
Shape Recognition in 3D Point-Clouds
Ruwen Schnabel Raoul Wessel Roland Wahl Reinhard Klein

Computer Graphics Group, University of Bonn

53117 Bonn, Germany

Email: {schnabel, wesselr, wahl, rk}@cs.uni-bonn.de

ABSTRACT

While the recent improvements in geometry acquisition techniques allow for the easy generation of large and detailed point
cloud representations of real-world objects, tasks as basic as for example the selection of all windows in 3D laser range data
of a house still require a disproportional amount of user interaction. In this paper we address this issue and present a flexible
framework for the rapid detection of such features in large point clouds. Features are represented as constrained graphs that
describe configurations of basic shapes, e.g. planes, cylinders, etc. Experimental results in various scenarios related to the
architectural domain demonstrate the feasibility of our approach.

Keywords: shape detection, graph matching, retrieval, recognition, point-cloud

1 INTRODUCTION

The acquisition and processing of digital 3D point-
clouds has received increasing attention over the last
few years. While visualization of very detailed and
complex point-clouds has become possible, interaction
capabilities on a semantic level are still very limited.
Even tasks as basic as selecting all windows in a scan
of a house currently require a disproportional amount of
user interaction. This is due to the fact that the acquired
raw data does not provide any structural, let alone se-
mantic, information. Therefore the extraction of se-
mantic elements from 3D point clouds is an important
topic for a wide field of applications, including archi-
tecture, cultural heritage and city model reconstruction.
Further applications can be envisioned in the engineer-
ing context, e.g. supporting the automatic inventory of
industrial plants or traditional reverse engineering pro-
cesses.

The reasons for working on point-clouds are twofold:
The first, and maybe most obvious, is that point-clouds
are the native output format of laser range scanners.
Moreover, point-clouds are an extremely general geom-
etry representation as they contain no interpretation of
the data. Therefore, by choosing point-clouds as the
starting point of our method, we are able to process
any type of 3D surface representation including poly-
gon soups and meshes, since these representations are
easily converted into point clouds by sampling.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech Republic.

Concerning the task of shape recognition in point-
clouds, two problems arise:

• The raw point-cloud contains an overwhelming
amount of redundant information making it virtu-
ally impossible to operate directly on the points
themselves in an efficient manner.

• For each element, we need a model that the com-
puter can retrieve in the data. However, defining a
special parameterized model for each sought feature
is challenging and very inflexible in case new entity
types shall be detected.

In this work we focus on an architectural application
domain. Based on the observation that most man-
made objects in this domain can be decomposed into
parts corresponding to geometric primitives like planes,
cylinders, spheres, etc. we propose novel solutions for
the above mentioned problems:

Decomposition By decomposing the point data into
primitive shapes, we obtain an abstraction of the point
data that eliminates much of the redundancy. A topol-
ogy graph captures the neighborhood relations between
the primitives in a concise manner.

Constrained subgraph matching Primitive shapes
are assembled into configurations characteristic for
higher semantic elements, e.g. windows, roofs or
columns. Such configurations can be quickly retrieved
from the topology graph via constrained subgraph
matching.

Our system allows even unexperienced users to
quickly formulate complex configurations, since
primitive shapes are easily graspable and combinable.
The search results are visualized in an interactive
framework, allowing for refinement of the query.

Our method was tested on a large amount of data
including point-clouds from different kinds of sensors
like LIDAR (light detection and ranging) and stereo re-
construction. We also applied our method to 3D CAD

WSCG2008 Full papers 65 ISBN 978-86943-15-2



modeled buildings that include interior structures. The
approach is robust against noise, clutter, registration er-
rors or miscalibrations which are frequently encoun-
tered in 3D laser scans.

2 RELATED WORK
Our shape matching technique is related to many works
in the larger context of (partial) matching, classification
and retrieval of 3D shapes. Various approaches to these
challenges have been developed in the past. In this brief
overview we concentrate on methods for partial match-
ing and retrieval of 3D objects in larger 3D scenes. For
a more detailed introduction to 3D matching and shape
retrieval we refer to [TV04].

2.1 3D city reconstruction
Since in this work we mainly deal with data from the
architectural domain, automatic reconstruction of 3D
buildings and city models from aerial LIDAR data, a
special case of the above formulated tasks, is especially
relevant to our approach. In this setting detection is
restricted to simple shapes of which most can be de-
scribed by configurations of planes. Automatic building
reconstruction has been studied extensively in the pho-
togrammetry community. Most of the developed semi-
automatical or manual approaches rely on user interac-
tion or on semantic knowledge that is not contained in
the 3D point-cloud. For Example, Vosselman et al. in-
tegrate LIDAR data with a 2D Geographic Information
System (GIS) database and aerial photographs [Vos02].
The GIS delivers ground plan information about build-
ings in the point cloud. With this information at hand,
the points belonging to a single edifice can be extracted
and parametric building models can be fitted.

A fully automatic approach that is only relying on
the information contained in the point-cloud is pre-
sented in [VKH06]. There, a region growing approach
is used to detect planes in the point data. Roof-topology
graphs are defined to describe configurations of planes
for some simple building forms shaped like I, L and
U. These configurations are sought in the set of the de-
tected planes. In a second step, the detected simple
buildings are extended to more complicated forms ac-
cording to the plane configurations in the point-cloud.
Compared to our approach, there are two differences:
First, as only planes are detected in the LIDAR data,
the approach is restricted to those shapes that can be
decomposed into planar patches. Second, the method
does not use any node or graph constraints during the
subgraph search and is therefore susceptible to misclas-
sifications in more general settings.

2.2 Partial matching and retrieval of ar-
bitrary objects

The retrieval and matching of 3D objects is of par-
ticular interest to the computer graphics community.

The developed methods often rely on triangle meshes
or parametric representations of the objects. Among
the abundance of proposed approaches, several graph-
based shape retrieval methods rely on the extraction of
certain geometric components and use a graph to cap-
ture the relations between these components.

Model graph-based approaches are mainly used for
geometry such as is generated in CAD applications.
Model graphs describe solid objects in terms of con-
nectivity of freeform surfaces (Boundary Representa-
tion) or as a set of geometric primitives that are con-
nected by Boolean operations (Constructive Solid Ge-
ometry). Local clique matching [EM03] [EMA03] or
comparison of graph spectra [MPSR01] are used to
globally determine the similarity of the graphs, i.e. no
partial matching is supported. In [ZTS02], VRML ob-
jects are segmented according to different decomposi-
tion techniques. The resulting patches are assigned ba-
sic shapes like planes and spheres. An attributed de-
composition graph is built containing the determined
shapes as nodes. Neighboring shapes are connected by
edges. The similarity between two objects is computed
by matching the associated decomposition graphs using
error-correcting subgraph isomorphism.

Reeb graph-based methods rely on a function that is
computed on the model surface. The surface is divided
into segments corresponding to intervals of this func-
tion. A skeleton graph, in which the resulting segments
are represented as nodes, is built. Reeb graph-based
methods are mainly used for matching of articulated ob-
jects [HSKK01][TL07]. In [PSBM07], a robust method
for fast Reeb graph computation is proposed that even
allows for the use of non-manifold meshes.

Skeleton graphs of 3D shapes can be computed
using topological skinning of voxel representations
[BNdB99], medial axis transform, ridge point tracking
[CSM05] or deformable model-based reconstruction
[SLSK07]. Matching of two shapes is done by com-
paring the associated skeleton graphs using greedy
bipartite graph matching [SSGD03] or by detecting
subgraph isomorphisms using decision trees [LJI+03].

3 OVERVIEW
The algorithm consists of two main steps: Firstly a
shape based representation of the data is derived by
detecting primitive shapes in the unstructured point
data and constructing a topology graph that captures
the neighborhood relations between the different
shapes. Then, in the second step, this topology graph is
searched for characteristic subgraphs corresponding to
sought elements, as they have been defined by the user.

The user is able to quickly define and retrieve new en-
tities with geometric constraints in an interactive frame-
work. Moreover the detected subgraphs may contain
optional or repetitive components, which further sim-
plifies the definition of new entities for the user. This

WSCG2008 Full papers 66 ISBN 978-86943-15-2



way our method is very flexible and easily extensible,
which renders it suitable in a broad range of applica-
tions.

4 SHAPE REPRESENTATION
The construction of a shape representation for the data
constitutes the first step in our method. At this stage
the fundamental building blocks are established that lay
the ground for all further operations. A set of primitive
shapes is detected, which is then subsumed in a topol-
ogy graph.

4.1 Primitive Shapes
The aim of the shape detection is to find simple ele-
ments in the point-cloud which shall be the building
blocks of more complex structures later on. We employ
the algorithm presented in [SWK07] which recognizes
planes, spheres, cylinders, cones and tori in the unstruc-
tured point-cloud. In this section, we will only give a
very brief outline of the shape detection technique and
the interested reader is referred to the original paper.
The data is decomposed into disjoint sets of points, each
corresponding to a detected shape proxy respectively,
and a set of remaining points that consists of outliers
as well as areas of more complex geometry for which
primitive shapes would give an inappropriate represen-
tation. For further processing all remaining points are
ignored. Points that are represented by a shape primi-
tive are also called the support of a shape. Thus, given
the point-cloud P = p1, . . . , pN , the output of the shape
detection is the following:

P = Sφ1 ∪ . . .∪SφA ∪R, (1)

where each subset (the support) Sφi is associated with
a shape primitive φi. All points in Sφi constitute a con-
nected component and fulfill the condition

s ∈ Sφi ⇒‖s,φi‖< ε ∧ 6 (ns,n(φi,s)) < α, (2)

where ns is the normal of point s and n(φi,s) denotes the
normal of the primitive φi at the point closest to s. The
parameters ε and α are chosen by the user according
to the precision of the acquisition device. The set R
contains all the remaining, unassigned points.

4.2 Topology Graph
The topology graph G(Φ,E) describes the neighbor-
hood relations between the primitive shapes detected in
the point-cloud data. For each primitive φi a vertex is
inserted into the graph, i.e. Φ = φ1 . . .φA. Two shapes
are connected with an edge if their supports are neigh-
boring in space, i.e. the two vertices φi and φ j are joined
by an edge e = (φi,φ j) if

∃p ∈ Sφi ,q ∈ Sφ j : ‖p−q‖< t (3)

(a) Small cell size (b) Large cell size

(c) Topology graph for small cell
size

(d) Topology graph for large cell
size

Figure 1: Two houses viewed from above that are
separated by a narrow alley. Primitive shapes have
been detected and are depicted in random colors. a)
The topology graph was built with a cell width of 50cm
b) The cell width for the construction of the topology
graph was set to 2m. Note that the roofs have been
connected across the narrow alleyway. In c) and d)
we show the resulting topology graphs. In d), the ad-
ditional edges resulting from large cells are shown in
red.

holds. Please note that computing the distance between
the shapes directly and ignoring the support would re-
sult in many edges that have no counterpart in the data,
since the shape primitives have indefinite extent.

Thus, to find the graph edges, the spatial proximity
between the support of all detected shapes has to be de-
termined. To this end we employ an axis aligned 3D
grid. In a first step all points are sorted into the grid.
Then for all grid cells that contain points belonging
to different shapes, edges connecting the correspond-
ing graph vertices are added to the graph, i.e. for each
pair of shapes in the cell an edge is created. In order
to avoid discretization dependencies due to the location
of the grid cells, we use eight shifted and overlapping
grids. Cells are stored in a hash table, so that memory
is only allocated for occupied cells.

The width of the grid cells defines how far apart
shapes are allowed to be in order to still get connected
in the topology graph. Given the distance threshold t,
the width of the cells is set to t and the shifted versions
of the grid are created with an offset of 1

2 t along the
respective axes. Of course this means that shapes can
get connected in some cases even though the distance
between their support is in fact only less than

√
3t. It

would be possible to eliminate these cases by check-
ing the distance between the points in each cell, but we
found this additional overhead unnecessary in practice,

WSCG2008 Full papers 67 ISBN 978-86943-15-2



as the few errors in the less restricted topology graph
did not influence the performance of our algorithm. In
Figure 1 resulting graphs are depicted for different cell
widths.

Once the graph is complete the first step of our
method is finished and a shape based representation of
the point-cloud data has been derived. It can now be
used to efficiently detect more complex configurations
of primitive shapes that correspond to semantic entities
in the data.

5 SHAPE MATCHING
In order to achieve an automatic matching between se-
mantic entities and point-clouds, we have to find a com-
mon language for them. As we abstracted the point data
to obtain a higher level description, we have to con-
cretize the representation of feature elements in terms
of primitive shape configurations.

5.1 Query graph
To this end we define a query graph for an element as
a graph that captures its characteristic shape configu-
ration. Basically a query graph is a topology graph
with the difference that it does not stem from a point-
cloud, but from knowledge about the shape of an el-
ement which is introduced by the user. The recog-
nition of an element in the data then corresponds to
a matching of the query graph to a subgraph of the
topology graph. Even though subgraph matching is a
NP-complete problem [Coo71], in our applications the
query graphs will be small, i.e. usually less than twenty
vertices, and a simple brute-force implementation of
subgraph matching performs well in such a setting.

Figure 2: Illustration of the constraints that can be used
to detect saddleback roofs: The angle α is constraint
to be less than 90 degrees and similar for both planes.
The intersection line is required to run parallel to the
ground.

However, a representation solely based on topology
is not sufficient to discriminate between many different
feature elements. For example in the simple case of a
saddleback roof (see Figure 2), the model graph con-
sists of two vertices corresponding to planes connected
by an edge. If such a graph is searched in a topology

graph numerous false matches can be expected, as such
a simple configuration occurs frequently. To make the
detection more reliable, the user can add constraints to
the query graph. For instance in the case of the saddle-
back roof we require the two planes to exceed a certain
size, to be of similar size, and to intersect in a line that
is parallel to the ground.

If we take a closer look at these geometric con-
straints, we find that they can be divided into classes
that access different kinds of information. There are
node constraints which only restrict the primitive shape
associated with a node (e.g. type, size or orientation).
There are edge constraints which restrict the relation
between two incident shapes (e.g. angle between two
planes). Any constraint not fitting into one of the first
two classes belongs to the class of graph constraints,
because it relies on the topology to be checked (e.g.
sums of sizes, parallelism of disconnected planes).

Thus, when modeling a query graph the user specifies
the sought shape configuration on a topological level by
insertion of shape nodes and connecting edges. Geo-
metric relations, however, are attached to these graph
elements in the form of constraints which are formu-
lated in a simple scripting language. The scripts have
access to all parameters of the supported primitives as
well as to the set of assigned points for each shape.
Moreover predefined functions for computation of in-
tersections, test for parallelism or orthogonality etc. ex-
ist.

5.2 Constrained subgraph matching
The outline of the recursive constrained query graph
matching is illustrated in algorithm 1. To simplify
the discussion of the procedure, no explicit statements
are given for neither the maintenance of a data struc-
ture storing the matching, nor keeping track of visited
nodes. However these actions are assumed to take place
implicitly and it should be noted that they are manda-
tory for any correct implementation of the method. In
the following the different parts of the algorithm will be
described in detail:

In lines 2-8 the outer matching function is given,
which searches for a suitable node in the topology
graph, where the matching can be started. This outer
matching function has to be started repeatedly to re-
trieve all possible matches.

Matching a node

In lines 10-18 the function for matching a node is
sketched. First a check is made to see if all edges
of the node have already been matched and if this is
the case, the matching of the node has been successful
(lines 11-14). Otherwise a yet unmatched edge of the
node is chosen and matched to an edge of the topology
graph by calling the MatchEdge function. If the edge

WSCG2008 Full papers 68 ISBN 978-86943-15-2



1: Input A topology graph T = (VT ,ET ) and a query
graph Q = (VQ,EQ)

2: Function MatchSubgraph(Q, T)
3: vQ← StartNode(VQ)
4: for all vi ∈ VT do
5: if CheckNodeConstraint(vQ, vi) then
6: if MatchNode(vQ, vi) then
7: return true
8: return false
9:
10: Function MatchNode(vQ,vT )
11: if vQ has no unmatched edge then
12: if all nodes in VQ are matched then
13: return CheckGraphConstraint()
14: return true
15: eQ← first unmatched edge of vQ
16: if MatchEdge(eQ,vT ) then
17: return MatchNode(vQ,vT )
18: return false
19:
20: Function MatchEdge(eQ,vT )
21: for all unmatched outgoing edges ei of vT do
22: if CheckNodeConstraint(dest(eQ), dest(ei))

then
23: if CheckEdgeConstraint(eQ, ei) then
24: if MatchNode(dest(eQ), dest(ei)) then
25: return true
26: return false
Algorithm 1: Recursive Constrained Subgraph Match-
ing

was matched successfully, MatchNode is called recur-
sively on the same node, in order to match any remain-
ing edges of the node (lines 15-18).

Matching an edge

In lines 20-26 the MatchEdge function is outlined. It
checks if any of the unmatched edges of the given topol-
ogy graph’s node can be matched to the given query
graph edge (line 21-25). This is the case if the end-
nodes of the edges can be matched successfully - which
is tested via a call to MatchNode (line 24).

Checking constraints

Constraints are always verified just before a match is
established (lines 5, 13, 22, 23). In line 13 the graph
constraints are checked as soon as all nodes of the query
graph have been matched. If this test fails, the matching
will backtrack and continue the search. As can be seen,
in contrast to graph constraints, both, node and edge
constraints, have the advantage that they can be checked
early on during the subgraph matching procedure, as
they do not rely on other parts of the graph. This is
an important performance factor since this way many

of the topologically correct matches can be quickly dis-
carded, without causing extensive backtracking.

In order to avoid the need for graph constraints when
using asymmetric edge constraints (e.g. sphere A has to
be larger than sphere B) we also support directed edges
as carriers of a constraint.

5.3 First results
At this point the methods presented so far are powerful
enough to recognize large classes of semantic entities
and we will first give a couple of examples illustrating
the possibilities before presenting further extensions to
the basic matching framework:

In Figure 3 a query graph was designed to detect
Gothic windows in a scan of a medieval chapel. The
windows were modeled as two spheres for the arches
and two planes for the sides of the window. The spheres
were constrained to have roughly equal radius and the
planes to be tangential to the spheres.

To find the columns of the choir screen in Figure 4
they were modeled as a cylinder connected to two tori at
both ends. The cylinder and the tori were constrained to
posses the same axis of rotation (with a small tolerance
of 5 degrees).

(a) Points (b) Shapes

(c) Windows

Figure 3: A scan of a medieval chapel with Gothic
windows containing 4.2M points. The windows were
detected by matching the query graph with subgraphs
of the topology graph. In a) the original point-cloud is
depicted. b) shows the support of the detected shape
primitives in random colors. In c) the detected columns
are highlighted in green.

5.4 Query Graph Extensions
Although the given definition of a query already covers
many shape configurations, there remain cases which it
is still insufficient for. In the following we discuss some
of these cases and demonstrate how they are overcome
by extensions to the query graph model:

WSCG2008 Full papers 69 ISBN 978-86943-15-2



(a) Points (b) Shapes

(c) Columns

Figure 4: A scan of a choir screen consisting of 2M
points. The query graph for the columns consisted of
a cylinder connected to tori at both ends. In a) the
original point-cloud is depicted. b) shows the support
of the detected shape primitives in random colors. In
c) the detected columns are highlighted in green.

Context nodes

Certain features benefit from a context object to dis-
tinguish them from other structures. For instance, a
balcony needs a wall as context. Therefore we need
to model the context in the query graph, but without
declaring it an integral part of the balcony. This is
achieved by tagging these query graph nodes as con-
text nodes, so that after searching they can be removed
from the match. In Figure 5 a) we give an example for
this concept. There the roof planes have been modeled
as the context shapes of the dormers, see Figure 5 b).

Optional nodes

A limitation of the way we model queries so far is that
we are not able to specify variants of an entity with-
out duplicating the original query graph. For instance
L-shaped roofs like the one shown in Figure 6 may oc-
cur in four variants: not hipped, hipped on either end or
hipped on both ends. Thus a total of four query graphs,
that only marginally differ, would have to be defined
separately by the user. Since in practice this additional
work may become quite burdensome, we augment the
query graphs with what we call optional nodes. These
nodes may be ignored by the matching procedure if it
is unable to find any suitable counterparts in the given
topology graph. To incorporate optional nodes, the
matching procedure of Sec. 5.2 is extended in the fol-
lowing manner: First the matching is performed in the
same way as described above, but ignoring any optional

(a) Matching

(b) Query graph

Figure 5: a) Detection of dormers on a roof. The
roof plane shown in darker green is a context shape
of the dormers. b) The query graph containing a con-
text node.

nodes. Then, for each matched instance of the query
graph, as many optional nodes as possible are matched.
To this end the graph traversal examines all possible
matchings of the optional nodes but returns only those
with the largest number of matches.

A problem arises if there are entire optional query
graph components, instead of only single optional
nodes. In such a case simply declaring all the nodes
in question as optional could lead to incomplete
matchings of the component. Therefore, we use a
graph constraint which asserts the completeness of the
matching.

Although optional nodes increase the complexity of
the search, they greatly reduce the number of required
query graphs if different variants of a basic concept
have to be detected. In Figure 6 the single hip of an
L-shaped roof was matched by an optional node.

Multinodes

An even more complex case arises if we want to be able
to model repetitive patterns like the steps of a stairway.
In order to be able to model stairways with an arbitrary
number of steps, a generic way of model extension is
necessary. A simple approach is to define multinodes in
the query graph that may match several different topol-
ogy graph nodes. A multinode is defined as a query
graph node that has a self-loop, i.e. an edge connect-
ing the node with itself (this edge is implicitly consid-
ered optional by the matching algorithm). Via multin-
odes we are able to match arbitrarily large chains in the
topology graph. This allows us to define a query graph

WSCG2008 Full papers 70 ISBN 978-86943-15-2



(a) L-shaped roof

(b) Query graph

Figure 6: An L-shaped roof may be hipped on either
end. This is best modeled by optional nodes in the
query graph. a) A matched L-shaped roof in a stereo
reconstruction of a city containing 4M points. b) The
query graph used for detection. Optional nodes are
shown in grey.

Figure 7: Detection of a stairway in a sampled CAD
model of a house.

for stairways using only three nodes, as depicted in Fig-
ure 7. Note that we make use of directed edges in this
example so that the multinodes do not need to match
additional neighbor nodes each time the self-loop has
been traversed (since the multinode does not have an
outgoing edge other than the optional self-loop).

Query refinement

After the search for a query graph, the system presents
the user with the results in an interactive framework that
allows query refinement by changing constraints as well
as query graph topology at runtime. As soon as an el-
ement of the query graph is modified, the new results
are computed and displayed. This was achieved in real-
time for all our tested examples.

6 CONCLUSION
Our shape detection system works on point-clouds so
that we are able to work on data stemming from virtu-
ally arbitrary sources, such as terrestrial or airborne LI-
DAR data, polygon soups as well as ordinary meshes.
As we mainly target applications in the architectural or
cultural heritage domain, we safely assumed that most
objects under consideration can be well represented by
a set of primitive shapes. Thus we employ a fast prim-
itive shape extraction method to effectively reduce the
redundancy in the point-cloud and to derive a concise
shape representation consisting of a topology graph on
the shape primitives. In this graph, our system allows
the detection of features that can be described as com-
positions of simple primitive shapes. Due to the simple
structure of our representation it is not necessary for
the primitive shape detection to output an optimal seg-
mentation with a minimal number of primitives, nor to
find the correct edges and transitions between different
shapes. Only the detection of the relevant structures and
their rough outlines has to be ensured.

Our system is unable to deal with cases for which
features cannot be defined as configurations of primi-
tive shapes, e.g. if trying to detect ornate frescos. How-
ever, we have demonstrated that for a wide range of
frequently encountered structures our approach is very
well suited and is able to deliver results as expected by
the user. The user is able to specify the sought struc-
tures in a general way, even permitting fuzzy search
within the limits of the graph constraints and the in-
clusion of optional components.

A potential drawback of our method could arise if
large topology graphs with a lot of nodes and edges
are used and at the same time the node and edge con-
straints of the query graph are chosen in a way that a
wrong match will not be encountered early on during
the matching procedure. Since the search for subgraph
isomorphisms is a NP-hard problem, the retrieval per-
formance might degenerate. However, such pathologi-
cal cases are unlikely and in practice we observe very
fast response times of the system, i.e. in the order of a
few milliseconds (see timings in Table 1).

6.1 Future work
Future work concerning our method should address the
improvement of usability. Up to now, the query graphs
and the attached constraints are defined by hand. To
make this process more comfortable for less experi-
enced users we propose the development of a graphi-
cal user interface in which query graphs and constraints
can easily be defined. A further step of research would
be the automatic extraction of query graphs from mod-
eled or scanned objects by means of statistical learn-
ing. Techniques like relevance feedback could be used
to further enhance the retrieval performance.

WSCG2008 Full papers 71 ISBN 978-86943-15-2



dataset #nodes #edges top. graph matching
chapel 232 406 1.8s < 10ms

(Figure 3)
choir screen 537 2731 1.8s < 10ms

(Figure 4)
dormer roof 106 138 0.27s < 10ms

(Figure 5)
city model 431 351 2.5s < 10ms

(Figure 6)
CAD-house 160 513 3.9s < 10ms

(Figure 7)

Table 1: Some statistics on test models. #nodes de-
scribes the number of primitive shapes that were found
in the point cloud and by that the number of nodes in
the resulting topology graph. #edges states how many
edges describing neighborhood relations between the
primitive shapes were found. top.graph shows how
long it took to build the topology graph. The last column
describes how much time was needed for matching the
query graph.

Moreover, we plan to apply our system to basic point-
cloud editing operations such as copy and paste of se-
mantic units. Another interesting avenue of future re-
search is exploiting the ability to detect self-similarities
in the data for compression. Replacing instances of a
query graph by generic representations might lead to
very high compression ratios.

ACKNOWLEDGEMENTS
This work was partially funded by the German Science
Foundation (DFG) under grant GZ 554975(1) Olden-
burg BIB 48 OLof 01-02 Probado and as part of the
bundle project “Abstraction of Geographic Information
within the Multi-Scale Acquisition, Administration,
Analysis and Visualization”. The city model of Graz
(Figure 6) is courtesy of German Aerospace Center
(DLR) – Institute of Robotics and Mechatronics and
was derived by semi-global matching from Vexcel
Imaging GrazTM imagery. The model of the rochus
chapel (Figure 3) is courtesy of Zoller+Fröhlich
GmbH.

REFERENCES
[BNdB99] Gunilla Borgefors, Ingela Nyström, and

Gabriella Sanniti di Baja. Computing skeletons in
three dimensions. Pattern Recognition, 32(7):1225–1236,
1999.

[Coo71] Stephen A. Cook. The complexity of theorem-
proving procedures. In STOC ’71: Proceedings of the third
annual ACM symposium on Theory of computing, pages
151–158, New York, NY, USA, 1971. ACM Press.

[CSM05] Nicu D. Cornea, Deborah Silver, and Patrick
Min. Curve-skeleton applications. In IEEE Visualization,
page 13. IEEE Computer Society, 2005.

[EM03] M. El-Mehalawi. A database system of mechani-
cal components based on geometric and topological similar-
ity. part ii: indexing, retrieval, matching, and similarity as-
sessment. Computer-Aided Design, 35(1):95–105, January
2003.

[EMA03] Mohamed El-Mehalawi and Allen. A database
system of mechanical components based on geometric and
topological similarity. part i: representation. Computer-
Aided Design, 35(1):83–94, January 2003.

[HSKK01] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L.
Kunii. Topology matching for fully automatic similarity es-
timation of 3D shapes. In Proceedings of ACM SIGGRAPH,
2001.

[LJI+03] K. Lou, S. Janyanti, N. Iyer, Y. Kalyanaraman,
S. Prabhakar, and K. Ramani. A reconfigurable 3d engineer-
ing shape search system part ii: database indexing, retrieval
and clusturing. In DETC, 2003.

[MPSR01] David McWherter, Mitchell Peabody, Ali C.
Shokoufandeh, and William Regli. Database techniques for
archival of solid models. In SMA ’01: Proceedings of the
sixth ACM symposium on Solid modeling and applications,
pages 78–87, New York, NY, USA, 2001. ACM Press.

[PSBM07] Valerio Pascucci, Giorgio Scorzelli, Peer-Timo
Bremer, and Ajith Mascarenhas. Robust on-line compu-
tation of reeb graphs: simplicity and speed. ACM Trans.
Graph., 26(3):58, 2007.

[SLSK07] Andrei Sharf, Thomas Lewiner, Ariel Shamir, and
Leif Kobbelt. On–the–fly curve-skeleton computation for 3d
shapes. In Eurographics, pages 323–328, Prague, september
2007.

[SSGD03] H. Sundar, D. Silver, N. Gagvani, and S. Dickin-
son. Skeleton based shape matching and retrieval, 2003.

[SWK07] R. Schnabel, R. Wahl, and R. Klein. Efficient
ransac for point-cloud shape detection. Computer Graph-
ics Forum, 26(2):214–226, June 2007.

[TL07] Gary K. L. Tam and Rynson W. H. Lau. Deformable
model retrieval based on topological and geometric signa-
tures. IEEE TVCG, 13(3):470–482, 2007.

[TV04] J. W. Tangelder and R. C. Veltkamp. A survey
of content based 3d shape retrieval methods. In SMI
’04: Proceedings of the Shape Modeling International 2004
(SMI’04), pages 145–156, Washington, DC, USA, 2004.
IEEE Computer Society.

[VKH06] Vivek Verma, Rakesh Kumar, and Stephen Hsu.
3d building detection and modeling from aerial lidar data.
In CVPR ’06: Proceedings of the 2006 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recogni-
tion, pages 2213–2220, Washington, DC, USA, 2006. IEEE
Computer Society.

[Vos02] George Vosselman. Fusion of laser scanning data,
maps, and aerial photographs for building reconstruction. In
Geoscience and Remote Sensing Symposium. IEEE Interna-
tional, 2002.

[ZTS02] Emanuel Zuckerberger, Ayellet Tal, and Shymon
Shlafman. Polyhedral surface decomposition with applica-
tions. Computers and Graphics, 26(5):733–743, October
2002.

WSCG2008 Full papers 72 ISBN 978-86943-15-2


	wscg2008_FULL_Numbered.pdf.pdf
	B31-full.pdf
	B31-full.pdf

	B59-full.pdf


