Particle—based T-Spline Level Set Evolution for 3D object
reconstruction with Range and Volume Constraints

Robert Feichtinger Huaiping Yang Bert Jittler
Johannes Kepler University Linz, Johannes Kepler University Johannes Kepler University
Austria Linz, Austria Linz, Austria

robert.feichtinger@jku.at yang.huaiping@jku.at bert.juettler@jku.at

ABSTRACT

We consider an evolution process for implicitly defined surfaces, which are represented as the zero—levels of T-spline functions.
The paper presents two novel contributions. First, we will use particles on the evolving surface in order to discretize the
evolution equation. In particular we describe criteria for local and global resampling, which are needed in order to maintain a
sufficiently uniform distribution of the particles. Second, we discuss volume and range constraints which can be added to the
framework. More precisely, it is possible to specify a fixed volume (volume constraint) or to define a region which should or
should not be contained in the final object (range constraint). These constraints can also be regarded as a priori knowledge of

the data.
Keywords:

1 INTRODUCTION

This paper addresses the problem of evolution of im-
plicitly defined surfaces, with applications to geometry
reconstruction from discrete data. The evolution pro-
cess generates time-dependent families of surfaces con-
verging to the target shape defined by the data, which
are guided by an implicit velocity field in the direction
of surface normals. For example this kind of evolution
is used for segmentation in image processing. Kass et
al. [16] proposed "snakes" or active contours for bound-
ary detection, which is based on deforming an initial
contour towards the boundary to be detected. Caselles
et al. [5] proved that the classic active contour model in
2D is equivalent to finding a geodesic curve in a Rie-
mannian space with a metric derived from the image
content. For implicitly defined surfaces, one may for-
mulate evolution processes by using the level set ap-
proach of Osher and Sethian [19]. Similar evolution
processes have also been used for geometry reconstruc-
tion from unorganized data points [18, 28].

Surface reconstruction from scattered data points
(possibly noisy and incomplete) is an important prob-
lem in geometric modeling. Depending on the type
of the application, different representations have been
used, such as triangular meshes [7, 17], subdivision sur-
faces [0, 22], parametric spline surfaces [8], discretized
level sets [18], scalar spline functions [14, 23, 28], ra-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG’2008, February 4 — February 7, 2008 .
Copyright UNION Agency — Science Press, Plzen, Czech Republic

WSCG2008 Full papers

T-splines, particles, range constraint, volume constraints

dial basis functions [4], and point set surfaces [1, 2,
13, 20, 21]. In comparison with parametric representa-
tions, implicit representations offer advantages such as
the non-existence of the parametrization problem, re-
pairing capabilities of incomplete data, and simple op-
erations of shape editing [29]. As a major advantage in
evolution-based approaches, where the topology is not
known a priori, the implicit representation intrinsically
adapts to topological changes during the evolution.

In many applications of surface reconstruction, there
may be a priori knowledge concerning the geometric
properties of the object to be reconstructed. In particu-
lar, this a priori knowledge could be formulated by cer-
tain shape constraints to be combined into the evolution
equation of the surface. These additional constraints
may help to obtain a desired reconstruction result, es-
pecially when the given data contains holes. For ex-
ample, a suitable volume constraint can be used to stop
the evolving surface from entering the holes left by the
data. The idea of volume constraint has also been used
in shape deformation to achieve better quality and re-
alism, e.g. the swirling-sweepers proposed by Ange-
lidis et al. [3] and the divergence-free vector-field based
method by Funck et al. [25, 26].

Our method is different from those in that we use
zero contour scalar functions instead of meshes to rep-
resent surfaces, where the volume constraint is formu-
lated with the help of the time derivatives of the co-
efficients. Another constraint to be addressed is the so-
called range constraint [9, 10], which allows us to spec-
ify regions lying inside or outside of the reconstructed
surface.

Particles have been used for different applications in
mathematics and computer graphics. One can use them
for numerically solving differential equations or to sam-
ple and to control implicitly defined surfaces [27].

ISBN 978-86943-15-2

They have also found attention for simulation of fur,
grass and other fuzzy textures, also special effects like
fire and explosions are created by particles in this appli-
cations collision detection is important [15].

In this paper we use particles in order to efficiently
deal with the generation of sample points on evolving
surfaces. Special attention is paid to local and global
resampling, which is needed in order to maintain a suf-
ficiently uniform distribution of the sample points. In
addition we show how to apply constraints during the
evolution process. These constraints represent a priori
knowledge of the data. The user can specify a fixed vol-
ume (volume constraint) or a region which should not
lie inside the final object (range constraint).

The paper is organized as follows. In the next sec-
tion we start with a description of the T-spline level set
evolution. Afterwards we go into more detail for the
particle generation and handling of particle resampling.
In section 4 we treat range and volume constraints. Fi-
nally we conclude with some examples.

2 EVOLUTION

First we recall the idea of the evolution of an implic-
itly defined surface. Such a surface is also denoted as
an active surface. In particular we consider implicitly
defined surfaces represented as the zero—level set of a
T-spline function.

2.1 Problem specification

Throughout the paper we assume that we have some
given data, which describes one or more objects in 3D.
This data can be given in various forms, e.g. as a tri-
angular mesh, an implicitly or parametrically defined
surface or an unorganized point cloud. Here we will fo-
cus on point clouds (e.g. data from a 3D scanner). The
given data will be referred to as the "target".

In order to detect the topology of the target and to
reconstruct it, we consider an evolution process which
drives the surface towards the target. More precisely we
will use a time dependent family of surfaces C = C;. In
our case each surface from this family will be defined
as the zero—level set of a scalar field, whose coefficients
depend on the time variable 7. During the evolution
we will modify these coefficients such that the surface
moves towards the given data, see Fig. 1. In particular
we want the zero—level set to move in the direction of
its normals in dependence of a speed function v.

2.2 Speed functions

As mentioned before the evolution of the active surface
will be guided by a speed (or velocity) function v. This
function depends on the target, the implicitly defined
surface and some geometric properties (curvature k and
normals 1) of the active surface.

WSCG2008 Full papers

Figure 1: 3 time steps of an active curve mov-
ing towards a point cloud data

We use the following speed function for point cloud
data

v=e(d)(A+K)—(1-ed) @ Va), (1)
where e is called the edge detector function,
e(d)=1—e 14,)

In this function 1i and x are geometric quantities derived
from the surface, while A is a constant velocity (also
known as the balloon force). 1 is a pre-described con-
stant which depends on the range of the data. For ad-
ditional information regarding the choice of these con-
stants we refer to the extended version of [28]. The last
variable d is the unsigned distance function which de-
pends on the target.

Both the unsigned distance field and the edge detec-
tor functions will be pre-computed. We use graphics
hardware acceleration [12] to determine the unsigned
distance function d(x). The gradient Vd(x) can be effi-
ciently acquired by trilinear interpolation of the neigh-
bouring grid points.

2.3 Evolution of T-spline level sets

We use the zero-level set of a T-spline function (see
[24]) to represent the implicitly defined surface. Such a
function has the form

n

fx,7)= Z Ti(x) ci(T) x= (x1,%2,x3) €QCR?, (3)
i=1

where 7; are the trivariate T-spline basis functions and
the real coefficients c; depend on the time variable 7.
The axis—aligned bounding box Q = [—1,1]* contains
the region of interest. The given data is scaled such that
it lies inside Q. The basis functions

B} (x1)B;, (x2)B; (x3)
11 B}, (x1)B3 (x2) B (x3)

Ti(x) =

are rational functions which are defined with
cubic B-splines over certain knot vectors
ri = (rio, a1, ¥, ri3, ¥ia), s; and t;, which are de-
termined with the help of the so—called T-spline

ISBN 978-86943-15-2

Figure 2: A T-spline grid. We use 4—fold
knots at boundaries.
control x-knots
points y-knots
C [s1 — Asg,s1 — Asg, s1,52,53)
[ll 7Alo,ll 7A[0,ll,lz,t3]
&) [s1 —Aso,s1,52,53,54]
(11,01 + Ats, 11 + Ats + Atg, 12, 1) + Aty
Cs [S|.,S] + Asg, 51 + Asg +AS7,S2,S5]
[t1,02, 00 + At7,13,14]

Figure 3: The knot vectors for some selected
control points.

grid. This is a generalization of the knot vectors of
tensor—product splines. See Fig. 2 and Fig. 3 for an
illustration where we use a 2D graphic which is more
convenient to illustrate the idea of T-splines. See [24]
for more information.

As the main advantage of using T-splines, they sup-
port T-junctions in the grid. Therefore we can refine the
grid locally which is not the case for tensor product B-
splines. If there are no T-junctions in the grid, then the
T-spline simplifies to a tensor—product spline.

The zero—level set of such a T-spline function f de-
fines a time—dependent surface.

[(f,7)={x€eQCR’|f(x,7)=0}. (4

To describe the evolution we use the approach pre-
sented in [28]. We consider I'(f,7) the zero-level set
of the T-spline f at a given time 7. It will be subject to
the evolution process

ox .
a—rzvn, xeI'(f,1). 5)

Here v is the speed function which was introduced
in Section 2.2. The value of v depends on the point
x € I and on the first and second derivative of the
T-spline f at X. 1 is the unit normal direction given
by i = Vf(x,7)/|Vf(x,T)|. Since

has to hold during the evolution, it follows that

FHV D X0 xeT(rD,)

WSCG2008 Full papers

where f = w Combining (5) and (7) we get the

following equation for the evolution of the zero—level

set

f(x,T

D _ il xeT(hD). ®
To translate this equation into an equation for the time
dependent coefficients ¢;(T) we use a least-squares ap-

proach

Eo(e) = /Xem (F(%,7)+v [V£(x,7)[)? dA — min.

€))
where A represents the area element of the T-spline
level set, and ¢ = (cy,...,¢;). In order to solve this

equation we use numerical integration to get a dis-
cretized version
No

E(¢)= Y (f(x;,7)+v(x;,7) [V(x},7)])* — min.

j=1
(10)
Here x;, j=1... Ny are sample points on the active sur-
face. In the present work we will use particles, instead
of considering uniformly distributed sample points as
in [28]. This sampling method will be described in the
following section.
Before we continue with the description of the parti-
cle generation we summarize the algorithm used for the
evolution process.

Algorithm 1

1. Initialization: Pre-compute the evolution speed
function and choose the initial position of the im-
plicitly defined surface.

2. Initial particles: Compute a set of particles on the
initial active surface.

3. Evolution: Apply one time step of the evolution to
the implicitly defined surface.

4. Projection: Project the particles in normal direc-
tion onto the new implicitly defined surface.

5. Consistency check: Check if a redistribution of the
particles is necessary.

6. Termination: Check whether the stopping crite-
rion is satisfied. Continue with step 3 (no) or finish
(yes).

We choose the initial implicitly defined surface as a
ball (Step 1) such that all data points lie inside. We use
uniformly distributed points on this ball (Step 2) as a
starting set of particles. To generate this set we chose
a random point close to the ball and use the method
described in section 3.4.

For step 3, we have to solve the Eqn. (10). We first
linearize the quadratic problem for the ¢; and then use
an explicit Euler step to compute the new coefficients c;.

Note that we use the distance field constraint to avoid
the reinitialization of the T-spline function, see [28].

ISBN 978-86943-15-2

3 PARTICLES

For the evolution of an implicit level set surface we
need sample points on the current zero—level set. It is
necessary to have efficient techniques for the computa-
tion and the update of the sample points in each time
step.

In our previous work [28], these sample points are
uniformly distributed and computed by using a fine
grid. So one has to check in which grid cells the
zero—level set lies after each step, which is rather time
consuming.

We will use particles which do not need to be recom-
puted each time step. Instead they move with the active
surface. This movement is achieved by using a projec-
tion along the normal direction. During the evolution
it can happen that the distance between two neighbour-
ing particles gets too big. Therefore we need to define
a criterion when a redistribution is necessary. In most
situations the redistribution is done locally instead of
recomputing all particles.

Since we also want to gather information about the
number of components in the target, we need a way to
generate one set of particles per component. This is
achieved by splitting the set of particles according to
the current state of the implicitly defined surface. So
when the topology of the surface changes during the
evolution, this change should be reflected in the parti-
cles.

3.1 Particles data structure

The data structure used for the particles is similar to
the data structure for a triangular mesh. For each par-
ticle we store the coordinates and a list pointing to the
neighbouring particles, but we do not use the face infor-
mation. These particles are then used as sample points
for the T-spline level set evolution.

To compute this triangulation we use Hartmann’s al-
gorithm for marching triangulation [11]. This algorithm
allows us to compute a triangulation either for a whole
object or for a bounded domain on a surface.

To apply Hartmann’s algorithm we have to provide
the possibility to compute or at least to estimate the
normal direction at any point of the surface, which is of
course possible for the zero—level set of a T-spline func-
tion f. The unit normals are given by i = V f/|V f].

As an initial set we take the vertices of an uniformly
distributed triangulation of the sphere, since the initial
level set is approximately a sphere. The distance be-
tween these points is denoted by p. We refer to p as the
feature size.

3.2 Criteria for particle resampling

During the evolution we use two criteria to decide if
a resampling is necessary. Afterwards we check if the
resampling can be done locally or globally. See sec-
tion 3.3 and 3.4 for the resampling methods.

WSCG2008 Full papers

52

Figure 4: Target with a concave feature and
an active curve with particles

b L

Figure 5: Target with a sharp feature

The marching triangulation can be applied either to
a whole object (global resampling) or to a bounded do-
main (local resampling).

We use the following criteria:

1. The distance between two neighbouring sample
points P; and P; becomes too large. This means we
get areas with too few sample points. As a criterion
we use

|P—Pj| >2p (11)

For example this occurs if the target contains a con-
cave region. We will demonstrate this in a 2D exam-
ple, see Fig. 4. On the left-hand side, the distance
between the two particles in the center is growing.
On the right-hand side, the result after resampling is
shown. The arrows indicate the normal direction at
the particles.

The normals of neighbouring points vary too much.
Here the criterion can be written as

n;-n; <¢ (12)
where n; is the unit normal of the implicitly defined
surface at the sample point ;. € is chosen such that
too big angles are detected e.g. to filter out angles
greater than 80°. This criterion helps to produce ad-
ditional sample points at sharp corners and therefore
to increase the accuracy. For an example see Fig. 5.
Again the left-hand side shows the particles before
resampling and the normal directions. The right-
hand side displays the result after resampling with
a modified step size.

ISBN 978-86943-15-2

If one of the two criteria is satisfied we first use a
local resampling. In case that criterion 2 holds we addi-
tionally modify the step size for the marching triangula-
tion, to ensure that we produce additional sample points
in the region around the critical points. This gives us a
new set of particles S;. Afterwards we check if a global
resampling is necessary as well. Therefore we take the
old particles S and test if they are contained in the new
generated set of particles or at least close enough to this
set,

Vpcspies, |Pi_Pj’ <p. (13)

PeS

The global resampling is used only when the implic-
itly defined surface has split during the evolution step,
where the condition (13) is not fulfilled. Most of the
time we will just use the local method. Note that holes
which occur during the evolution in the implicitly de-
fined surface are also handled by the local method.

We summarize the algorithm for particle resampling.

Algorithm 2

1. Apply the two criteria to test if resampling is nec-
essary. If none of them is satisfied, then stop.

2. Apply local resampling.

3. Test if the old particles are close enough to the
newly generated ones. If one of them is too far away,
then apply global resampling; a splitting event may
have happened.

3.3 Local resampling

We start with two sample points P; and P;, which are
neighbours in the old set of particles. These points have
been detected by one of the two previously described
criteria. First we create a local region Q. This re-
gion contains F;, P; and the neighbouring sample points
(Note that this information is stored in our data struc-
ture). Then we check, if additional sample points lie
inside this region. If this is the case add these points.
Afterwards we apply the marching triangulation to €.

Note that the two criteria (11) and (12) might be sat-
isfied for more than one pair of sample points. If we get
more than one pair of sample points we create the local
region Q for one pair. For the remaining pairs we check
whether they are separated from already generated re-
gions or not. In the first case we create a new region
Q in the second case we have to extend the already ex-
isting region. These two cases are demonstrated in the
following example.

Example 1 We use data taken from a torus. The top
left picture in Fig. 6 shows the sample points on the
initial surface. The top right picture visualizes the cor-
responding T-spline grid. The second row shows the
first resampling, which involves two disjoint regions.

WSCG2008 Full papers

initial position

first resampling two regions are resampled

change of topology resampled region

final position
Figure 6: Evolution with local resampling

particles

In the next row a change of topology takes place; a
larger region has to be resampled in order to reflect this
change. The pictures in the bottom row show the final
result (left) and the final set of particles (right).

3.4 Global resampling

In this case we start with all particles §' C § which do
not satisfy the condition (13). We pick one of these
points P € §' as the starting point for a global marching
triangulation. This gives us a set S,. Afterwards we
check if the remaining particles in 8"\ {P} lie close to
S>. Otherwise we repeat the procedure. So we end up
with one set of particles for each part of the implicitly
defined surface at the current stage.

ISBN 978-86943-15-2

__In practice we will not check for all sample points in
S instead we randomly select points such that 1/10th of
the points is tested. This is used to speed up the process.

4 CONSTRAINTS

In this section we will present two constraints which
can be added to our evolution-based frame work. The
first constraint Cg that we will present allows us to de-
fine regions where we force the active surface to lie in-
side or outside this region. This constraint will lead
again to a quadratic minimization problem in ¢. So it
has the same form as our original problem E(¢), see
Eqn. (10).

With help of the second constraint Cy we can spec-
ify a volume which the active surface has to enclose.
This gives us a linear constraint which can be solved by
using Lagrangian multipliers.

4.1 Range Constraints

This constraint allows us to specify regions such that
the surface either contains this region or does not pass
trough it. Since the zero-level set of our T-spline func-
tion has the property that

f(x) > 0 xoutsidel
fx) = 0 xeT (14)
f(x) < 0 xinsideT

it divides the domain in two parts. (Note that one of
these parts could be empty, but that would not make
much sense in our framework.) Considering a set of
points {X; };—1..x, which should lie inside the zero—level
set, we have to ensure that

f(X,') S 0

In the case that f(x) > 0 for some x € {x;} the function
value has to be pushed downward at this point. This is
achieved by forcing f(x) < 0. Therefore we propose to
add the following therm to our framework

s)

No

Cr(€) = Y (f(x),7) + f(x},7) +8)* e (f(x;, 7))

j=1
(16)
where 0 is an user—defined constant. For our examples
we use 6 = 0.2. This constant controls how steep the
T-spline becomes. The‘activator’ function o controls
the influence of the term Cg(¢),

1 f>—€
o (f) = 0 f< -2 a7
C? —blend in between

where € is an user—defined positive constant (e.g., the
feature size p can again be used). The optimization
problem

~

F(&) = E(¢&) + w.r Cg(¢) — min. (18)

WSCG2008 Full papers

target and constraint during the evolution

final position top view final position side view

front right view

front left view
Figure 7: Evolution with range constraints

leads again to a sparse linear system of equations with a
symmetric positive definite matrix, which can be dealt
with efficiently.

Note that we can treat the case, where a given set of
points {y;}i—1..n, should lie outside of our active sur-
face, in a similar way.

We can also use this method for producing offsets of
the target. Therefore we use all target points as sample
points for the constraint. In this case defines the offset
distance.

Example 2 Range constraints can be used to define
regions which should not lie inside the target. In this
example we will use a sphere to cut away the ears of
the bunny model. The top left picture in Fig. 7 shows
the target points and the constraint set. As the initial
implicitly defined surface we take a sphere, this is not
displayed. The top right picture visualizes the T-spline
zero—level set after some time steps. The middle row
shows two views on the final position. The ears have
been cut off while the rest is recovered. In the bottom
row, the final mesh is visualized from two different view
points.

ISBN 978-86943-15-2

result without result with

target and

constraint constraint constraint
Figure 8: Rocker arm reconstruction

Example 3 The left picture in Fig. 8 shows the rocker
arm data and a constraint region (ball). The data con-
sists of 10044 points, and we used 1423 T-spline coeffi-
cients to reconstruct it. In the middle the result with-
out using the constraint is shown, 4330 particles are
used. The right picture visualizes the result using the
constraint to cut away the lower part of the rocker arm,
therefore 3622 particles are needed.

4.2 Volume Constraints

The volume constraint allows the surface to maintain
a specified volume change during the evolution. Sup-
pose V(1) is the specified volume function with respect
to the time 7, then the volume constraint can be repre-
sented as

/F v (%, 7)dA = V (1), (19)

where A is the area element of the surface I', and

f(x, 1)
(%0 =~ G
is the normal velocity of the T-spline level set.

The volume function V' can be an arbitrary function
of 7, as long as the time derivative V (7) is well defined.
The volume constraint defined in (19) is a volume-
increase, volume-preserving or volume-decrease con-
straint, when V(7) > 0, V(1) = 0 or V(7) < 0, respec-
tively.

The volume constraint (19) is linear in the time
derivatives of the T-spline control coefficients. Again
we use numerical integration to obtain a linear con-
straint, which is to be considered along with the
quadratic objective function. This leads to a quadratic
optimization problem with linear constraints, which is
solved using Lagrangian multipliers.

Example 4 The volume constraint is very helpful
when dealing with noisy data containing holes. One
may wish to specify the volume of the target object.
By defining an appropriate function V(t) such that
V(0) =V and V(1) — V., as T — oo, the volume of

WSCG2008 Full papers

initial position

Voo =0.125
Figure 9: Evolution with volume constraints

Voo =0.2

the surface (initially equal to V) will converge to the
desired value V... Fig. 9 shows an example to demon-
strate how this constraint works. The given data points
are sampled from a cube after removing the top face.
The volume of the cube equals 0.53. The figure shows
the different results by specifying different values of the
target volume V... The original shape of the cube is re-
covered when V., = 0.125.

S CONCLUDING REMARKS

We presented a particle-based approach to T-spline
level set evolution. The set of particles is updated dur-
ing the evolution, in order to avoid the frequent recom-
putation in each time step. In addition we can apply
range and volume constraints to the evolving surface.
The range constraints can be formulated as linear in-
equalities, which have been dealt with by a penalty
method. The volume constraints lead to linear con-
ditions, which can be incorporated directly into the
framework.

In order to capture finer details of the target by T-
spline level sets, a large number of T-spline coefficients
is needed, slowing down the computations. Instead, one
should better use a post—processing step, which is based
on a displacement map and bilateral filtering, see [29].
That paper also presents computing times for the recon-
struction of realistic 3D models via T-spline Level sets.

Acknowledgments.

The financial support of the Austrian Science fund
through the Joint Research Program S92 ‘Industrial
Geometry’, subproject 2, and by the European Union
through the Marie Curie IIF Fellowship for Huaiping
Yang (project 22073 ISIS) is gratefully acknowledged.

ISBN 978-86943-15-2

REFERENCES

(1]

(2]

(3]

(4]

(5]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

M. Alexa and A. Adamson. Interpolatory point
set surfaces - Convexity and Hermite data. ACM
Trans. Graph. accepted.

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman,
D. Levin, and C. Silva. Point set surfaces. In VIS
'01: Proceedings of the conference on Visualiza-
tion '01, pages 21-28, 2001.

A. Angelidis, M.-P. Cani, G. Wyvill, and S. King.
Swirling-sweepers: constant volume modeling.
Graphical Models (Special issue on PG’04),
68(4):324-332, 2006.

J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J.
Mitchell, W. R. Fright, B. C. McCallum, and T. R.
Evans. Reconstruction and representation of 3D
objects with radial basis functions. In Proc. SIG-
GRAPH’01, pages 67-76, 2001.

V. Caselles, R. Kimmel, and G. Sapiro. Geodesic
active contours. Int. J. of Computer Vision,
22(1):61-79, 1997.

K.-S. D. Cheng, W. Wang, H. Qin, K.-Y. K. Wong,
H. Yang, and Y. Liu. Fitting subdivision surfaces
to unorganized point data using SDM. In Pacific
Conference on Computer Graphics and Applica-
tions 2004, pages 16-24, 2004.

T. K. Dey and S. Goswami. Tight cocone: a water-
tight surface reconstructor. In Shape Modeling In-
ternational, pages 127-134, 2003.

M. Eck and H. Hoppe. Automatic reconstruction
of B-spline surfaces of arbitrary topological type.
In Proc. SIGGRAPH 96, pages 325-334, 1996.

R. Feichtinger, H. Yang, M. Fuchs, B. Jiittler, and
O. Scherzer. Dual evolution of planar parametric
spline curves and T-spline level sets. Computer—
Aided Design, 2007. in press.

S. Flory and M. Hofer. Constrained curve fitting
on manifolds. Computer-Aided Design, 2007. in
press.

E. Hartmann. A marching method for the tri-
angulation of surfaces. The Visual Computer,
14(3):95-108, 1998.

K. E. Hoff III, J. Keyser, M. Lin, D. Manocha,
and T. Culver. Fast computation of generalized
Voronoi diagrams using graphics hardware. In
Proc. SIGGRAPH ’99, pages 277-286, 1999.

P. Jenke, M. Wand, M. Bokeloh, A. Schilling, and
W. Strasser. Bayesian point cloud reconstruction.
In Proc. Eurographics ’06, 2006.

B. Jiittler and A. Felis. Least squares fitting of
algebraic spline surfaces. Adv. Comput. Math.,
17:135-152, 2002.

E.-A. Karabassi, G. Papaioannou, T. Theoharis,
and A. Boehm. Intersection test for collision

WSCG2008 Full papers

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

[27]

(28]

[29]

detection in particle systems.
4(1):25-37, 1999.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes:
active contour models. Int. J. of Computer Vision,
1(4):321-331, 1988.

Y. Ohtake, A. Belyaev, and H.-P. Seidel. A com-
posite approach to meshing scattered data. Graph.
Models, 68(3):255-267, 2006.

S. Osher and R. Fedkiw. Level Set Methods and
Dynamic Implicit Surfaces. Springer Verlag, New
York, 2002.

S. Osher and J.A. Sethian. Fronts propagat-
ing with curvature-dependent speed: Algorithms
based on Hamilton—Jacobi formulations. J. of
Computational Physics, 79:12-49, 1988.

M. Pauly, R. Keiser, L. Kobbelt, and M. Gross.
Shape modeling with point-sampled geometry.
Proc. SIGGRAPH’03, pages 641-650, 2003.

M. Pauly, L. P. Kobbelt, and M. Gross. Point-
based multiscale surface representation. ACM
Trans. Graph., 25(2):177-193, 2006.

H. Qin, C. Mandal, and B. C. Vemuri. Dynamic
catmull-clark subdivision surfaces. IEEE Trans-
actions on Visualization and Computer Graphics,
4(3):215-229, 1998.

A. Raviv and G. Elber. Three dimensional
freeform sculpting via zero sets of scalar trivari-
ate functions. In Proc. 5th ACM Symposium on
Solid Modeling and Applications, pages 246-257,
1999.

T. W. Sederberg, J. Zheng, A. Bakenov, and
A. Nasri. T-splines and T-NURCC:s. In Proc. SIG-
GRAPH ’03, pages 477484, 2003.

W. v. Funck, H. Theisel, and H.-P. Seidel. Vec-
tor field based shape deformations. In Proc. SIG-
GRAPH’06, pages 1118-1125, 2006.

W. v. Funck, H. Theisel, and H.-P. Seidel. Explicit
control of vector field based shape deformations.
In Pacific Conference on Computer Graphics and
Applications 2007, pages 291-300, 2007.

A. P. Witkin and P. S. Heckbert. Using particles
to sample and control implicit surfaces. In Proc.
SIGGRAPH 94, pages 269-277, 1994.

H. Yang, M. Fuchs, B. Jiittler, and O. Scherzer.
Evolution of T-spline level sets with distance field
constraints for geometry reconstruction and image
segmentation. In Shape Modeling International,
pages 247-252. IEEE Press, 2006. Extended ver-
sion available at http://www.ig.jku.at.

J. Graph. Tools,

H. Yang and B. Jiittler. Meshing non-uniformly
sampled and incomplete data based on displaced
T-spline level sets. In Shape Modeling Interna-
tional, pages 251-260. IEEE Press, 2007.

ISBN 978-86943-15-2

	wscg2008_FULL_Numbered.pdf.pdf
	B31-full.pdf
	B31-full.pdf

	B59-full.pdf

