The Room Connectivity Graph: Shape Retrieval in the Architectural Domain

Raoul Wessel, Ina Blümel and Reinhard Klein

University of Bonn

Introduction

- 3D modeling becomes more and more important for architecture
- Large collections of 3D building models in various formats (e.g. 3ds, max, vrml)

Problem:

- Modeling is **expensive** and **time consuming**
- Reusability as templates or inspiration source is limited
 - Lack of shape retrieval methods focusing on architectural needs

Introduction

- Major ingredient for architectural drafting: **2D floor plans**
 - Geometry and structure of buildings
 - Spatial organization (topology and disposition of rooms)
 - Implies scale, style (e.g. gothic, modernism), use and function
- rnism),

- Idea:
 - Extract 2D floor plans to characterize building stories
 - Starting point for retrieval, clustering, classification,...
- Demands:
 - Format independence
 - Robust extraction (non-manifold meshes, modeling errors,...)

universität**bon**

Related Work

- Common shape retrieval techniques
 - mostly focus on general 3D objects
 - extraction of rather *low-level* local or global geometric features
 - View-based methods
 - e.g. Makadia et al., Light Field Similarity for Model Retrieval, SMI 2006
 - Matching of local features
 - e.g. Funkhouser et al., Partial Matching of 3D Shapes with Priority-driven search, SGP 2006
 - Graph-based approaches
 - e.g. Tal et al., Mesh Retrieval by Components, GRAPP 2006

Common approaches not well-suited for high-level semantic features like rooms, doors, windows

Contribution

- Use of 2D floor plans for characterizing archtitectural data:
 - Introduction of Room Connectivity Graph (RCG) as basic data structure
- Robust extraction method for RCGs
 - Requires only polygon-soup modeled buildings
 - Robustness towards unintended modeling errors

- Efficient retrival of building models even from large databases based on RCGs
 - Fast graph matching technique using node and edge constraints

Story detection

- Prerequisite for floor plan extraction
 - Determine number of stories
 - Determine location of each single story

- Idea:
 - Stories are bordered by flooring and ceiling, minimum height about 2.40m
 - Determine large planar polygon patches
 - Identify ceilings and floorings according to minimum height critirion

Floor plan generation

- Extract 2D floor plan containing rooms
 - Compute cut between story and horizontal plane slightly below the ceiling
 - Set of line segments ⇒ Convert to 2D halfedges
 - Establish connectivity due to threshold ε (1mm)

 Each room will be represented as one single face in the resulting halfedge structure as lintels prevent rooms from being connected

Room extraction

- Determine faces in halfedges structure
 - Distinguish *inside* faces and *outside* faces
 - Inside faces: walls, rooms
 - Outside faces: facade, structures inside another room
 - Drop all outside faces expect for facade
- Determine rooms
 - For all inside faces compute area and extent
 - Room area usually larger than 1m²
 - Extent-to-area ratio α usually larger for walls than for rooms
 - Use α values of preclassified rooms and walls to predict face types

outside faces

Gap closing

- Extracted floor plans contain unintended gaps (up to ~10cm)

- Naive approach: Increase ε threshold for floor plan construction
- Drawbacks:
 - floor plan shape changes dramatically
 - walls disappear, windows and doors become unrecognizable
- **Instead**: Conduct gap closing operations *significantly* changing the room topology

Gap closing

Consider two possible gap-closing operations:

 A gap-closing operation is called *valid* if it splits an existing room face into two faces that still satisfy the room conditions (area, extent / area)

Floor plan after gap closing

Door and window detection

- Compute two additional cuts
 - Breast height (about 1.40m)
 - Marginally above flooring
- Doors and windows create inconsistencies :
 - Door: breast-height cut inconsistent with ceiling cut
 - Window: breast-height cut inconsistent with both other cuts
- Determine inconsistencies
- Add edges to room connectivity graph

Results

Database extraction time (100 buildings): 436.512s

Retrieval using connectivity graphs

- Create query graph
 - By hand
 - or use existing room connectivity (sub)graph
- Retrieval
 - Compute room connectivity graphs for all building models in database
 - Determine subgraph-isomorphisms between query graph and database graphs by constrained graph matching:
 - Node constraints: area and extent of rooms
 - Edge constraints: structure type (either door or window)
 - Return building models containing query graph

Results and timings

Query graph representing typical appartment

Example for retrieval results from database

Retrieval timings: Both examples: < 10ms Whole Database (100 buildings): 0.173s

universität**bonn**

Conclusion

- Room Connectivity Graph
 - basic structure for characterizing architectural data
 - robust method for extraction
 - allows for efficient retrieval of room configurations even in large databases
- Limitations
 - extraction fails if elements are not modeled uniquely
 - currently restricted to single stories

Future Work

- More detailed room descriptions
 - 2D descriptors (e.g. Zernike moments, centroid distance)
 - amount of sunlight at a certain time
 - (automatic) classification of room type / use
- Extension to 3D
 - interlink graphs of different stories via elevator- or staircase-edges
- Retrieval and Classification
 - graph clustering
 - automatic building classification according to graphs

Thanks for your attention !

