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Figure 1. A 360° panorama view generated with dynamic mesh refinement. The frame’s input mesh is hinted with 

thick lines. Actually rendered primitives have thin lines. 
 

ABSTRACT 
This paper presents a real-time rendering technique for dynamic, incremental 3D mesh refinement. The 
technique can be applied to any triangulated 3D mesh with arbitrary topology and connectivity. The 
functionality relies on geometry shaders that are used to amplify or remove geometry based on precalculated 
refinement patterns. For each triangle, the instantiated refinement pattern is selected dynamically. Due to 
limitations of current hardware, on-the-fly pattern instantiation cannot be implemented on the GPU. Instead, the 
complete refined mesh must be generated through pattern copying. We propose an incremental approach where 
the refined mesh is generated by using the previous refined mesh as primitive source. This algorithm runs 
exclusively on the GPU and requires no continuous data exchange between CPU and GPU. Due to the necessary 
mesh generation, the approach is particularly suitable for applications with small refinement levels. It 
complements traditional pattern-based refinement approaches that deliver high throughput for large refinement 
levels, but incur a substantial CPU-GPU communication overhead otherwise. Interesting applications include 
view-dependent mesh smoothing and interactive non-planar projections. In these areas, our algorithm enables 
efficient vertex-based implementations due to adaptive refinement.  
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1. INTRODUCTION 
Geometry specification and its efficient rendering is 
a crucial aspect of computer graphics. For high-
performance rendering, most parts of the graphics 
pipeline have become implemented in graphics 
hardware and are fed with primitives through 
standardized APIs. Real-time applications are forced 
to limit the number of primitives passing through the 
graphics pipeline. For fine meshes, this translates to 
mesh simplification, where a detailed mesh is 
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degraded into a coarse mesh while limiting visual 
artifacts. The simplification is either offline 
(statically) or online (dynamically). In general, level-
of-detail algorithms (LoD) follow this paradigm.  
If geometry is available in form of some compact 
functional description, e.g., subdivision surfaces, 
geometry synthesis is required for generating a mesh 
representation for processing by graphics hardware. 
Online synthesis allows for adapting the mesh to 
view parameters and thus limiting its size. In real-
time applications, geometry synthesis is often posed 
as mesh refinement problem where the intended 
geometry is defined as function over a coarse base 
mesh [Bou07]. The base mesh is then refined so that 
the geometry function can be evaluated per vertex 
with sufficient frequency in screen space. 
The same idea of using mesh refinement to ensure 
sufficient vertex frequency can help to map computer 
graphics algorithms to graphics hardware. In a 
vertex-based approximation scheme, complex, non-
linear computations are evaluated per vertex and 
linearly interpolated in between. Examples include 
global illumination or non-planar projections. 
Our motivation is the use of mesh refinement for 
view-dependent geometry synthesis and vertex-based 
approximation techniques. A number of hardware-
accelerated techniques have been proposed for 
generic [Bou07] or special-purpose [Bun05, Shi05] 
mesh refinement. However, all of these techniques 
require continuous data transfer between CPU and 
GPU proportional to the input mesh size. While 
exhibiting great performance for high refinement 
levels, this makes them inefficient for view-
dependent techniques, whose refinement level is 
dynamic and rather low on average. 
We propose a dynamic approach fully operating on 
the GPU to make mesh refinement efficient for view-
dependent problems. Our technique uses the idea of 
barycentric refinement patterns as proposed by 
Boubekeur et al. [Bou05b, Bou07] and follows their 
coarse algorithm. However, we relieve the CPU from 
selecting and instancing the refinement patterns by 
exploiting recently introduced geometry shaders 
[Bly06]. This enables us to dynamically amplify or 
remove geometry on the GPU, but at the same time 
shader limitations require us to create and store a 
representation of the complete refined mesh. Even 
though being able to provide arbitrary refinement 
levels, the mesh creation makes our approach most 
efficient for low average refinement levels and thus 
complements Boubekeur’s method, as suggested in 
[Bou07].  
Our algorithm exhibits four major properties that 
make it particularly suitable to add view-dependency 
to both, geometry synthesis and vertex-based 
approximation techniques. It is 

• generic, i.e., it operates on a triangular mesh of 
arbitrary topology and connectivity. It does not 
impose any restrictions on the refinement 
strategy or rendering technique and thus is 
adaptable to a wide range of applications.  

• pattern-based on triangle level, i.e., it uses 
precalculated refinement configurations to 
replace each original input triangle. The patterns 
can have any suitable structure. Patterns are not 
limited in their vertex count.  

• dynamic, i.e., it selects each triangle’s 
refinement pattern for each frame. Then, a 
refined mesh is build and rendered accordingly. 

• constant and minimal in communication 
overhead, i.e., it fully saturates the GPU 
regardless of the input or rendered mesh size.  

Our first contribution is the removal of 
communication overhead. While the first three 
properties are inherited from Boubekeur’s approach, 
we remove the need for per-triangle draw calls 
despite a non-uniform refinement. Our second 
contribution is an incremental refinement scheme 
that enables fast arbitrary geometry amplification 
with geometry shaders despite their output limit.  
The paper is organized as follows: Section 2 gives an 
overview over related work, Section 3 briefly 
introduces geometry shaders, Section 4 gives an in-
depth description of our generic refinement 
algorithm along with its limitations, Section 5 
demonstrates the refinement for two examples, 
Section 6 provides performance results and 
comparisons, and Section 7 concludes. 

2. RELATED WORK 
This section concentrates on hardware-accelerated 
mesh refinement algorithms. We distinguish two 
groups based on application dependency. 
In application-independent refinement, Boubekeur’s 
work [Bou05b, Bou07] is of most importance to our 
method, as described earlier. His methods are 
applicable to any triangulated mesh. The refinement 
presented by Bokeloh and Wand [Bok06] needs to 
restrict the input to rectangular patches that become 
hierarchically subdivided. They cast the refinement 
problem as image upscaling and use fragment 
shaders for implementation on the GPU. The new 
image data is then interpreted as vertex data for 
rendering. 
Application-dependent refinement is used for 
geometry synthesis. For example, various approaches 
to subdivision surface rendering exist. Hardware-
accelerated methods use patch-based approaches as 
introduced by Pulli and Segal [Pul96]. Bunnell 
[Bun05] describes a GPU implementation for 
adaptive tessellation including displacement 
mapping. While this approach uses a 2D texture to 
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represent surface patches, Shiue et al. [Shi05] uses a 
spiraling scheme to unfold each patch into a 1D 
texture. Both methods then use image operations to 
upscale the texture for actual geometry synthesis and 
recast the final texture as vertex buffer for rendering. 
Guthe et al. [Gut05] present a synthesis approach to 
trimmed NURBS. They use predefined sampling 
grids similar to our barycentric refinement patterns to 
render a hierarchy of bi-cubic approximation 
surfaces. They focus on artifact-free and efficient 
trimming of the resulting rendering. 
Hardware-accelerated mesh smoothing has been 
described by Losasso et al. [Los03]. They use 
geometry images [Gu02] to represent the control 
points for a B-Spline-based surface approximation. 
The control points are then transformed to a refined 
surface by performing image convolution operations 
on GPU. Finally, the image is interpreted as vertex 
data and rendered. 
A new generic approach to rendering has been 
proposed by Whitted and Kajiya [Whi05]. They 
outline changes to the current graphics hardware to 
enable processing of fully procedural geometry. As 
they propose point sampling in screen space, such a 
rendering processor eliminates the need for mesh 
refinement. 
Geometry shaders are a recent extension of the 
hardware graphics pipeline [Bly06]. So far, their use 
has rarely been reported in literature. Tariq [Tar06] 
presents some examples provided by nVidia, 
including fur rendering, cloth animation, and 
isosurface extraction. DeCoro and Tatarchuk 
[DeC07] exploit geometry shaders for mesh 
simplification through vertex clustering. An 
interesting future development is the proposal of a 
dedicated hardware tessellation unit [Tat07]. 

3. GEOMETRY SHADERS 
Geometry shaders [Bly06] introduce an additional 
processing unit in the graphics pipeline. This unit is 
located after vertex processing and before clipping 
and rasterization. It operates on whole primitives 
(points, lines, or triangles with or without newly 
introduced adjacency information) having random 
access to all a primitive’s transformed vertices and 
their attributes. The geometry shader program is 
invoked once for each assembled input primitive. 
The program then emits zero or more primitives, 
whose type is fixed but can differ from the input 
primitive type. The output completely replaces the 
input, allowing for geometry amplification and 
deletion.  
The amount of output data cannot exceed a certain 
hardware limit, typically 4096 bytes. The 
programmer can further restrict the maximum output 
size, since the shader’s performance and efficiency 

improves significantly with smaller maximum output 
sizes, regardless of the actual data output per 
invocation. 
An additional feature introduced together with 
geometry shaders is transformation feedback, a.k.a. 
stream out. This allows for capturing transformed 
vertices into a buffer in sequential order before 
clipping but after the geometry shader stage. The 
exact number of vertices captured in a buffer can be 
queried after command completion. As the capture 
buffer resides in GPU local memory, it can be used 
as input to subsequent rendering commands without 
copying. Optionally, the vertices can be discarded 
after capturing without rasterization taking place. 

4. DYNAMIC MESH REFINEMENT 
4.1 Overview 
Our refinement approach is pattern-based, i.e., each 
triangle of the original mesh is replaced by a generic 
precomputed refinement pattern consisting of 
subtriangles before rendering. Each selected pattern 
is then adapted to and rendered instead of its 
originating triangle. 
Except for pattern selection, our approach works on 
single triangles only. Thus, we impose no restrictions 
on the original triangular mesh’s topology or 
connectivity. In conjunction with a local pattern 
selection scheme, e.g., based on the screen space 
edge length, the dynamic mesh refinement is 
instantly applicable to any (indexed or non-indexed) 
triangle soup accepted by standard graphics APIs. No 
additional attributes or data structures (e.g. half-edge 
structures) are required.  
The pattern selection is computed on GPU for each 
frame and can follow any scheme suitable for the 
target application. Moreover, the selection can easily 
take backface and view volume culling into account 
to avoid unnecessary refinement. 
The core of our method is an incrementally updated 
intermediate mesh of all subtriangles. It is motivated 
by three observations. First, current GPUs are not 
capable of dynamically instantiating geometry 
without the control of the CPU. Second, efficient use 
of geometry shaders requires to minimizing each 
invocation’s output by all means (cf. Figure 8). 
Third, in an incremental approach the geometry 
shader’s output limit only limits the growth of a 
triangle’s refinement instead of its size. 
The intermediate mesh is a concatenation of one 
plain pattern copy per input triangle. During update, 
each triangle’s existing copy is replaced by the newly 
selected one. This update is computed on subtriangle 
level using geometry shaders on the GPU without the 
need for CPU control and thus without continuous 
communication between CPU and GPU. This 
removes the bottleneck of Boubekeur’s 
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Figure 2. Algorithm outline. White boxes mark application dependent parts. 

 

method. However, the need for creating and storing 
the complete intermediate mesh favors applications 
that need only low average refinement levels. 
Finally, the whole intermediate mesh is rendered. 
Only then, the generic pattern subtriangles are 
adapted to their originating triangles. Vertex 
positions and other rendering attributes are 
computed and immediately used for further 
processing. This includes per-vertex 
approximations or the evaluation of surface 
descriptions in geometry synthesis. To a subsequent 
rendering technique, refined vertices become 
indistinguishable from original vertices after 
conversion from their barycentric form. Thus, our 
method can be used for any rendering effect. 
The result is a three-pass-algorithm as outlined in 
Figure 2. Application independent parts are shown 
in gray. Each pass requires exactly one vertex array 
draw call with all information residing in GPU 
local memory. Hence, the CPU utilization and 
communication costs between CPU and GPU are 
negligible and constant regardless of the input or 
intermediate mesh’s size. In the following, we 
introduce our refinement patterns and explain each 
pass in detail. 

4.2 Refinement Patterns 
Similar to [Bou07], each refinement pattern 
represents a triangle tessellation encoded in 
barycentric coordinates. A barycentric vertex 
( )Twvu ,,  represents a point inside a triangle as 
weighted sum of the triangle’s vertices with 

1=++ wvu  and 0,, ≥wvu . For efficient storage, 
the third coordinate can be omitted as vuw −−= 1  
holds.  
The exact pattern structure is application-
dependent. As all patterns are precomputed, any 
suitable structure can be used. After generating all 
patterns, the resulting barycentric subtriangles are 
stored in a combined vertex buffer. A separate table 
buffer stores for each possible refinement pattern 

its triangle count and starting location in the 
combined vertex buffer. 
In contrast to [Bou07], our method does not allow 
for optimizing refinement patterns through the use 
of indexing. If we used indexing, the same pattern 
vertex index in different pattern copies referred to 
different original triangles. As we render the whole 
refined mesh with a single draw call, the graphics 
hardware then might wrongly reuse cached vertex 
shader results belonging to another original 
triangle. Non-indexed stripping can be used 
provided that only a single strip for the whole 
refined mesh is generated [Eva96, Reu05, Dia06], 
and that artifact-free rendering is achieved.  

 
Figure 3. Some sample refinement patterns. 

Our examples in Section 5 use patterns controlled 
by their edges’ tessellation degrees t0, t1, and t2 with 
a regular and homogeneous interior triangulation. 
The borders are subdivided in a recursive fashion 
into it2  sections with [ ]max;0 tti ∈  denoting the 

edge’s refinement depth. This results in 3
maxt  

possible refinement patterns. Some examples are 
shown in Figure 3. 

4.3 Pattern Selection 
Pattern selection is the first pass of our algorithm. 
For each input triangle, it selects one pattern from 
the available precomputed refinement patterns. The 
selection function is fully application-dependent 
and maps each triangle to a pattern index. 
However, usually two goals are desired: a crack-
free and minimal refinement. 
Since our approach uses a local refinement, cracks 
can only be prevented by ensuring identical 
tessellation of the shared edge of two adjacent 
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triangles. This can be achieved by selecting a 
pattern based on each edge’s tessellation degree ti 
as implemented in the examples.  
Ensuring a minimal refinement obviously improves 
total performance. Most importantly, hidden 
triangles can be left unrefined to save computation 
time. It is not possible to omit such triangles 
altogether, which is explained in Section 4.4. GPU-
friendly hidden triangle detection methods include 
backface and view volume culling. Additionally, 
any screen space based selection function 
inherently limits the applied refinement to the 
current view’s demands. Examples include screen 
space error estimators for subdivision surfaces 
[Bun05], height fields [Lin96], or texture deviation 
[Coh98]. 
Pattern selection is implemented in a geometry 
shader operating on triangles, whose input depends 
on the requirements of the selection function. 
Usually, this includes only a subset of the available 
rendering attributes, such as vertex position and 
normal. Additionally, the previous frame’s 
selection is fed into the shader. Its output only 
contains 3 values per triangle: the selected pattern’s 
index p, the number of required subtriangles sr, and 
the number of available subtriangles sp from the 
previous frame. For proper operation, the pattern 
growth, i.e., the ratio sr to sp, must not exceed the 
output limit of the update pass, even though this 
might introduce temporary cracks. Instead of being 
rendered, this output in form of point primitives is 
captured in a buffer (using stream out or 
transformation feedback) and then discarded before 
rasterization.  
The previous frame’s selection is accessible 
through the use of buffer textures. This enables a 
shader to randomly access an arbitrary buffer 
residing on the GPU via the 1D texture interface. 
With the primitive ID as index, a triangle’s number 
of subtriangles can be read from the previous 
frame’s selection buffer and copied to the number 
of available subtriangles for the current frame. 

4.4 Intermediate Mesh Update 
The update pass uses only the previous frame’s 
intermediate mesh consisting of subtriangles as 
primitive input. Each subtriangle is identified by 
the original mesh’s triangle id i, and the subtriangle 
id j within the pattern. Together with the 
barycentric coordinates (u,v), this information is 
stored in every vertex. Additionally, the geometry 
shader has access to the selection pass’s output 
buffer, the precomputed pattern vertex buffer, and 
the accompanying table buffer via buffer textures. 
For each original triangle, the update pass 
completely replaces an existing refinement by a 

copy of the newly selected refinement pattern. The 
copying task is evenly distributed across all 
respective subtriangles, such that the output of a 
single geometry shader invocation is minimized.  
For each subtriangle (i, j), the geometry shader 
fetches the original triangle’s pattern selection (p, 
sr, sp). It can then determine the corresponding 
range of subtriangles from pattern p. It emits each 
new subtriangle by reading its barycentric vertices 
from the pattern vertex buffer and emitting them 
augmented by the triangle id i and a new 
subtriangle id j’. Similar to pass 1, the shader 
output is captured in a buffer and discarded before 
rasterization. 
For proper refinement, this algorithm requires at 
least one subtriangle per original triangle. Once an 
original triangle is lost from the intermediate mesh 
it can never reappear. Consequently, hidden 
triangles must not be omitted but kept in the 
intermediate mesh as a single subtriangle. 
Additionally, the intermediate mesh must be 
initialized once to one subtriangle per original 
triangle. 
The buffers for storing the intermediate mesh need 
to be sufficiently sized in advance. Transformation 
feedback allows for buffer overrun detection, but 
for best performance, buffer reallocation should be 
avoided.  

4.5 Rendering 
The final pass comprises the conversion of the 
intermediate mesh’s barycentric vertices to the 
intended geometry and the actual image generation. 
It is fully application dependent.  
The conversion part is of most interest to geometry 
synthesis, as it implements the surface description 
evaluation. E.g., it can use the barycentric 
coordinates for procedural generation, as texture 
coordinates for displacement mapping, or as 
parameters for spline surface evaluation. For 
vertex-based approximations, usually a simple 
weighted sum for interpolation in object space is 
sufficient. If an interpolation in screen space is 
desired, the barycentric coordinates require a 
preceding transformation, e.g., by hyperbolic 
interpolation [Bli92]. 
Image generation is not affected by our mesh 
refinement. Since any rendering attribute can be 
computed during vertex conversion, any rendering 
technique is applicable. This includes multi-pass 
techniques, even though each additional pass might 
require its own vertex conversion. Alternatively, 
conversion results can be stored using 
transformation feedback and reused in each 
subsequent pass.  
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5. APPLICATIONS 
For usage, pass 1 and 3 from our algorithm need to 
be adapted (white boxes in Figure 2). In pass 1, a 
suitable pattern selection function needs to be 
implemented in a shader. Pass 3 implements the 
application-specific rendering. This pass can use 
the original shaders as if no mesh refinement was in 
place. Only the vertex shader portion needs to be 
extended by a vertex conversion function 
converting the generic barycentric pattern 
coordinates to the actual vertex attributes as needed 
for further processing.  
In the following, we demonstrate our refinement 
for one geometry synthesis and one vertex-based 
approximation technique. 

5.1 Curved PN-Triangles 
Curved PN-Triangles have been proposed by 
Vlachos et al. [Vla01] as a simple heuristic to 
smoothing a triangular mesh. It has been designed 
with a dedicated hardware implementation and 
readily available input in mind [ATI01]. It only 
uses vertex positions and normals to construct a 
triangular Bézier surface over the triangle. This 
surface is then used for geometry synthesis. For 
many coarse meshes, this method instantly 
generates visually pleasing results without any 
change to the original mesh. A respective 
tessellation unit can be found on some graphics 
hardware. The original approach has been further 
investigated, e.g., by Boubekeur et al. [Bou05a] or 
Choi et al. [Cho04]. 

 
Figure 4. PN-triangles. Thick lines show the original 

mesh, thin lines the refined mesh. 
We demonstrate an implementation of the original 
approach based on our dynamic mesh refinement. 
Since the curved PN-triangle surface closely 
follows the original mesh, the original triangle’s 
screen space edge length is a reasonable basis for a 
view-dependent metric. At the silhouette, this is not 
sufficient as some minimal refinement should be 
retained to prevent popping artifacts. Consequently, 
the normal orientation is incorporated into the 
pattern selection. In pass 3, we use the formulas 
given in [Bou05b] to calculate the refined vertex’s 

position and normal from the barycentric 
coordinates. The result is shown in Figure 4.  

5.2 Cylindrical Projection 
Current graphics hardware relies on linear 
interpolation (in homogeneous space) during 
rasterization. This prevents a straight-forward 
vertex-based implementation of non-planar 
projections or view deformations. The actual result 
can only be approximated due to the missing 
correct non-linear interpolation. Traditionally, in 
real-time applications an image space solution 
involving multiple render-to-texture passes and 
subsequent image warping [Yan05] has been used. 
This solution trades approximation errors for 
warping related interpolation errors.  
As alternative, Spindler et al. [Spi06] proposed 
“camera textures”, a generic object space approach 
to per-vertex view deformation. If the input mesh is 
sufficiently dense, approximation errors become 
negligible. For coarse meshes, they suggest the use 
of a dynamic mesh refinement.  

 
Figure 5. A cylindrical projection with 160° field of 
view. Our refinement is usable with any rendering 

technique. Geometry is hinted as in Figure 4. 
We implement a per-vertex cylindrical projection to 
demonstrate a vertex-based approximation relying 
on mesh refinement. The pattern selection function 
is based on an edge’s horizontal screen length. 
Since the vertical direction does not introduce 
approximation errors (it uses a perspective 
projection), this reduces the overall refinement 
level. Vertex conversion in pass 3 is a simple 
weighted sum. Figure 5 shows the result and hints 
both, the unrefined and refined mesh. This example 
also exhibits the use of additional rendering 
attributes (texture coordinates etc.). 

6. RESULTS 
For performance evaluation, we compare our 
method (DMR) to [Bou07] (ARP) for the 
cylindrical projection described in Section 5.2. 
Both implementations use identical refinement 
patterns, represented as non-indexed triangles for 
DMR and as indexed degenerated tristrips for ARP. 
Our pattern selection pass (pass 1) with an 
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additional buffer readback has been added to ARP 
to enable identical dynamic refinement. Both 
methods are implemented with one frame latency 
per pass to hide dependencies between passes.  
The measurements have been taken on a PC with 
an AMD Athlon 64 X2 4400+ with 2GB RAM and 
an nVidia GeForce 8800GTS with 640MB RAM. 
The viewport size was 1600x1200. For optimal 
performance, the programs have been forced to run 
on a single core during measurements. The 
measurements use the same flight path through a 
textured small (13639 triangles) and large (122751 
triangles) city data set. 

0

50000

100000

150000

200000

0 50 100 150 200 250 300 350
frame

tr
ia

n
gl

e 
co

u
nt

small city rendered small city input large city rendered large city input  
Figure 6. Triangle count for the test animation. 

Figure 6 shows the input and rendered triangle 
count for each frame of the flight path at a 
maximum horizontal edge length of 10 pixels. It 
shows the dynamic view-dependent refinement. As 
expected, the refinement ratio is rather low and 
almost constant. Since the small data set is only a 
portion of the large one, the curves look very 
similar. 
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Figure 7. Cylindrical projection performance for 
varying refinement settings. The x-axis uses a 

logarithmic scale. 
Figure 7 shows the resulting frame rates and 
average triangle counts for varying maximum edge 
length. For the tested use cases, Boubekeur’s 
method is almost independent of the rendered 
triangle count and only depends on the input 
triangle count, i.e. CPU-GPU communication is the 
method’s bottleneck as described in [Bou07]. Our 
method scales with both, input and rendered 
triangle count. By removing the communication 

overhead, our method can always fully saturate the 
GPU while ARP requires a sufficient refinement 
ratio for that. Consequently, our method 
outperforms ARP for reasonable error bounds 
despite the more complex algorithm. Note, that we 
were not able to reproduce the frame rates for ARP 
reported by [Bou07]. This has no impact on its 
general performance behavior. 
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Figure 8. Performance results for varying geometry 

shader output limit. 
Figure 8 shows the geometry shader’s performance 
for different output limits, measured for the small 
city data set at a maximum horizontal edge length 
of 10 pixels. The actual refinements and thus 
geometry shader outputs for pass 2 are identical for 
all test runs (cf. Figure 6), only the allowed 
maximum vertex output varies. Up to a maximum 
output of 80 vertices, the curve drops as expected. 
Starting from 81 up to the maximum of 1024 
vertices (not shown), the frame rate suddenly drops 
to a constant 5.75 fps. This curve shows the 
importance of choosing a sensible maximum vertex 
output. We use 12 vertices, i.e., 4 triangles, as 
trade-off to allow for fast pattern growth (e.g., for 
an invisible triangle entering the viewport) and 
high frame rates. 

7. CONCLUSIONS 
We presented a novel approach to generic mesh 
refinement that first leverages the power of 
geometry shaders to run exclusively on the GPU in 
an incremental multi-pass scheme. Without 
continuous communication between CPU and 
GPU, our method is most efficient for problems 
with large input triangle meshes and/or low 
refinement ratios. In particular, view-dependent 
approaches to geometry synthesis or vertex-based 
approximations profit from our approach. 
Nevertheless, it does not replace previous methods, 
but rather complements them as its efficiency drops 
with higher refinement ratios. 
Our current implementation largely depends on the 
design of DirectX 10 class GPUs. It could be 
improved by using indexed tristrips for the 
refinement patterns. For that, a new hardware 
feature is required. Similar to the existing 
“primitive restart” feature, a prospective “next 
instance” feature could enable a geometry shader to 
emit blocks of indices separated by a special index 
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to a single buffer. During vertex fetch, this special 
index increments the instance ID instead of 
provoking a vertex. In a subsequent pass, the 
blocks could then be identified as separate 
instances and processed with varying shader 
parameters accordingly. 
Future developments, such as a separate 
programmable hardware tessellation unit [Tat07], 
will hopefully ease generic mesh refinement and 
improve its performance. Our future work 
concentrates on applications for mesh refinement. 
In particular, we explore the use of vertex-based 
approximations as alternative approach to existing 
solutions. The cylindrical projection described in 
Section 5.2 represents an example and initial result 
that competes with traditional image warping 
techniques.  
Finally, we explore a unified approach to mesh 
refinement and mesh simplification. We hope to 
find a continuous level-of-detail algorithm that not 
only simplifies distant meshes to gain performance, 
but also refines close meshes to gain visual detail. 
For example, outdoor scenes could benefit from 
such an algorithm as only a single medium sized 
mesh per object can be used for all rendering. 
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