Particle-based T-Spline Level Set Evolution for 3D Object Reconstruction with Range and Volume Constraints

Robert Feichtinger (joint work with Huaiping Yang, Bert Jüttler)

Institute of Applied Geometry, JKU Linz

Plzen, 4-7th February 2008

=UIF

Sar

Introduction

3D object reconstruction with range and volume constraints

< ロ > < 同 >

Ξ.

4 E b

Sar

2/27

- Implicitly defined surface
- Evolution
- Point set surface
- Range and volume constraints

Introduction - Properties

Implicitly defined surfaces

- Adapt of topology
- Compute normals
- Range constraints

Evolution

• Linearization of volume constraints

A A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

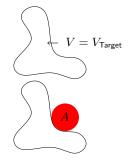
୬ବ୍ଦ 2/27

Point set surfaces

• Sample points for discretization

Introduction - Related work (non-exhausting)

- Volume constraints (Funck et al.'06,'07)
- Range constraints (Flöry et al.'07)
- Point set surfaces (Alexa et al.'07)
- Implicitly defined surfaces (Osher et al.'02)



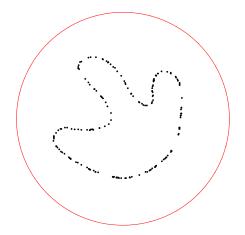
2/27

- 2 Particle sampling
- 3 Range constraint
- 4 Volume constraint
- **5** Example and Conclusion

Given: An unorganized point cloud

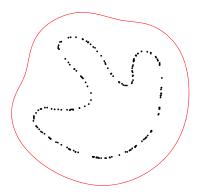
<ロ><日><日><日><日><日><日><日><日><日><日><10</td>4/27

Given: An unorganized point cloud



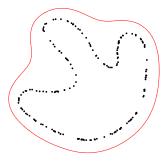
<ロ> < 回> < 回> < 言> < 言> < 言> 言 のへで 4/27

Given: An unorganized point cloud



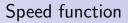
<ロ> < 回> < 回> < 三> < 三> < 三> 三 のへで 4/27

Given: An unorganized point cloud



Given: An unorganized point cloud

Given: An unorganized point cloud



 $v(\mathbf{x}) = v(\kappa, \vec{\mathbf{n}}, d)$

- x point on the surface.
- κ and \vec{n} are geometric properties of the surface at x.
- *d* is the unsigned distance function.

5/27

T-spline

T-spline function (introduced by Sederberg et al.'03)

$$f(\mathbf{x},\tau) = \sum_{i=1}^{n} T_i(\mathbf{x}) c_i(\tau) \quad \mathbf{x} \in \Omega \subset \mathbb{R}^3$$

where τ is a time-variable.

Zero level-set

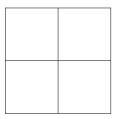
$$\Gamma(f,\tau) = \{\mathbf{x} \in \Omega | f(\mathbf{x},\tau) = 0\}$$

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

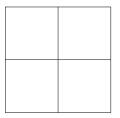
- b

かへで 6/27

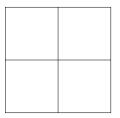
Grids of a tensor product B-spline and a T-spline:



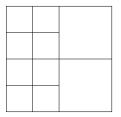
Grids of a tensor product B-spline and a T-spline:



Grids of a tensor product B-spline and a T-spline:

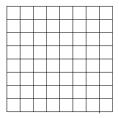


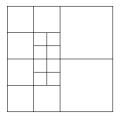
Grids of a tensor product B-spline and a T-spline:



<ロ> < 四> < 四> < 三> < 三> < 三> < 三> 三 7/27

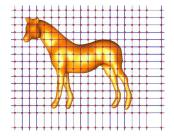
Grids of a tensor product B-spline and a T-spline:



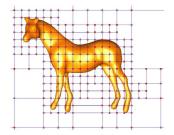


<ロ> < 四> < 四> < 三> < 三> < 三> < 三> 三 のへで 7/27

Grids of a tensor product B-spline and a T-spline:



5148 B-spline control points



 $1484 \ {\rm T}{\mbox{-spline control points}}$

Evolution

Least-squares problem

$$\int_{\mathbf{x}\in\Gamma} \left(\underbrace{\operatorname{actual normal}}_{*} - \operatorname{value of speed}_{\text{function at } \mathbf{x}}\right)^2 dA \to \min$$

$$* = -\frac{\dot{f}}{|\nabla f|} = \sum_{i=1}^{n} (\ldots) \dot{c}_i$$

Discretization

$$\sum_{j=1}^{N} \left(\begin{array}{c} \text{actual normal} \\ \text{velocity at } \mathbf{x}_{j} \end{array} - \begin{array}{c} \text{value of speed} \\ \text{function at } \mathbf{x}_{j} \end{array}\right)^{2} \rightarrow \min$$

Particle $\mathbf{x}_j \in \Gamma$.

<ロ><日><日><日><日><日><日><日><日><日><<0</td>8/27

Algorithm

- Initialization (initial T-spline zero-level set and particles, pre-computation of the unsigned distance field function).
- Evolution of the implicitly defined surface (one time step).

< ロ > < 同 >

かへで 9/27

- Projection of the particles.
- Local resampling of the particles if necessary.
- Final refinement.

- 2 Particle sampling
- 3 Range constraint
- 4 Volume constraint
- **5** Example and Conclusion

Particles: Requirements and goals

- We need sample points along the zero level-set.
- Sample should be dense enough (close to uniform).

4 D b

うへで 11/27

- Sample points should be fast to compute.
- Local resampling.
- Correct topology.

Particle sampling

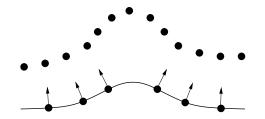
Marching triangulation (Hartmann '98).

- Needs information on normals (provided by the implicit surface)
- Can be done locally or globally
- Distance between neighbouring sample points in the initial particle set $\approx \rho$
- ρ is a user defined constant called "feature-size".

Criteria for resampling

Distance between neighbouring sample points

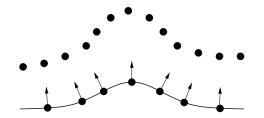
$$|\mathbf{x}_i - \mathbf{x}_j| > 2\,\rho$$



Criteria for resampling

Distance between neighbouring sample points

$$|\mathbf{x}_i - \mathbf{x}_j| > 2\,\rho$$



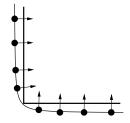
<ロ> < 回> < 回> < 三> < 三> < 三> 三 のへで 13/27

Criteria for resampling

Normals of neighbouring sample points

 $\mathbf{n}_i \cdot \mathbf{n}_j < \epsilon$

 \mathbf{n}_i is the normal of f at \mathbf{x}_i

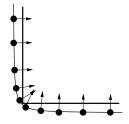


Criteria for resampling

Normals of neighbouring sample points

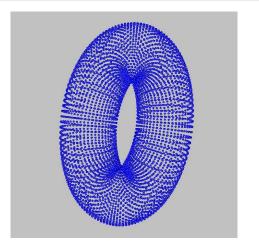
 $\mathbf{n}_i \cdot \mathbf{n}_j < \epsilon$

 \mathbf{n}_i is the normal of f at \mathbf{x}_i



<ロ> < 回> < 回> < 三> < 三> < 三> < 三> 三 のへで 13/27

Example 1

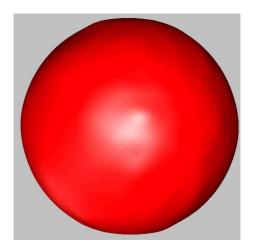


4896 target points

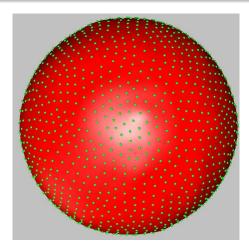
5900

14 / 27

Example 1



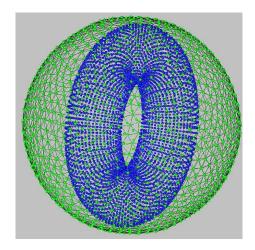
Example 1



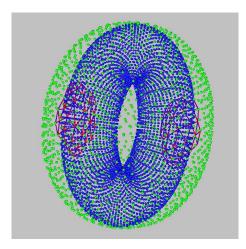
1544 particles

< <p>>

Example 1

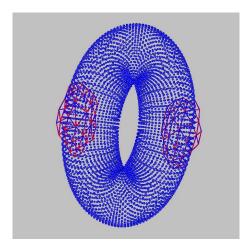


Example 1

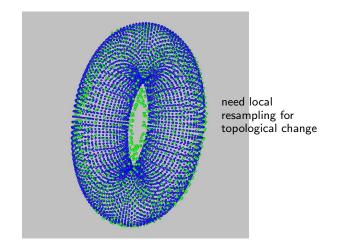


<ロ> < (日) < (日) < (目) < (目) < (目) / (日) < (日) < (日) < (日) < (14/27) </td>

Example 1



Example 1

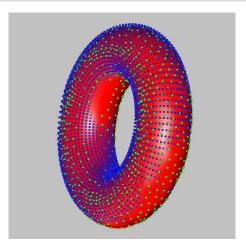


□ > < @ > < ≧ > < ≧ > ≧ 9 Q (° 14/27

Example 1



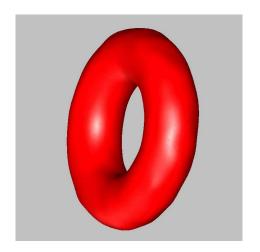
Example 1



1289 particles

 $\langle \Box \rangle$

Example 1



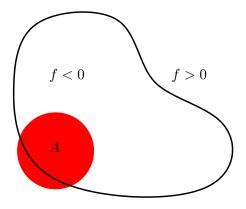
<ロ> < 回> < 回> < 言> < 言> < 言> 言 のへで 14/27

- 2 Particle sampling
- 3 Range constraint
- 4 Volume constraint
- **5** Example and Conclusion

<ロ> < 四> < 回> < 言> < 言> < 言> こ のへで 15/27

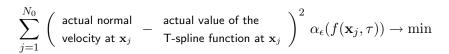
- T-spline ensures that $f(\mathbf{x}, \tau) \leq 0$ for \mathbf{x} inside $\Gamma(f, \tau)$.
- Define a constraint that forces a region A to lie inside or outside of the zero level-set.

•
$$f(\mathbf{x}_i) \le 0 \quad \mathbf{x}_i \in A$$



<ロ> < 聞> < 言> < 言> < 言> こ 16/27

Least-squares problem

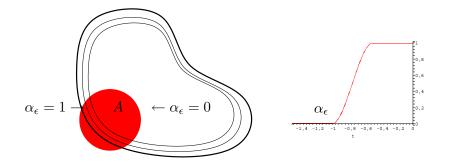


・ロト ・西ト ・ヨト ・ヨト

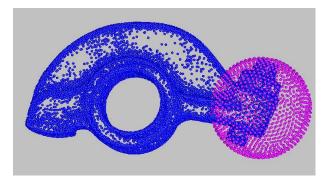
17 / 27

Sample points $\mathbf{x}_j \in A$ $\alpha_{\epsilon}(f(\mathbf{x}_j, \tau))$ activator function.

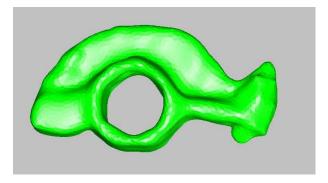
Activator function



Example 2

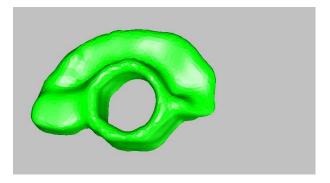


Example 2



<ロ> < 回> < 回> < 言> < 言> < 言> こ 19/27

Example 2



<ロ> < 回> < 回> < 言> < 言> < 言> こ 19/27

- 2 Particle sampling
- 3 Range constraint
- 4 Volume constraint
- **5** Example and Conclusion

Volume constraint

- \bullet Specify a volume function $V(\tau)$
- $\bullet\,$ Control the volume change $\dot{V}(\tau)$ during the evolution

୬ ବ (୦ 21 / 27

• Volume preservation $\dot{V}(\tau)=0$

Formulation as linear constraint

$$\int_{\mathbf{x}\in\Gamma} \left(\underbrace{\operatorname{actual normal}}_{\mathsf{velocity at } \mathbf{x}}\right) dA = \dot{V}$$

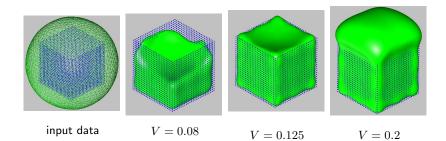
where

$$* = -\frac{\dot{f}}{|\nabla f|} = \sum_{i=1}^{n} (\ldots) \dot{c}_i$$

Use Lagrangian multipliers to add the constraint to the evolution.

<ロ> < 団> < 団> < 三> < 三> < 三> 三 のへで 22/27

Example 3

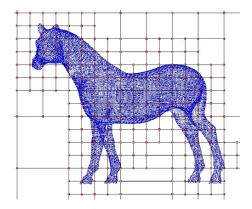


<ロ> < 回> < 回> < 三> < 三> < 三> 三 少へで 23/27

- 2 Particle sampling
- 3 Range constraint
- 4 Volume constraint

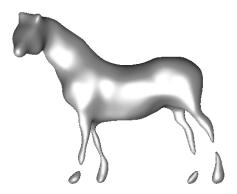
<ロ> < (回) < (回) < (目) < (目) < (目) < (日) < (日) < (1) </p>
24/27

Example 4



input data (48485 points) and grid

Example 4



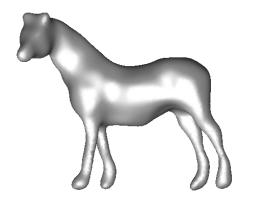
without constraint

< 口 > < 同

5900

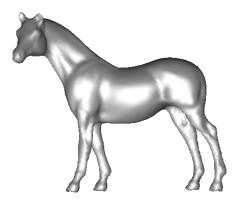
- b э. 25 / 27

Example 4



using the data points for the range constraint time: $\approx 36~{\rm sec}$

Example 4



after displacement mapping time: $\approx 3~{\rm sec}$

<ロ><一><一</td>< 言>< 言>< 言>< 言</td>のへや25/27

Summary and conclusion

- Combination of the evolution of implicitly defined surfaces and point set surfaces.
- Strategies for resampling the point set surface.
- Range and volume constraints to represent a-priori knowledge

Thanks for your attention!