
Dynamic Mesh Refinement on GPU
using Geometry Shaders

Haik Lorenz
Hasso-Plattner-Institute
University of Potsdam
August-Bebel-Str. 88

 14482 Potsdam, Germany
haik.lorenz@hpi.uni-potsdam.de

Jürgen Döllner
Hasso-Plattner-Institute
University of Potsdam
August-Bebel-Str. 88

 14482 Potsdam, Germany
doellner@hpi.uni-potsdam.de

Figure 1. A 360° panorama view generated with dynamic mesh refinement. The frame’s input mesh is hinted with

thick lines. Actually rendered primitives have thin lines.

ABSTRACT
This paper presents a real-time rendering technique for dynamic, incremental 3D mesh refinement. The
technique can be applied to any triangulated 3D mesh with arbitrary topology and connectivity. The
functionality relies on geometry shaders that are used to amplify or remove geometry based on precalculated
refinement patterns. For each triangle, the instantiated refinement pattern is selected dynamically. Due to
limitations of current hardware, on-the-fly pattern instantiation cannot be implemented on the GPU. Instead, the
complete refined mesh must be generated through pattern copying. We propose an incremental approach where
the refined mesh is generated by using the previous refined mesh as primitive source. This algorithm runs
exclusively on the GPU and requires no continuous data exchange between CPU and GPU. Due to the necessary
mesh generation, the approach is particularly suitable for applications with small refinement levels. It
complements traditional pattern-based refinement approaches that deliver high throughput for large refinement
levels, but incur a substantial CPU-GPU communication overhead otherwise. Interesting applications include
view-dependent mesh smoothing and interactive non-planar projections. In these areas, our algorithm enables
efficient vertex-based implementations due to adaptive refinement.

Keywords
Geometry shaders, GPU, mesh refinement, refinement patterns, barycentric coordinates

1. INTRODUCTION
Geometry specification and its efficient rendering is
a crucial aspect of computer graphics. For high-
performance rendering, most parts of the graphics
pipeline have become implemented in graphics
hardware and are fed with primitives through
standardized APIs. Real-time applications are forced
to limit the number of primitives passing through the
graphics pipeline. For fine meshes, this translates to
mesh simplification, where a detailed mesh is

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

WSCG2008 Full papers 97 ISBN 978-86943-15-2

degraded into a coarse mesh while limiting visual
artifacts. The simplification is either offline
(statically) or online (dynamically). In general, level-
of-detail algorithms (LoD) follow this paradigm.
If geometry is available in form of some compact
functional description, e.g., subdivision surfaces,
geometry synthesis is required for generating a mesh
representation for processing by graphics hardware.
Online synthesis allows for adapting the mesh to
view parameters and thus limiting its size. In real-
time applications, geometry synthesis is often posed
as mesh refinement problem where the intended
geometry is defined as function over a coarse base
mesh [Bou07]. The base mesh is then refined so that
the geometry function can be evaluated per vertex
with sufficient frequency in screen space.
The same idea of using mesh refinement to ensure
sufficient vertex frequency can help to map computer
graphics algorithms to graphics hardware. In a
vertex-based approximation scheme, complex, non-
linear computations are evaluated per vertex and
linearly interpolated in between. Examples include
global illumination or non-planar projections.
Our motivation is the use of mesh refinement for
view-dependent geometry synthesis and vertex-based
approximation techniques. A number of hardware-
accelerated techniques have been proposed for
generic [Bou07] or special-purpose [Bun05, Shi05]
mesh refinement. However, all of these techniques
require continuous data transfer between CPU and
GPU proportional to the input mesh size. While
exhibiting great performance for high refinement
levels, this makes them inefficient for view-
dependent techniques, whose refinement level is
dynamic and rather low on average.
We propose a dynamic approach fully operating on
the GPU to make mesh refinement efficient for view-
dependent problems. Our technique uses the idea of
barycentric refinement patterns as proposed by
Boubekeur et al. [Bou05b, Bou07] and follows their
coarse algorithm. However, we relieve the CPU from
selecting and instancing the refinement patterns by
exploiting recently introduced geometry shaders
[Bly06]. This enables us to dynamically amplify or
remove geometry on the GPU, but at the same time
shader limitations require us to create and store a
representation of the complete refined mesh. Even
though being able to provide arbitrary refinement
levels, the mesh creation makes our approach most
efficient for low average refinement levels and thus
complements Boubekeur’s method, as suggested in
[Bou07].
Our algorithm exhibits four major properties that
make it particularly suitable to add view-dependency
to both, geometry synthesis and vertex-based
approximation techniques. It is

• generic, i.e., it operates on a triangular mesh of
arbitrary topology and connectivity. It does not
impose any restrictions on the refinement
strategy or rendering technique and thus is
adaptable to a wide range of applications.

• pattern-based on triangle level, i.e., it uses
precalculated refinement configurations to
replace each original input triangle. The patterns
can have any suitable structure. Patterns are not
limited in their vertex count.

• dynamic, i.e., it selects each triangle’s
refinement pattern for each frame. Then, a
refined mesh is build and rendered accordingly.

• constant and minimal in communication
overhead, i.e., it fully saturates the GPU
regardless of the input or rendered mesh size.

Our first contribution is the removal of
communication overhead. While the first three
properties are inherited from Boubekeur’s approach,
we remove the need for per-triangle draw calls
despite a non-uniform refinement. Our second
contribution is an incremental refinement scheme
that enables fast arbitrary geometry amplification
with geometry shaders despite their output limit.
The paper is organized as follows: Section 2 gives an
overview over related work, Section 3 briefly
introduces geometry shaders, Section 4 gives an in-
depth description of our generic refinement
algorithm along with its limitations, Section 5
demonstrates the refinement for two examples,
Section 6 provides performance results and
comparisons, and Section 7 concludes.

2. RELATED WORK
This section concentrates on hardware-accelerated
mesh refinement algorithms. We distinguish two
groups based on application dependency.
In application-independent refinement, Boubekeur’s
work [Bou05b, Bou07] is of most importance to our
method, as described earlier. His methods are
applicable to any triangulated mesh. The refinement
presented by Bokeloh and Wand [Bok06] needs to
restrict the input to rectangular patches that become
hierarchically subdivided. They cast the refinement
problem as image upscaling and use fragment
shaders for implementation on the GPU. The new
image data is then interpreted as vertex data for
rendering.
Application-dependent refinement is used for
geometry synthesis. For example, various approaches
to subdivision surface rendering exist. Hardware-
accelerated methods use patch-based approaches as
introduced by Pulli and Segal [Pul96]. Bunnell
[Bun05] describes a GPU implementation for
adaptive tessellation including displacement
mapping. While this approach uses a 2D texture to

WSCG2008 Full papers 98 ISBN 978-86943-15-2

represent surface patches, Shiue et al. [Shi05] uses a
spiraling scheme to unfold each patch into a 1D
texture. Both methods then use image operations to
upscale the texture for actual geometry synthesis and
recast the final texture as vertex buffer for rendering.
Guthe et al. [Gut05] present a synthesis approach to
trimmed NURBS. They use predefined sampling
grids similar to our barycentric refinement patterns to
render a hierarchy of bi-cubic approximation
surfaces. They focus on artifact-free and efficient
trimming of the resulting rendering.
Hardware-accelerated mesh smoothing has been
described by Losasso et al. [Los03]. They use
geometry images [Gu02] to represent the control
points for a B-Spline-based surface approximation.
The control points are then transformed to a refined
surface by performing image convolution operations
on GPU. Finally, the image is interpreted as vertex
data and rendered.
A new generic approach to rendering has been
proposed by Whitted and Kajiya [Whi05]. They
outline changes to the current graphics hardware to
enable processing of fully procedural geometry. As
they propose point sampling in screen space, such a
rendering processor eliminates the need for mesh
refinement.
Geometry shaders are a recent extension of the
hardware graphics pipeline [Bly06]. So far, their use
has rarely been reported in literature. Tariq [Tar06]
presents some examples provided by nVidia,
including fur rendering, cloth animation, and
isosurface extraction. DeCoro and Tatarchuk
[DeC07] exploit geometry shaders for mesh
simplification through vertex clustering. An
interesting future development is the proposal of a
dedicated hardware tessellation unit [Tat07].

3. GEOMETRY SHADERS
Geometry shaders [Bly06] introduce an additional
processing unit in the graphics pipeline. This unit is
located after vertex processing and before clipping
and rasterization. It operates on whole primitives
(points, lines, or triangles with or without newly
introduced adjacency information) having random
access to all a primitive’s transformed vertices and
their attributes. The geometry shader program is
invoked once for each assembled input primitive.
The program then emits zero or more primitives,
whose type is fixed but can differ from the input
primitive type. The output completely replaces the
input, allowing for geometry amplification and
deletion.
The amount of output data cannot exceed a certain
hardware limit, typically 4096 bytes. The
programmer can further restrict the maximum output
size, since the shader’s performance and efficiency

improves significantly with smaller maximum output
sizes, regardless of the actual data output per
invocation.
An additional feature introduced together with
geometry shaders is transformation feedback, a.k.a.
stream out. This allows for capturing transformed
vertices into a buffer in sequential order before
clipping but after the geometry shader stage. The
exact number of vertices captured in a buffer can be
queried after command completion. As the capture
buffer resides in GPU local memory, it can be used
as input to subsequent rendering commands without
copying. Optionally, the vertices can be discarded
after capturing without rasterization taking place.

4. DYNAMIC MESH REFINEMENT
4.1 Overview
Our refinement approach is pattern-based, i.e., each
triangle of the original mesh is replaced by a generic
precomputed refinement pattern consisting of
subtriangles before rendering. Each selected pattern
is then adapted to and rendered instead of its
originating triangle.
Except for pattern selection, our approach works on
single triangles only. Thus, we impose no restrictions
on the original triangular mesh’s topology or
connectivity. In conjunction with a local pattern
selection scheme, e.g., based on the screen space
edge length, the dynamic mesh refinement is
instantly applicable to any (indexed or non-indexed)
triangle soup accepted by standard graphics APIs. No
additional attributes or data structures (e.g. half-edge
structures) are required.
The pattern selection is computed on GPU for each
frame and can follow any scheme suitable for the
target application. Moreover, the selection can easily
take backface and view volume culling into account
to avoid unnecessary refinement.
The core of our method is an incrementally updated
intermediate mesh of all subtriangles. It is motivated
by three observations. First, current GPUs are not
capable of dynamically instantiating geometry
without the control of the CPU. Second, efficient use
of geometry shaders requires to minimizing each
invocation’s output by all means (cf. Figure 8).
Third, in an incremental approach the geometry
shader’s output limit only limits the growth of a
triangle’s refinement instead of its size.
The intermediate mesh is a concatenation of one
plain pattern copy per input triangle. During update,
each triangle’s existing copy is replaced by the newly
selected one. This update is computed on subtriangle
level using geometry shaders on the GPU without the
need for CPU control and thus without continuous
communication between CPU and GPU. This
removes the bottleneck of Boubekeur’s

WSCG2008 Full papers 99 ISBN 978-86943-15-2

Figure 2. Algorithm outline. White boxes mark application dependent parts.

method. However, the need for creating and storing
the complete intermediate mesh favors applications
that need only low average refinement levels.
Finally, the whole intermediate mesh is rendered.
Only then, the generic pattern subtriangles are
adapted to their originating triangles. Vertex
positions and other rendering attributes are
computed and immediately used for further
processing. This includes per-vertex
approximations or the evaluation of surface
descriptions in geometry synthesis. To a subsequent
rendering technique, refined vertices become
indistinguishable from original vertices after
conversion from their barycentric form. Thus, our
method can be used for any rendering effect.
The result is a three-pass-algorithm as outlined in
Figure 2. Application independent parts are shown
in gray. Each pass requires exactly one vertex array
draw call with all information residing in GPU
local memory. Hence, the CPU utilization and
communication costs between CPU and GPU are
negligible and constant regardless of the input or
intermediate mesh’s size. In the following, we
introduce our refinement patterns and explain each
pass in detail.

4.2 Refinement Patterns
Similar to [Bou07], each refinement pattern
represents a triangle tessellation encoded in
barycentric coordinates. A barycentric vertex
()Twvu ,, represents a point inside a triangle as
weighted sum of the triangle’s vertices with

1=++ wvu and 0,, ≥wvu . For efficient storage,
the third coordinate can be omitted as vuw −−= 1
holds.
The exact pattern structure is application-
dependent. As all patterns are precomputed, any
suitable structure can be used. After generating all
patterns, the resulting barycentric subtriangles are
stored in a combined vertex buffer. A separate table
buffer stores for each possible refinement pattern

its triangle count and starting location in the
combined vertex buffer.
In contrast to [Bou07], our method does not allow
for optimizing refinement patterns through the use
of indexing. If we used indexing, the same pattern
vertex index in different pattern copies referred to
different original triangles. As we render the whole
refined mesh with a single draw call, the graphics
hardware then might wrongly reuse cached vertex
shader results belonging to another original
triangle. Non-indexed stripping can be used
provided that only a single strip for the whole
refined mesh is generated [Eva96, Reu05, Dia06],
and that artifact-free rendering is achieved.

Figure 3. Some sample refinement patterns.

Our examples in Section 5 use patterns controlled
by their edges’ tessellation degrees t0, t1, and t2 with
a regular and homogeneous interior triangulation.
The borders are subdivided in a recursive fashion
into it2 sections with []max;0 tti ∈ denoting the

edge’s refinement depth. This results in 3
maxt

possible refinement patterns. Some examples are
shown in Figure 3.

4.3 Pattern Selection
Pattern selection is the first pass of our algorithm.
For each input triangle, it selects one pattern from
the available precomputed refinement patterns. The
selection function is fully application-dependent
and maps each triangle to a pattern index.
However, usually two goals are desired: a crack-
free and minimal refinement.
Since our approach uses a local refinement, cracks
can only be prevented by ensuring identical
tessellation of the shared edge of two adjacent

WSCG2008 Full papers 100 ISBN 978-86943-15-2

triangles. This can be achieved by selecting a
pattern based on each edge’s tessellation degree ti
as implemented in the examples.
Ensuring a minimal refinement obviously improves
total performance. Most importantly, hidden
triangles can be left unrefined to save computation
time. It is not possible to omit such triangles
altogether, which is explained in Section 4.4. GPU-
friendly hidden triangle detection methods include
backface and view volume culling. Additionally,
any screen space based selection function
inherently limits the applied refinement to the
current view’s demands. Examples include screen
space error estimators for subdivision surfaces
[Bun05], height fields [Lin96], or texture deviation
[Coh98].
Pattern selection is implemented in a geometry
shader operating on triangles, whose input depends
on the requirements of the selection function.
Usually, this includes only a subset of the available
rendering attributes, such as vertex position and
normal. Additionally, the previous frame’s
selection is fed into the shader. Its output only
contains 3 values per triangle: the selected pattern’s
index p, the number of required subtriangles sr, and
the number of available subtriangles sp from the
previous frame. For proper operation, the pattern
growth, i.e., the ratio sr to sp, must not exceed the
output limit of the update pass, even though this
might introduce temporary cracks. Instead of being
rendered, this output in form of point primitives is
captured in a buffer (using stream out or
transformation feedback) and then discarded before
rasterization.
The previous frame’s selection is accessible
through the use of buffer textures. This enables a
shader to randomly access an arbitrary buffer
residing on the GPU via the 1D texture interface.
With the primitive ID as index, a triangle’s number
of subtriangles can be read from the previous
frame’s selection buffer and copied to the number
of available subtriangles for the current frame.

4.4 Intermediate Mesh Update
The update pass uses only the previous frame’s
intermediate mesh consisting of subtriangles as
primitive input. Each subtriangle is identified by
the original mesh’s triangle id i, and the subtriangle
id j within the pattern. Together with the
barycentric coordinates (u,v), this information is
stored in every vertex. Additionally, the geometry
shader has access to the selection pass’s output
buffer, the precomputed pattern vertex buffer, and
the accompanying table buffer via buffer textures.
For each original triangle, the update pass
completely replaces an existing refinement by a

copy of the newly selected refinement pattern. The
copying task is evenly distributed across all
respective subtriangles, such that the output of a
single geometry shader invocation is minimized.
For each subtriangle (i, j), the geometry shader
fetches the original triangle’s pattern selection (p,
sr, sp). It can then determine the corresponding
range of subtriangles from pattern p. It emits each
new subtriangle by reading its barycentric vertices
from the pattern vertex buffer and emitting them
augmented by the triangle id i and a new
subtriangle id j’. Similar to pass 1, the shader
output is captured in a buffer and discarded before
rasterization.
For proper refinement, this algorithm requires at
least one subtriangle per original triangle. Once an
original triangle is lost from the intermediate mesh
it can never reappear. Consequently, hidden
triangles must not be omitted but kept in the
intermediate mesh as a single subtriangle.
Additionally, the intermediate mesh must be
initialized once to one subtriangle per original
triangle.
The buffers for storing the intermediate mesh need
to be sufficiently sized in advance. Transformation
feedback allows for buffer overrun detection, but
for best performance, buffer reallocation should be
avoided.

4.5 Rendering
The final pass comprises the conversion of the
intermediate mesh’s barycentric vertices to the
intended geometry and the actual image generation.
It is fully application dependent.
The conversion part is of most interest to geometry
synthesis, as it implements the surface description
evaluation. E.g., it can use the barycentric
coordinates for procedural generation, as texture
coordinates for displacement mapping, or as
parameters for spline surface evaluation. For
vertex-based approximations, usually a simple
weighted sum for interpolation in object space is
sufficient. If an interpolation in screen space is
desired, the barycentric coordinates require a
preceding transformation, e.g., by hyperbolic
interpolation [Bli92].
Image generation is not affected by our mesh
refinement. Since any rendering attribute can be
computed during vertex conversion, any rendering
technique is applicable. This includes multi-pass
techniques, even though each additional pass might
require its own vertex conversion. Alternatively,
conversion results can be stored using
transformation feedback and reused in each
subsequent pass.

WSCG2008 Full papers 101 ISBN 978-86943-15-2

5. APPLICATIONS
For usage, pass 1 and 3 from our algorithm need to
be adapted (white boxes in Figure 2). In pass 1, a
suitable pattern selection function needs to be
implemented in a shader. Pass 3 implements the
application-specific rendering. This pass can use
the original shaders as if no mesh refinement was in
place. Only the vertex shader portion needs to be
extended by a vertex conversion function
converting the generic barycentric pattern
coordinates to the actual vertex attributes as needed
for further processing.
In the following, we demonstrate our refinement
for one geometry synthesis and one vertex-based
approximation technique.

5.1 Curved PN-Triangles
Curved PN-Triangles have been proposed by
Vlachos et al. [Vla01] as a simple heuristic to
smoothing a triangular mesh. It has been designed
with a dedicated hardware implementation and
readily available input in mind [ATI01]. It only
uses vertex positions and normals to construct a
triangular Bézier surface over the triangle. This
surface is then used for geometry synthesis. For
many coarse meshes, this method instantly
generates visually pleasing results without any
change to the original mesh. A respective
tessellation unit can be found on some graphics
hardware. The original approach has been further
investigated, e.g., by Boubekeur et al. [Bou05a] or
Choi et al. [Cho04].

Figure 4. PN-triangles. Thick lines show the original

mesh, thin lines the refined mesh.
We demonstrate an implementation of the original
approach based on our dynamic mesh refinement.
Since the curved PN-triangle surface closely
follows the original mesh, the original triangle’s
screen space edge length is a reasonable basis for a
view-dependent metric. At the silhouette, this is not
sufficient as some minimal refinement should be
retained to prevent popping artifacts. Consequently,
the normal orientation is incorporated into the
pattern selection. In pass 3, we use the formulas
given in [Bou05b] to calculate the refined vertex’s

position and normal from the barycentric
coordinates. The result is shown in Figure 4.

5.2 Cylindrical Projection
Current graphics hardware relies on linear
interpolation (in homogeneous space) during
rasterization. This prevents a straight-forward
vertex-based implementation of non-planar
projections or view deformations. The actual result
can only be approximated due to the missing
correct non-linear interpolation. Traditionally, in
real-time applications an image space solution
involving multiple render-to-texture passes and
subsequent image warping [Yan05] has been used.
This solution trades approximation errors for
warping related interpolation errors.
As alternative, Spindler et al. [Spi06] proposed
“camera textures”, a generic object space approach
to per-vertex view deformation. If the input mesh is
sufficiently dense, approximation errors become
negligible. For coarse meshes, they suggest the use
of a dynamic mesh refinement.

Figure 5. A cylindrical projection with 160° field of
view. Our refinement is usable with any rendering

technique. Geometry is hinted as in Figure 4.
We implement a per-vertex cylindrical projection to
demonstrate a vertex-based approximation relying
on mesh refinement. The pattern selection function
is based on an edge’s horizontal screen length.
Since the vertical direction does not introduce
approximation errors (it uses a perspective
projection), this reduces the overall refinement
level. Vertex conversion in pass 3 is a simple
weighted sum. Figure 5 shows the result and hints
both, the unrefined and refined mesh. This example
also exhibits the use of additional rendering
attributes (texture coordinates etc.).

6. RESULTS
For performance evaluation, we compare our
method (DMR) to [Bou07] (ARP) for the
cylindrical projection described in Section 5.2.
Both implementations use identical refinement
patterns, represented as non-indexed triangles for
DMR and as indexed degenerated tristrips for ARP.
Our pattern selection pass (pass 1) with an

WSCG2008 Full papers 102 ISBN 978-86943-15-2

additional buffer readback has been added to ARP
to enable identical dynamic refinement. Both
methods are implemented with one frame latency
per pass to hide dependencies between passes.
The measurements have been taken on a PC with
an AMD Athlon 64 X2 4400+ with 2GB RAM and
an nVidia GeForce 8800GTS with 640MB RAM.
The viewport size was 1600x1200. For optimal
performance, the programs have been forced to run
on a single core during measurements. The
measurements use the same flight path through a
textured small (13639 triangles) and large (122751
triangles) city data set.

0

50000

100000

150000

200000

0 50 100 150 200 250 300 350
frame

tr
ia

n
gl

e
co

u
nt

small city rendered small city input large city rendered large city input
Figure 6. Triangle count for the test animation.

Figure 6 shows the input and rendered triangle
count for each frame of the flight path at a
maximum horizontal edge length of 10 pixels. It
shows the dynamic view-dependent refinement. As
expected, the refinement ratio is rather low and
almost constant. Since the small data set is only a
portion of the large one, the curves look very
similar.

0

200000

400000

600000

800000

1000000

1 10 100

max. horizontal edge length (pixels)

av
er

a
ge

 t
ri

an
gl

e
co

un
t

/
fr

am
e

0

50

100

150

200

250

fr
am

es
 /

 s
ec

.

av. tri count, small city av. tri count, large city DMR, small city
ARP, small city ARP, large city DMR, large city

Figure 7. Cylindrical projection performance for
varying refinement settings. The x-axis uses a

logarithmic scale.
Figure 7 shows the resulting frame rates and
average triangle counts for varying maximum edge
length. For the tested use cases, Boubekeur’s
method is almost independent of the rendered
triangle count and only depends on the input
triangle count, i.e. CPU-GPU communication is the
method’s bottleneck as described in [Bou07]. Our
method scales with both, input and rendered
triangle count. By removing the communication

overhead, our method can always fully saturate the
GPU while ARP requires a sufficient refinement
ratio for that. Consequently, our method
outperforms ARP for reasonable error bounds
despite the more complex algorithm. Note, that we
were not able to reproduce the frame rates for ARP
reported by [Bou07]. This has no impact on its
general performance behavior.

0

50

100

150

0 16 32 48 64 80 96 112 128

max. vertex out

fr
am

es
 /

 s
ec

.

Figure 8. Performance results for varying geometry

shader output limit.
Figure 8 shows the geometry shader’s performance
for different output limits, measured for the small
city data set at a maximum horizontal edge length
of 10 pixels. The actual refinements and thus
geometry shader outputs for pass 2 are identical for
all test runs (cf. Figure 6), only the allowed
maximum vertex output varies. Up to a maximum
output of 80 vertices, the curve drops as expected.
Starting from 81 up to the maximum of 1024
vertices (not shown), the frame rate suddenly drops
to a constant 5.75 fps. This curve shows the
importance of choosing a sensible maximum vertex
output. We use 12 vertices, i.e., 4 triangles, as
trade-off to allow for fast pattern growth (e.g., for
an invisible triangle entering the viewport) and
high frame rates.

7. CONCLUSIONS
We presented a novel approach to generic mesh
refinement that first leverages the power of
geometry shaders to run exclusively on the GPU in
an incremental multi-pass scheme. Without
continuous communication between CPU and
GPU, our method is most efficient for problems
with large input triangle meshes and/or low
refinement ratios. In particular, view-dependent
approaches to geometry synthesis or vertex-based
approximations profit from our approach.
Nevertheless, it does not replace previous methods,
but rather complements them as its efficiency drops
with higher refinement ratios.
Our current implementation largely depends on the
design of DirectX 10 class GPUs. It could be
improved by using indexed tristrips for the
refinement patterns. For that, a new hardware
feature is required. Similar to the existing
“primitive restart” feature, a prospective “next
instance” feature could enable a geometry shader to
emit blocks of indices separated by a special index

WSCG2008 Full papers 103 ISBN 978-86943-15-2

to a single buffer. During vertex fetch, this special
index increments the instance ID instead of
provoking a vertex. In a subsequent pass, the
blocks could then be identified as separate
instances and processed with varying shader
parameters accordingly.
Future developments, such as a separate
programmable hardware tessellation unit [Tat07],
will hopefully ease generic mesh refinement and
improve its performance. Our future work
concentrates on applications for mesh refinement.
In particular, we explore the use of vertex-based
approximations as alternative approach to existing
solutions. The cylindrical projection described in
Section 5.2 represents an example and initial result
that competes with traditional image warping
techniques.
Finally, we explore a unified approach to mesh
refinement and mesh simplification. We hope to
find a continuous level-of-detail algorithm that not
only simplifies distant meshes to gain performance,
but also refines close meshes to gain visual detail.
For example, outdoor scenes could benefit from
such an algorithm as only a single medium sized
mesh per object can be used for all rendering.

8. REFERENCES
[ATI01] ATI Inc. TRUFORM white paper. 2001.
[Bli92] Blinn, J. Hyperbolic Interpolation. IEEE

Computer Graphics and Applications 12, No. 4, pp.
89-94, 1992.

[Bly06] Blythe, D. The Direct3D 10 system. In Proc. of
ACM SIGGRAPH, ACM Press, pp. 724-734, 2006.

[Bok06] Bokeloh, M. and Wand, M. Hardware
accelerated multi-resolution geometry synthesis. In
Proc. of the 2006 symp. on Interactive 3D graphics
and games, ACM Press, pp. 191-198, 2006.

[Bou05a] Boubekeur, T., Reuter, P. and Schlick, C.
Scalar Tagged PN Triangles. In Eurographics (Short
Paper), pp. 17-20, 2005.

[Bou05b] Boubekeur, T. and Schlick, C. Generic mesh
refinement on GPU. In Proc. of the ACM
SIGGRAPH/EUROGRAPHICS conf. on Graphics
hardware, ACM Press, pp. 99-104, 2005.

[Bou07] Boubekeur, T. and Schlick, C. A Flexible
Kernel for Adaptive Mesh Refinement on GPU.
Computer Graphics Forum OnlineEarly Articles,
2007.

[Bun05] Bunnell, M. Adaptive Tesselation of
Subdivision Surfaces with Displacement Mapping. In
M. Pharr (eds.). GPU Gems 2, Addison-Wesley, pp.
109-122, 2005.

[Cho04] Choi, Y.-S., Chung, K.-S. and Kim, L.-S.
Adaptive Tessellation of PN Triangles Using
Minimum-Artifact Edge Linking. IEICE
TRANSACTIONS on Fundamentals of Electronics,
Communications and Computer Sciences E87-A, No.
10, pp. 2821-2828, 2004.

[Coh98] Cohen, J., Olano, M. and Manocha, D.
Appearance-preserving simplification. In Proc. of the

25th annual conf. on Computer graphics and
interactive techniques, ACM Press, pp. 115-122,
1998.

[DeC07] DeCoro, C. and Tatarchuk, N. Real-time mesh
simplification using the GPU. In Proc. of the 2007
symp. on Interactive 3D graphics and games, ACM
Press, pp. 161-166, 2007.

[Dia06] Diaz-Gutierrez, P., Bhushan, A., Gopi, M. and
Pajarola, R. Single-strips for fast interactive
rendering. Vis. Comput. 22, No. 6, pp. 372-386, 2006.

[Eva96] Evans, F., Skiena, S. and Varshney, A.
Optimizing triangle strips for fast rendering. In Proc.
of the 7th conf. on Visualization '96, IEEE Computer
Society Press, pp. 319-326, 1996.

[Gu02] Gu, X., Gortler, S. J. and Hoppe, H. Geometry
images. In Proc. of the 29th annual conf. on Computer
graphics and interactive techniques, ACM Press, pp.
355-361, 2002.

[Gut05] Guthe, M., Balázs, Á. and Klein, R. GPU-based
trimming and tessellation of NURBS and T-Spline
surfaces. ACM Trans. Graph. 24, No. 3, pp. 1016-
1023, 2005.

[Lin96] Lindstrom, P., Koller, D., Ribarsky, W.,
Hodges, L. F., Faust, N. and Turner, G. A. Real-time,
continuous level of detail rendering of height fields. In
Proc. of the conf. on Comp. graphics and interactive
techniques, ACM Press, pp. 109-118, 1996.

[Los03] Losasso, F., Hoppe, H., Schaefer, S. and
Warren, J. Smooth geometry images. In Proc. of the
2003 Eurographics/ACM SIGGRAPH symp. on
Geometry processing, Eurographics Association, pp.
138-145, 2003.

[Pul96] Pulli, K. and Segal, M. Fast rendering of
subdivision surfaces. In Proc. of the eurographics
workshop on Rendering techniques '96, Springer-
Verlag, pp. 61-70, 1996.

[Reu05] Reuter, P., Behr, J. and Alexa, M. An Improved
Adjacency Data Structure for Fast Triangle Stripping.
Journal of Graphics Tools 10, No. 2, pp. 41-50, 2005.

[Shi05] Shiue, L.-J., Jones, I. and Peters, J. A realtime
GPU subdivision kernel. ACM Transactions on
Graphics (TOG) 24, No. 3, pp. 1010-1015, 2005.

[Spi06] Spindler, M., Bubke, M., Germer, T. and
Strothotte, T. Camera textures. In Proc. of the 4th
international conf. on Computer graphics and
interactive techniques in Australasia and Southeast
Asia, ACM Press, pp. 295-302, 2006.

[Tar06] Tariq, S. Next Generation Effects in DirectX10.
In NVidia tutorials session at SIGGRAPH, 2006.

[Tat07] Tatarchuk, N. Real-Time Tessellation on GPU.
In Course 28: Advanced Real-Time Rendering in 3D
Graphics and Games. ACM SIGGRAPH 2007, 2007.

[Vla01] Vlachos, A., Peters, J., Boyd, C. and Mitchell,
J. L. Curved PN triangles. In Proc. of the symp. on
Interact. 3D graphics, ACM Press, pp. 159-166, 2001.

[Whi05] Whitted, T. and Kajiya, J. Fully procedural
graphics. In Proc. of the ACM
SIGGRAPH/EUROGRAPHICS conf. on Graphics
hardware, ACM Press, pp. 81-90, 2005.

[Yan05] Yang, Y., Chen, J. X. and Beheshti, M.
Nonlinear Perspective Projections and Magic Lenses:
3D View Deformation. IEEE Comput. Graph. Appl.
25, No. 1, pp. 76-84, 2005.

WSCG2008 Full papers 104 ISBN 978-86943-15-2

	wscg2008_FULL_Numbered.pdf.pdf
	B31-full.pdf
	B31-full.pdf

	B59-full.pdf

