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ABSTRACT

Feature or keypoint matching is a critical taskniimny computer vision applications, such as opt&ial
reconstruction or optical markerless tracking. Ehepplications demand very accurate and fast nmagchi
techniques. We present an evaluation and compaatono keypoint matching strategies based on rsiged
classification for markerless tracking of planarfaces. We have applied these approaches on aneated
reality prototype for indoor and outdoor designiegx
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1. INTRODUCTION the image are related by homography transformation

The main goal of the Augmented Reality (AR) BY recovering this transformation it is possible to
technology is to add computer-generated information €stimate the position and orientation (pose) of the
(2D/3D) to a real video sequence in such a mannercamera.

that real and virtual obj(_act.s qoexjst in the sarpgldv Keypoint matching is a critical task in many
In order to get a realistic illusion, the regiswat  computer vision applications, such as optical 3D
problem must be addressed. Real and virtual abject reconstruction or optical markerless tracking. As
must be properly aligned with respect to each other gegcribed in [Lep06], we propose to treat wide base
In this way, the position-orientation (pose) of the |ine matching of features points as a classificatio
camera relative to a reference frame must bepgphiem, We have implemented a Random Forest
accurately estimated or updated over time. Onéef t  c|assifier [Bre01] and a semi-Naive Bayes clagsifie
key task for the registration problem to be soli®d  [¢7407], and carried out an evaluation of bothhia t

the keypoint or feature matching. Optimal markerles qontext of optical markerless tracking for Augmehte
tracking uses natural features such as edges OReality applications.

corners extracted from images. In this work, we . . .
address the registration problem for interactive AR 1he article is structured as follows. Section Zgian
applications, using tracking by detection techniue CVerview of current optical tracking techniques and

based on supervised classification techniques (sed"€thods in augmented reality applications. Secsion
Fig.2). describes two approaches based on supervised

classification. Section 4 gives an overview of the
Our approach to solve the registration problem is behavior of both approaches. In Section 5 a case
based on tracking of plane surfaces. In indoor orstudy augmented reality application using our
outdoor scenarios, planes are commonly present. Thémplementations is described. Section 6 summarizes
ground, the building facades or walls can be s&en a some conclusions and future work.
planes. These 3D world planes and its projection in

2. RELATED WORK

Permission to make digital or hard copies of alpart off  Although the real-time registration problem using
this work for personal or classroom use is gramiétiout|  computer vision techniques has received a lot of
fee provided that copies are not made or distrbite | ,y0ndion during recent years, it is still far frdreing
profit or commercial advantage and that copies Hieisr ved. Ideall ted lit licati
notice and the full citation on the first page. €opy solved. ldeally, an augmented reality application
otherwise, or republish, to post on servers oetbstribute| ~ Should work  without the need of landmarks or
to lists, requires prior specific permission andidee. references for the object or the environment to be
Copyright UNION Agency — Science Press, Plzen, Czechtracked. This issue is known as markerless tracking

Republic.
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We can divide optical markerless tracking technplog While k-Nearest Neighbors or Support Vector
in two main groups: recursive techniques or model- Machine can achieve good classification resultsy th
based techniques. Recursive techniques start theare still too slow and therefore not suitable feals
tracking process from an initial guess or a rough time operation [Lep04]. Recently the approach based
estimation, and then refine or update it over time. on decision trees has been successfully applied on
They are called recursive because they use theracking by detection during feature point matching
previous estimation to propagate or calculate theé n  task (see Fig.1), by training the classifier tcabBsh
estimation. During the estimation process severalcorrespondences between detected features in a
errors may occur, such as wrong point matchindl or i training image and those in input frames [Ozu06].
conditioned data that can degenerate the estimationThis approach has been also applied to object
Due to the recursive nature of this kind of tragkin  recognition in [Moo06].

they are highly prone to error accumulation. The
error accumulation over time may induce a tracking
failure that requires a re-initialization of thextking
process, which can be cumbersome and not feasible
in practical applications.

Other approaches are known as tracking by detection
or model-based tracking. In this kind of techniques
some information of the environment or the object t
be tracked is known a priori. They are also known a
model-based tracking because the identification of
some features in the images (texture patches or
corners) corresponding to a known model are used to
recognize such objects. This kind of tracking doets
suffer from error accumulation (drift) because, in
general, does not rely on the past. Furthermoss; th
are able to recover from a tracking failure siroeyt

are based on a frame by frame detection not
depending on the past. They can handle problems
such as matching errors or partial occlusion, being
able to recover from tracking failure without
intervention [Wil07].

Tracking by detection needs information data about
the object or objects to be tracked prior to the
tracking process itself. This data can be in thenfof

a list of 3D edges (CAD model) [Vac04], color
features, texture patches or point descriptors
[Low01]. A good comparison about different point
descriptors can be found in [Mik05]. The tracker is
trained with a priori data, to be able to recogritze Figure2: Example of an outdoor augmented reality scene
object from different points of view. A good survey (San Telmo square in San Sebastian, Spain.)

about different model-based tracking approaches can ) ) )
be found in [LepO5]. Based on this recent progress in the field, we

integrate  two supervised classifiers in the

techni ‘ e th bl ¢ wide baseli £1mplementati0n of a tracking module and carry out
echniques to solve the problem of wide baseline (. ouaiuation studies.

keypoint matching [Ozu06]. Supervised classificatio
systems require a previous pre-processing, in waich 3. DESCRIPTION

system “is tra!n_ed with a determined Sgt .Of known In this section we briefly describe two approactoes
examples (training set) that present variationglin feature point recognition based on supervised

their independent variables. Once the PrOCESS IS¢|assifiers that have been recently applied in some

finished, the system is trained and ready to diassi real-time implementations [Bof06, Ozu07, Wil07]. In

Qﬁwer\?i)éir(;]p::elzlssizgrrgea?ef :Qre er::grsnt Igldi[)ll\legsrggtthese approaches the problem of wide-baseline
P Ample, -~ ~“"matching problem is treated as a classification
Neighbors, Support Vector Machine or decision problem

trees.
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Random For est As described in [LepeO6], we can exploit the

Random Forest classifiers were firstly introducgd b assumption that the patches belong to a planar
[Ami97]. Recently, such classifier has been appiied ~ surface, so we can synthesize many new views of the
optical tracking for interest point matching and Patches using warping techniques as affine
recognition [Lep06]. It is able to detect key-point deformations(see Fig.4).These affine transformation
occurrences even in the presence of image noisedr® used to allow the classifier to identify or
variations in scale, orientation and illumination recognize the same class but seen from different
changes. This classifier is a specific variationaof ~Points of view and at different scales. This step i
decision tree[Bre01]. particularly important for tracking, where the came

. . . Cowill freely moving and r ing in .
When the tree is constructed and trained, it diassi be freely moving and rotating in space

a given data (example) by pushing it down the tree. Synthetically generated views will allow to builg u
While the data is going down the tree, a discrimina New training and test data sets, that will be used
criteria at every node is deciding to which cliie  during classifier training and testing steps.

example has to gf). . ‘ , X ;\ O ﬁ

A Random Tree is called random because instead of iy \,- S A . gt
doing exhaustive search for the best combination of T b e ! : ' -
features to be tested at each node, only some mando q ‘ " n E
combinations are used. When the number of classes ‘

to be recognized and the size of the class descript HlS

addition, the examples that are going to be usedfoyr classes by applying affine transformations.
during the training process are selected at randomO the traini ti dv. the training task loe
from the available ones. The combination of some ~NC€ the€ training Set IS réady, the traning

random trees forms a multi-classifier known as Performed. During this task, a number of examples
Random Forest. One of the advantages of thedr® randomly selected from the available ones. &hes

Random Forest is their combinational behavior. Even examples are pushed_ down in the trees. In order to
when a random tree is poor with a low recognition decrease the correlation between trees, and thmerefo

rate, the combination with other classifiers can 'N¢r€aseé the strength of the classifier, different
generate an efficient one.

examples from the training set must be pushed down
in each tree. This randomness injection favors the
3.1.1 Random Forest Training minimization of trees correlation.

In supervised classification each class must beyyile building up the tree, each node of the tre i
defined and labeled before the training processdfits (oot as follows:

In order to define the classes, we use a poinaetdr N . )
[Rosten06] to get the candidate points and their " N training examples from the training set are in
surrounding patches. Then the classifier assigns a the node. _

class number to each patch, and their class descrip " S random sets af pixels are selected.

is defined. The descriptor of each class is constrl * For each set, its information gain [Brei01] is
as the intensity values of the pixels that forms th calculated. _ _ _
extracted patch centered at interest pgint(see = The variable set with the greatest information
Fig.3). gain value is selected.

= The examples are tested with the selected set of
pixels. Depending on the result of this test, they
are pushed down to their corresponding child
node.

= The above process is recursively done for the
children nodes, whether until there is only one
example, or only one class is represented in the
remaining examples or the maximal predefined
depth is reached (see Fig.4).

Figure 3: ~ (leff) Interest point. (Right) Pixels once the descriptors reach the bottom (maximal

surrounding interest poimt [Ros06]. depth) of the tree, it is said that they reachdea
Once the classes to be recognized by the classifie node and the recursion stops. In leaf nodes ttes cla
are defined, the training set must be generated. posterior distributions are stored. These distrins

represent the number of class examples from the
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training set that has reached that node. Once arDepending on the number of classes to be traithed, t
example of a given class reaches a leaf node, theoutput of the trees during classification can reach
posterior probability distribution stored in thabde very low value. When combining these outputs
must be updated accordingly. among the trees, the final value can be close ito ze

The tests to be performed in each node can besimpl P&cause of floating point precision  (underflow)
binary tests, based on the comparison of the iitfens [AIKOQ]. Therefore, instead of using the addition o

values of two pixels, as: the prod.u_ct rules for clasgifier combination, wq_:)lap
_ the addition of the logarithms of the posteriors to
=1 if (v(p,) = v(p,)) 21 generate the final class label.
0 otherwise
Ferns
Where v(p,) and v(p,)represent the intensity Random Ferns like Random Forest is also a multi-
values of two pixels located at positioms and p, classifier, compound of a determined number of

respectively. The values ofy, p,, ie, the pixel entities or classifiers. This approach was firstly
' R introduced in [Ozu07], and it was also independentl
locations to be tested are randomly selected duringproposed in [Wil07]. In opposite to Random Forest,
the training step. The value ofepresents a threshold Ferns is a non-hierarchical structure where each
that was also randomly selected while trainingouim  entity that constitutes the multi-classifier is icatly
experiments, we select a random valuerfobetween a set of tests. In Random Forest the test setdf ea
0 and 25. We have also experiment that, given theyee s the collection of different tests that are
weakness of the tests, smoothing every patch beforeyjstributed along the nodes that forms the tree Du
training and classification, significantly increashe the flat structure of every entity in a Ferns dis

final reliability of the classification. the test set is a simple ordered list of positiofis
EEE 24 pixels to be evaluated.
3.1.3 Training
// LY As in Random Forest, we use the interest point
// ¥ extractor proposed in [Rosten06] to get the candida
mg e ’ s points and. their surrounding patches. Th(_e extracted
' A patches will be the classes to be recognized by the
/ classifier.
] / b Due to the non-hierarchical structure of the cfassi
4.5 JREREE ﬁ Lea Node during the training step not information gain is
4 4 calculated. Therefore, in contrast to Random Forest
E - J where only the data that falls in a child nodeaisen
into account in the test, in Ferns classifierstéds set
Figure 4: Random Tree construction example.  (the pixels to be evaluated in each example) is

31.2 Classification applied to the whole training data set.

Once the classifier is built, i.e, the pixels totbsted ~ Instead of saving the posterior distributions otrer
in each node and the class posterior distributames ~ classes in leaf nodes, Ferns classifiers build up a
calculated, it is ready to classify new examples look-up table where those distributions are stored
different from the ones in the training set. Durthg ~ [Ozu07]. This look-up table is¥xM matrix whereN
classification task any new example is dropped downrepresents the number of different classes that are
in every tree that constitutes the forest. Thesedoing to be classified by the classifier aht the
examples will reach a leaf node depending on thenumber of possible outputs given a test set. The
results of the tests obtained in the previous ntiieg number of columnsy, is calculated a2® wherep is
visit (see Fig. 3). The posterior distributionsretbin the number of tests that forms a test set. Thdtretu
leaf nodes are used to assign a class probabililev  each individual test and the ordering on the set
to the examples that reach that node, defines a binary code that, interpreted as a décima
P(Y =c|T, =T,,n =/7) where T, is a given tree of number, can be used as an index for the look-up tab
the forest andy is the reached node by the example 0 get the corresponding posterior probability
(patch) Y andCis the assigned class label. distribution of.the_ cl_ass. Access to a posmorth_a

] B look-up table is similar to reach a leave nodehia t
As any multi-classifier, the random forest needs t0 Random Forest approach. The class posterior

combine the independently generated output by eachyistributions are computed as in Random Forest.
tree in the forest, in order to assign a final €label

to the examples to be classified.
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The process for building up the training data set The following tests were all carried out by usihg t
remains the same as the one proposed for Randonsame training data set for both classifiers, ireortd

Forest. obtain consistent and reliable results.

3.1.4 Classification Rotation Range

During classification, the examples are testedhgy t We are interested in the evaluation of the behasior
whole entities that form the classifier. In eventity both approaches depending on the allowable rotation

the complete test set is evaluated given an examplerange to be applied to the patch examples duriag th
This test generates the binary code that allows thetraining phase. During the generation of the tragni
classifier to access a position in the table (colum set each patch representing a class is transfobyed
and recover the posterior probability stored fathea applying it an affine transformation that approxies
class (row). the homography. This affine transformation can be

As Random Forest does, the outputs of each entitydecomposed as a rotation matfkand a scaling

that forms the Ferns classifier must be combined tomatrix S with parameterpl'/]Z]‘ These affine

obtain the final class label for the example. Dgrin transformations are generated by extracting vadies
combination numerical errors (underflow) may occur, random from uniformly distributed intervals for
so we use the addition of logarithms, instead of rotation and scale parameters.

addition or product combination rules. Obtaining robustness against variation in rotatiod

scale is particularly important for tracking, whehe

4. EVAL,UATION camera will be freely moving around the object. In
We have implemented our own AP to evaluate the s \ay, the classifier must be trained to be adble

influence of different factors on the behavior of recognize the classes (points) from different
Random Forest and Ferns classifiers during training oientations and scales.

period as well as during execution period. Dependin
on different factors such as, number of different Rotation Range
classes, the number of classifiers, or the sizéhef
training set, the point classification rate mayyar 1007

Due to the random selection of features, all teste %1 -—ﬁ:\_*::‘\‘_.ﬂ
carried out ten times and the results were averaged 96 \
The entire evaluation was conducted by using featur 94

points extracted from well-textured images. Due to 9
the weakness of tests performed in each step &f bot wl
classifiers, well textured and non-symmetric testlr 0 PI2 PI 3PI2 2Pl
images are needed to obtain accurate results (see
Fig.5).

% Classification Rate

—e— FERNS —&— Random Forest

Figure 6: Rotation Range evaluation results.

Figure 6 shows the classification rate of Random
Forest and Ferns classifiers trained with 225 dbffie
classes, no variation in scale and 325 examples per
class. Both classifiers show similar behavior. U 0
test Random Forest classifier performs slightlydret

As expected, by increasing allowable rotation range
with a fixed trained set size, the classificatiaier
decreases.

Scale Range

) — As the rotation range test, the scale range test in
Figure 5: Image used for the evaluation intended to evaluate the robustness of the classifi
We have evaluated the performance of Randomagainst changes in scale. In this test we trairsl 2
Forest and Ferns classifiers by using the same eumb different classes, with no variation in orientatiamnd
of structures in both approaches. The same nunfber 0325 examples per class. We define the scale rasge a
trees is tested against the same number of erttitiés  follows: a valuev of 1 means no variations in scale, a
constitutes a Ferns classifier. Moreover, the numbe value { <1) means a maximum possible reduction of
of tests to be evaluated in each entity in the $ern scale of (1v) percent while value ¢>1) means a
classifier is equal to the maximal allowable depth  maximum increase of scale of (@+percent. The
every tree in the forest. following results were obtained by applying an
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isotropic scaling to the examples in the trainieg s Both classifiers get convergence when a number of
where the scaling matrixS of the affine examples per class are about 3500. At this value
transformation matrix id, = A,, with a randomly =~ Random Forest classifier gets slightly better rtgsul

generated value, given a predefine range. reaching 78% of well recognized examples (see
Fig.8).
Scale Range Number of Classes
100 - Feature or keypoint matching is a critical task in

many computer vision applications, such as optical
3D reconstruction or optical markerless tracking.
60 1 Related to tracking by detection techniques, is
40 - important that the tracker can cope with a large
number of different points in order to get robusgie

against factors such as partial object occlusion or
noise. In this way, we measured how the classifiers
handle different number of classes, while the size

® FERNS m Random Forest the training set remains fixed. More precisely, the
following results were obtained by using 1000

examples per cIass{,O,Zﬂ] allowable rotation range
We can conclude that the accuracy of the classifeer 54 [0.8,1.2] scale range.

drastically affected when severe changes in scale
occur (see Fig.7). Also, while the range of scades Number of Classes
increased, the possible variations in appearance of
every class also increase, spanning bigger subspace
In order to be able to handle such subspaces the
training data set must be increased accordingly.

80 -

20 -

% Classification Rate

0,8-1,0 0510 1,012 1015 0812 0515

Figure 7: Scale range evaluation results.

100

95 —

85

% Classification Rate

Training Set
The training set size is a key factor during the o
training step of a supervised classifier. These w00 35 a5 s e s

classifiers are very dependent of the quality dnd s
of the training set. The training set has a real
influence in the final accuracy of the classifigve Figure 9: Number of different classes test result.
Eave elvaIL_er_ltedb the b(_aha\t/;]m c_;f Rafn;:lhon: F_OYeSt andAs; expected, (see Fig.9) as the number of different
ern classier by varying the size of the trains, classes increases the accuracy of both classifiers

e, the numl_)er of examples, while the number of yocreage. Our results show that Ferns classifier
classes remains constant. performs better than Random Trees being able to
The training sets are built with 225 different sles, cope with a bigger number of different classes.

where the examples were generated by applyingD. .

random affine transformations Wit[PO,Zn] allowable IScussion
rotation range, and [0.5,1.5] scale range. We haveBoth classifiers perform well when the range ofisca
evaluated the behavior of both classifiers by values is about [0.7,1.4]. We estimate that thigea

class. operation. When this range increases, the

classification rate starts to decrease rapidly. thBo
Training Set Size approaches are robust against rotation changes when
the training set size is large enough accordinthéo

—&— FERNS —m— Random Forest

80 1

2 ,_*_*—4_7‘74: number of supported classes.
“g 20 e When the classification rate is low, the number of
e - miss-matched points (outliers) increases. Once the
7@ et population of outliers is high, posterior processes
© 5 | related with tracking such as outlier filtering hwvit
) _— RANSAC or non-linear minimization methods like
350 550 750 1000 1300 1500 1800 2100 2800 3800 4550 Levenberg_Marquardt are SeriOUSIy afected dueao th
—+—FERNS —8—Random Forest number of iterations they need to reach convergence

Figure 8: Training set size tests result.
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5. APPLICATION preparation time. Once the training set is readg, t

The approaches described previously were appliedsystem is ready for tracking.

within a prototype using head mounted displays The obtained frame rate is about 20-25 frames per
(HMD) for collaborative mobile mixed reality design second (near real-time) on a 1.6Ghz dual core CPU.
reviews. Figure 11 shows the markerless tracking This frame rate may vary depending on the accuracy
module by using a camera attached to a laptopof the tracker, i.e, depending on the number of
working outodoors, while figure 12 shows the same different points to be recognized. The drift arteeji
module but working indoors. are well controlled, so no severe movements of the

Our tracking module uses natural features to estima Objects occur. On a lower CPU (1Ghz) the obtained
the position and orientation of the camera, mounted frame rate is only 5 frames per second.

on the HMD. Once this transformation is computed, |ndependently on the robustness of the classitfier,
the virtual object can be registered and viewed wrong classified points (outliers) are removed by
through the HMD as part of the real world. During using RANSAC. The final estimation is refined by
the tracking process, the transformation must beusing Levenberg-Marquardt non-linear minimization
updated over time. method using all the inlier points, starting frohet

By using automatically extracted natural featusee(  €stimation obtained by RANSAC. This final
F|glO)’ the use of artifacts such as reflectivekeizs minimization is very useful to avoid virtual ObjeCt
is avoided, allowing the system to be more flexible Jittering, what is an uncomfortable behavior during
and being able to work in non-well controlled augmented reality scene visualization.

conditions, such as outdoor environments.

Figure 10: Feature or interest point extracted fiom Figure 11: Outdoor Tracking of a building facade.

building facade to train a random forest classifier The tracking by detection approach based on feature

Spomt classification and matching allows the tradie

J)e robust against partial plane occlusion, or fast
camera movement. The tracker can run indefinitely

without requiring re-initialization.

The internal camera parameters estimation task i
performed only once, when the camera is to be use
for the first time.

As described earlier, tracking by detection techeg
requires an off-line process where the classifter i
trained. During this period, one image of a highly
textured plane, such as a building facade or amct
over a table, must be acquired. After the acquoisiti
some features points and their surrounding texture
patches are extracted from the image [Ros06], and
synthetic views of the plane are generated.

Based on the results described previously, the
integrated classifier in the tracking module of the
prototype is trained to be able to recognize about
200-250 different classes (interest points). Thedb
or Fern classifiers are constructed with 20 erstitind
a training set compound of 1000 synthetically

generated examples for each class in less than 1% CONCLUSION AND FUTURE
minutes. This size of the training set is a good WORK

compromise between training time and final accuracy ]
In this work we have presented an approach of

of the classifier. Training time is a very imporitan ) )
factor in practical situations such as outdoor petu acking by —detection for plane homography
estimation using the Random Forest based classifier

Figure 12: Indoor tracking of a textured floor.
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and Ferns classifier for interest point matching. A Conference on Computer Vision and Pattern
comparative evaluation of both approaches was Recognition. ISBN: 0-7695-2158-4, 2004.

carried out by analyzing their behavior while [LepO5] Lepetit, V., and Fua, P. Monocular model-
modifying important parameters, such as number of based 3D object tracking of rigid objects: A survey

classes or training set size. Our results showktbtit Foundations and Trends® in Computer Graphics
approaches are very similar with no clear advantage and Vision., Vol.(1), pages 1-89, 2005.
of one approach over the other. [Lep06] Lepetit, V., and Fua, P. Keypoint

Recognition Using Randomized TreesEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 28(9), pages: 1465-1479. ISSN:
0162-8828, 2006.
. [Low04] Lowe, D. Distinctive Image Features from
We want to extend our work to support on-line ~ geaje Invariants Keypointdnternational Journal
training classification [Wil07]. On-line training of Computer Vision. Vol. 20(2), pages: 91-110,
allows the tracking to update the model with new 5004
feature points not present in the original traingmg. [Mik05] Mikolajczyk, K., Tuytelaars, T., Schmid, C.

On-line training can be exploited in several  zisqerman, A., Matas, J., Schaffalitzky, F., Kadir,
frameworks such as Simultaneous Localization and T., and Gool, L. V. A Comparison of Affine Region

Mapping (SLAM).

Also, an augmented reality prototype using these
classifiers was described. The prototype is able to
robustly track a plane even if partial plane odduos
occurs, at real-time frame rate.

Detectors.Int. Journal of Computer Vision. Vol.
65(1-2), pages: 43-72. ISSN:0920-5691, 2005.
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