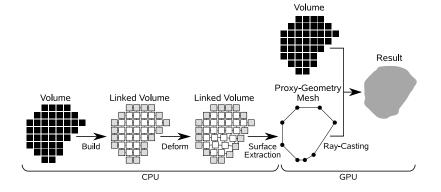

- Integrate into existing GPU ray-casting infrastructure
- Typically a box is used as proxy geometry
- Use surface extracted from ChainMail data structure instead

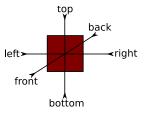



Idea


- Integrate into existing GPU ray-casting infrastructure
- Typically a box is used as proxy geometry
- Use surface extracted from ChainMail data structure instead

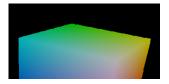




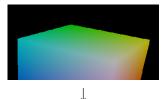

Surface Extraction

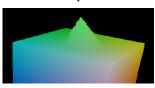
Algorithm

- ▶ Treat ChainMail structure as rectilinear grid despite deformation
- Use surface information
- Successively look at structure from 6 principal directions
- \blacktriangleright Find cycles of 4 connected elements on surface \rightarrow create quad

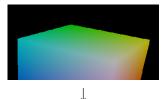

Algorithm

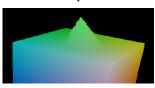
- Treat ChainMail structure as rectilinear grid despite deformation
- Use surface information
- Successively look at structure from 6 principal directions
- \blacktriangleright Find cycles of 4 connected elements on surface \rightarrow create quad




- Usually: vertex color encodes vertex position
- After deformation: vertex color encodes original voxel position
- Use depth buffer to extract min/max z-value \Rightarrow entry/exit

- Usually: vertex color encodes vertex position
- After deformation: vertex color encodes original voxel position
- ► Use depth buffer to extract min/max z-value ⇒ entry/exit




- Usually: vertex color encodes vertex position
- After deformation: vertex color encodes original voxel position
- Use depth buffer to extract min/max z-value \Rightarrow entry/exit

- Usually: vertex color encodes vertex position
- After deformation: vertex color encodes original voxel position
- Use depth buffer to extract min/max z-value \Rightarrow entry/exit

Problem: Incorrect shading after deformation

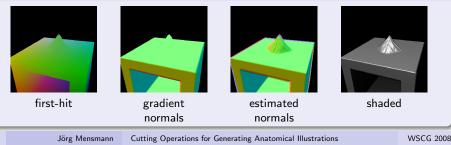
- Normal vectors derived from voxel gradients used in Phong lighting
- Deformation not considered in gradient calculation

Problem: Incorrect shading after deformation

- Normal vectors derived from voxel gradients used in Phong lighting
- Deformation not considered in gradient calculation

Solution: Image-space normal estimation

- Calculate normals from first-hit image
- Use averaged forward differences to reduce noise


Problem: Incorrect shading after deformation

- Normal vectors derived from voxel gradients used in Phong lighting
- Deformation not considered in gradient calculation

Solution: Image-space normal estimation

- Calculate normals from first-hit image
- Use averaged forward differences to reduce noise

Normal estimation example

Interactive Cutting and Deformation

Two interaction concepts

- Cutting
- Deforming the cut object

Interactive Cutting and Deformation

Two interaction concepts

- Cutting
- Deforming the cut object

Common problem

- Interaction device DoF does not match scene DoF
- Requires changes of perspective to verify position

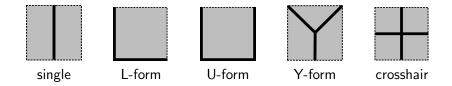
Interactive Cutting and Deformation

Two interaction concepts

- Cutting
- Deforming the cut object

Common problem

- Interaction device DoF does not match scene DoF
- Requires changes of perspective to verify position

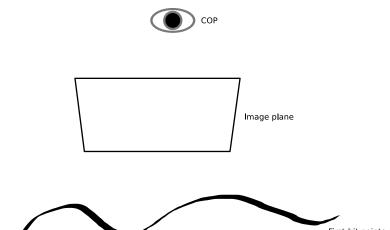

Cutting templates

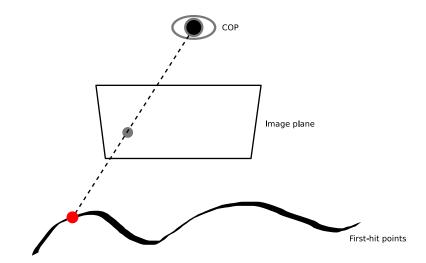
- Only few different cuts actually used
- Provide small set of predefined cuts
- Placed freely in the data set

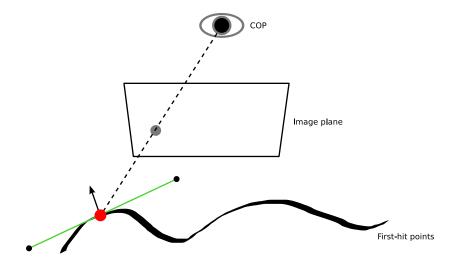
Interactive Cutting

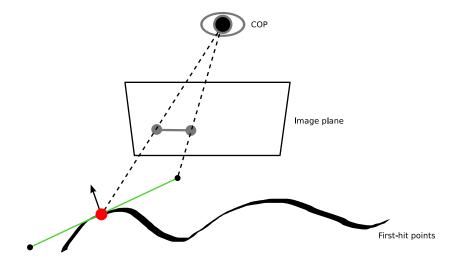
Cutting templates

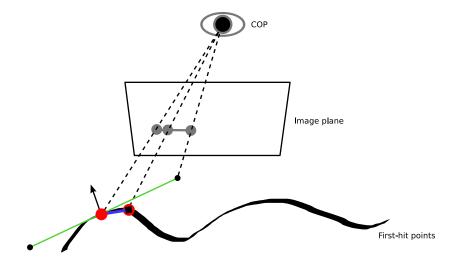
- Only few different cuts actually used
- Provide small set of predefined cuts
- Placed freely in the data set

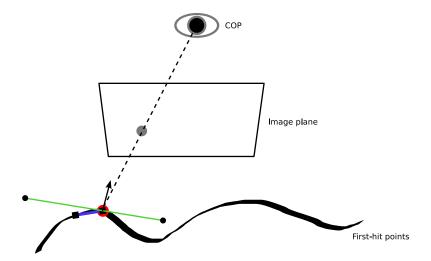


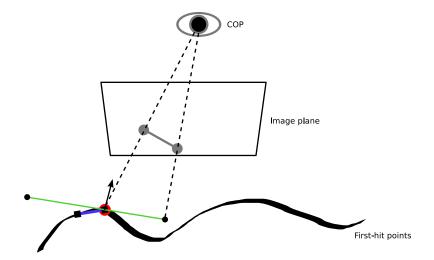

Alternative: Surface placement

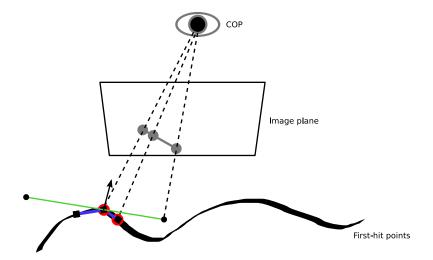

- Cutting templates fitted to surface
- Extruded: User controls cutting depth

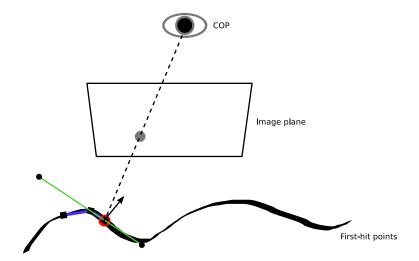

Alternative: Surface placement

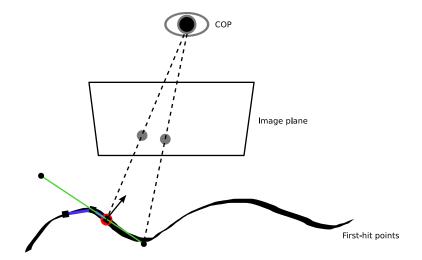

- Cutting templates fitted to surface
- Extruded: User controls cutting depth

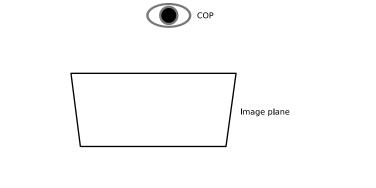


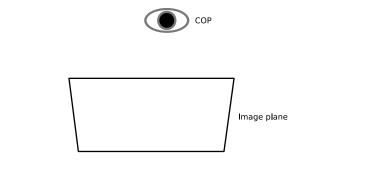












Point-and-drag interface

- Supports deformation types pull and turn
- May require several changes of perspective

Point-and-drag interface

- Supports deformation types pull and turn
- May require several changes of perspective

Alternative: Deformation templates

- Apply pre-defined deformation
- Supports deformation type cut/flip
- Corresponding to cutting templates
- Parametrizable position, size, amount of aperture

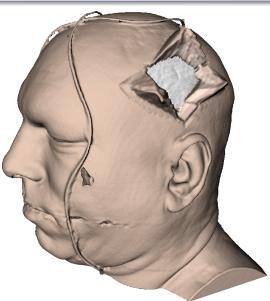
Point-and-drag interface

- Supports deformation types pull and turn
- May require several changes of perspective

Alternative: Deformation templates

- Apply pre-defined deformation
- Supports deformation type cut/flip
- Corresponding to cutting templates
- Parametrizable position, size, amount of aperture

Results Hand data set


 $256 \times 128 \times 256$ voxels

single cut manual deformation

2,710,516 ChainMail elements 4.3% surface elements 693,200 vertices 38 fps 256^3 voxels

Y-cut manual deformation

6,040,852 ChainMail elements 3.9% surface elements 1,529,000 vertices 23 fps

Conclusions

Contributions

- Interaction techniques support easy deformation of anatomical objects
- ChainMail algorithm permits interactive deformation
- Linked volume structure allows simple cutting and surface extraction
- Concepts can be easily integrated into existing systems

Contributions

- Interaction techniques support easy deformation of anatomical objects
- ChainMail algorithm permits interactive deformation
- Linked volume structure allows simple cutting and surface extraction
- Concepts can be easily integrated into existing systems

Future Work

- Map material properties to deformation constraints
- Evaluate more realistic physical model (like FEM)
- Improve image quality

http://www.voreen.org