
Comparative Evaluation of Random Forest and Fern
Classifiers for Real-Time Feature Matching

Iñigo Barandiaran1, Charlote Cottez1,Céline Paloc1, Manuel Graña2

1VICOMTech Paseo Mikeletegi, 57
20009, San Sebastian, Spain

{ibarandiaran, cottez,cpaloc} @vicomtech.org

2 University of Basque Country
Computer Science School, Pº. Manuel de

Lardizabal, 1
20009, San Sebastián, Spain

ccpgrrom@si.ehu.es

ABSTRACT

Feature or keypoint matching is a critical task in many computer vision applications, such as optical 3D
reconstruction or optical markerless tracking. These applications demand very accurate and fast matching
techniques. We present an evaluation and comparison of two keypoint matching strategies based on supervised
classification for markerless tracking of planar surfaces. We have applied these approaches on an augmented
reality prototype for indoor and outdoor design review.

Keywords
Feature matching, Tracking by Detection, Augmented Reality.

.

1. INTRODUCTION
The main goal of the Augmented Reality (AR)
technology is to add computer-generated information
(2D/3D) to a real video sequence in such a manner
that real and virtual objects coexist in the same world.
In order to get a realistic illusion, the registration
problem must be addressed. Real and virtual objects
must be properly aligned with respect to each other.
In this way, the position-orientation (pose) of the
camera relative to a reference frame must be
accurately estimated or updated over time. One of the
key task for the registration problem to be solved is
the keypoint or feature matching. Optimal markerless
tracking uses natural features such as edges or
corners extracted from images. In this work, we
address the registration problem for interactive AR
applications, using tracking by detection techniques
based on supervised classification techniques (see
Fig.2).

Our approach to solve the registration problem is
based on tracking of plane surfaces. In indoor or
outdoor scenarios, planes are commonly present. The
ground, the building facades or walls can be seen as
planes. These 3D world planes and its projection in

the image are related by homography transformation.
By recovering this transformation it is possible to
estimate the position and orientation (pose) of the
camera.

Keypoint matching is a critical task in many
computer vision applications, such as optical 3D
reconstruction or optical markerless tracking. As
described in [Lep06], we propose to treat wide base-
line matching of features points as a classification
problem. We have implemented a Random Forest
classifier [Bre01] and a semi-Naïve Bayes classifier
[Özu07], and carried out an evaluation of both in the
context of optical markerless tracking for Augmented
Reality applications.

The article is structured as follows. Section 2 gives an
overview of current optical tracking techniques and
methods in augmented reality applications. Section 3
describes two approaches based on supervised
classification. Section 4 gives an overview of the
behavior of both approaches. In Section 5 a case
study augmented reality application using our
implementations is described. Section 6 summarizes
some conclusions and future work.

2. RELATED WORK
Although the real-time registration problem using
computer vision techniques has received a lot of
attention during recent years, it is still far from being
solved. Ideally, an augmented reality application
should work without the need of landmarks or
references for the object or the environment to be
tracked. This issue is known as markerless tracking.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

WSCG2008 Full papers 159 ISBN 978-86943-15-2

We can divide optical markerless tracking technology
in two main groups: recursive techniques or model-
based techniques. Recursive techniques start the
tracking process from an initial guess or a rough
estimation, and then refine or update it over time.
They are called recursive because they use the
previous estimation to propagate or calculate the next
estimation. During the estimation process several
errors may occur, such as wrong point matching or ill
conditioned data that can degenerate the estimation.
Due to the recursive nature of this kind of tracking,
they are highly prone to error accumulation. The
error accumulation over time may induce a tracking
failure that requires a re-initialization of the tracking
process, which can be cumbersome and not feasible
in practical applications.

Other approaches are known as tracking by detection
or model-based tracking. In this kind of techniques
some information of the environment or the object to
be tracked is known a priori. They are also known as
model-based tracking because the identification of
some features in the images (texture patches or
corners) corresponding to a known model are used to
recognize such objects. This kind of tracking does not
suffer from error accumulation (drift) because, in
general, does not rely on the past. Furthermore, they
are able to recover from a tracking failure since they
are based on a frame by frame detection not
depending on the past. They can handle problems
such as matching errors or partial occlusion, being
able to recover from tracking failure without
intervention [Wil07].

Tracking by detection needs information data about
the object or objects to be tracked prior to the
tracking process itself. This data can be in the form of
a list of 3D edges (CAD model) [Vac04], color
features, texture patches or point descriptors
[Low01]. A good comparison about different point
descriptors can be found in [Mik05]. The tracker is
trained with a priori data, to be able to recognize the
object from different points of view. A good survey
about different model-based tracking approaches can
be found in [Lep05].

Some authors propose the use of machine learning
techniques to solve the problem of wide baseline
keypoint matching [Özu06]. Supervised classification
systems require a previous pre-processing, in which a
system “is trained” with a determined set of known
examples (training set) that present variations in all
their independent variables. Once the process is
finished, the system is trained and ready to classify
new examples. Some of the most widely used
supervised classifiers are for example, k-Nearest
Neighbors, Support Vector Machine or decision
trees.

While k-Nearest Neighbors or Support Vector
Machine can achieve good classification results, they
are still too slow and therefore not suitable for real-
time operation [Lep04]. Recently the approach based
on decision trees has been successfully applied on
tracking by detection during feature point matching
task (see Fig.1), by training the classifier to establish
correspondences between detected features in a
training image and those in input frames [Özu06].
This approach has been also applied to object
recognition in [Moo06].

Figure 1: Feature Points recognition and matching.

Figure 2: Example of an outdoor augmented reality scene
(San Telmo square in San Sebastian, Spain.)

Based on this recent progress in the field, we
integrate two supervised classifiers in the
implementation of a tracking module and carry out
some evaluation studies.

3. DESCRIPTION
In this section we briefly describe two approaches for
feature point recognition based on supervised
classifiers that have been recently applied in some
real-time implementations [Bof06, Özu07, Wil07]. In
these approaches the problem of wide-baseline
matching problem is treated as a classification
problem.

WSCG2008 Full papers 160 ISBN 978-86943-15-2

Random Forest
Random Forest classifiers were firstly introduced by
[Ami97]. Recently, such classifier has been applied in
optical tracking for interest point matching and
recognition [Lep06]. It is able to detect key-point
occurrences even in the presence of image noise,
variations in scale, orientation and illumination
changes. This classifier is a specific variation of a
decision tree[Bre01].

When the tree is constructed and trained, it classifies
a given data (example) by pushing it down the tree.
While the data is going down the tree, a discriminant
criteria at every node is deciding to which child the
example has to go.

A Random Tree is called random because instead of
doing exhaustive search for the best combination of
features to be tested at each node, only some random
combinations are used. When the number of classes
to be recognized and the size of the class descriptor
are high, an exhaustive analysis is not feasible. In
addition, the examples that are going to be used
during the training process are selected at random
from the available ones. The combination of some
random trees forms a multi-classifier known as
Random Forest. One of the advantages of the
Random Forest is their combinational behavior. Even
when a random tree is poor with a low recognition
rate, the combination with other classifiers can
generate an efficient one.

3.1.1 Random Forest Training
In supervised classification each class must be
defined and labeled before the training process itself.
In order to define the classes, we use a point extractor
[Rosten06] to get the candidate points and their
surrounding patches. Then the classifier assigns a
class number to each patch, and their class descriptor
is defined. The descriptor of each class is constructed
as the intensity values of the pixels that forms the
extracted patch centered at interest point p (see
Fig.3).

Figure 3: (left) Interest point. (Right) Pixels
surrounding interest point p. [Ros06].

 Once the classes to be recognized by the classifier
are defined, the training set must be generated.

As described in [Lepe06], we can exploit the
assumption that the patches belong to a planar
surface, so we can synthesize many new views of the
patches using warping techniques as affine
deformations(see Fig.4).These affine transformations
are used to allow the classifier to identify or
recognize the same class but seen from different
points of view and at different scales. This step is
particularly important for tracking, where the camera
will be freely moving and rotating in space.

Synthetically generated views will allow to build up
new training and test data sets, that will be used
during classifier training and testing steps.

 Figure 4: Randomly generated training examples of
four classes by applying affine transformations.

Once the training set is ready, the training task can be
performed. During this task, a number of examples
are randomly selected from the available ones. These
examples are pushed down in the trees. In order to
decrease the correlation between trees, and therefore
increase the strength of the classifier, different
examples from the training set must be pushed down
in each tree. This randomness injection favors the
minimization of trees correlation.

While building up the tree, each node of the tree is
treated as follows:

� N training examples from the training set are in
the node.

� S random sets of n pixels are selected.
� For each set, its information gain [Brei01] is

calculated.
� The variable set with the greatest information

gain value is selected.
� The examples are tested with the selected set of

pixels. Depending on the result of this test, they
are pushed down to their corresponding child
node.

� The above process is recursively done for the
children nodes, whether until there is only one
example, or only one class is represented in the
remaining examples or the maximal predefined
depth is reached (see Fig.4).

Once the descriptors reach the bottom (maximal
depth) of the tree, it is said that they reached a leaf
node and the recursion stops. In leaf nodes the class
posterior distributions are stored. These distributions
represent the number of class examples from the

WSCG2008 Full papers 161 ISBN 978-86943-15-2

training set that has reached that node. Once an
example of a given class reaches a leaf node, the
posterior probability distribution stored in that node
must be updated accordingly.

The tests to be performed in each node can be simply
binary tests, based on the comparison of the intensity
values of two pixels, as:

()


 ≥−

=
otherwise

rpvpvif
T

0

)()(1 21

Where)(1pv and)(2pv represent the intensity

values of two pixels located at positions 1p and 2p

respectively. The values of 1p , 2p , i.e, the pixel

locations to be tested are randomly selected during
the training step. The value of r represents a threshold
that was also randomly selected while training. In our
experiments, we select a random value for r between
0 and 25. We have also experiment that, given the
weakness of the tests, smoothing every patch before
training and classification, significantly increases the
final reliability of the classification.

Figure 4: Random Tree construction example.

3.1.2 Classification
Once the classifier is built, i.e, the pixels to be tested
in each node and the class posterior distributions are
calculated, it is ready to classify new examples
different from the ones in the training set. During the
classification task any new example is dropped down
in every tree that constitutes the forest. These
examples will reach a leaf node depending on the
results of the tests obtained in the previous nodes they
visit (see Fig. 3). The posterior distributions stored in
leaf nodes are used to assign a class probability value
to the examples that reach that node,

()η=== nTTcYP l ,| 1 where lT is a given tree of

the forest and η is the reached node by the example
(patch) Y and c is the assigned class label.

As any multi-classifier, the random forest needs to
combine the independently generated output by each
tree in the forest, in order to assign a final class label
to the examples to be classified.

Depending on the number of classes to be trained, the
output of the trees during classification can reach a
very low value. When combining these outputs
among the trees, the final value can be close to zero
because of floating point precision (underflow)
[Alk00]. Therefore, instead of using the addition or
the product rules for classifier combination, we apply
the addition of the logarithms of the posteriors to
generate the final class label.

Ferns
Random Ferns like Random Forest is also a multi-
classifier, compound of a determined number of
entities or classifiers. This approach was firstly
introduced in [Özu07], and it was also independently
proposed in [Wil07]. In opposite to Random Forest,
Ferns is a non-hierarchical structure where each
entity that constitutes the multi-classifier is basically
a set of tests. In Random Forest the test set of each
tree is the collection of different tests that are
distributed along the nodes that forms the tree. Due to
the flat structure of every entity in a Ferns classifier
the test set is a simple ordered list of positions of
pixels to be evaluated.

3.1.3 Training
As in Random Forest, we use the interest point
extractor proposed in [Rosten06] to get the candidate
points and their surrounding patches. The extracted
patches will be the classes to be recognized by the
classifier.

Due to the non-hierarchical structure of the classifier,
during the training step not information gain is
calculated. Therefore, in contrast to Random Forest
where only the data that falls in a child node is taken
into account in the test, in Ferns classifiers the test set
(the pixels to be evaluated in each example) is
applied to the whole training data set.

Instead of saving the posterior distributions over the
classes in leaf nodes, Ferns classifiers build up a
look-up table where those distributions are stored
[Özu07]. This look-up table is a NxM matrix where N
represents the number of different classes that are
going to be classified by the classifier and M the
number of possible outputs given a test set. The

number of columns, M, is calculated as p2 where p is
the number of tests that forms a test set. The result of
each individual test and the ordering on the set
defines a binary code that, interpreted as a decimal
number, can be used as an index for the look-up table
to get the corresponding posterior probability
distribution of the class. Access to a position in the
look-up table is similar to reach a leave node in the
Random Forest approach. The class posterior
distributions are computed as in Random Forest.

WSCG2008 Full papers 162 ISBN 978-86943-15-2

The process for building up the training data set
remains the same as the one proposed for Random
Forest.

3.1.4 Classification
During classification, the examples are tested by the
whole entities that form the classifier. In every entity
the complete test set is evaluated given an example.
This test generates the binary code that allows the
classifier to access a position in the table (column)
and recover the posterior probability stored for each
class (row).

As Random Forest does, the outputs of each entity
that forms the Ferns classifier must be combined to
obtain the final class label for the example. During
combination numerical errors (underflow) may occur,
so we use the addition of logarithms, instead of
addition or product combination rules.

4. EVALUATION
We have implemented our own API to evaluate the
influence of different factors on the behavior of
Random Forest and Ferns classifiers during training
period as well as during execution period. Depending
on different factors such as, number of different
classes, the number of classifiers, or the size of the
training set, the point classification rate may vary.

Due to the random selection of features, all tests were
carried out ten times and the results were averaged.
The entire evaluation was conducted by using feature
points extracted from well-textured images. Due to
the weakness of tests performed in each step of both
classifiers, well textured and non-symmetric textured
images are needed to obtain accurate results (see
Fig.5).

Figure 5: Image used for the evaluation

We have evaluated the performance of Random
Forest and Ferns classifiers by using the same number
of structures in both approaches. The same number of
trees is tested against the same number of entities that
constitutes a Ferns classifier. Moreover, the number
of tests to be evaluated in each entity in the Ferns
classifier is equal to the maximal allowable depth of
every tree in the forest.

The following tests were all carried out by using the
same training data set for both classifiers, in order to
obtain consistent and reliable results.

Rotation Range
We are interested in the evaluation of the behavior of
both approaches depending on the allowable rotation
range to be applied to the patch examples during the
training phase. During the generation of the training
set each patch representing a class is transformed by
applying it an affine transformation that approximates
the homography. This affine transformation can be
decomposed as a rotation matrix R and a scaling
matrix S with parameters[]21,λλ . These affine

transformations are generated by extracting values at
random from uniformly distributed intervals for
rotation and scale parameters.

Obtaining robustness against variation in rotation and
scale is particularly important for tracking, where the
camera will be freely moving around the object. In
this way, the classifier must be trained to be able to
recognize the classes (points) from different
orientations and scales.

Rotation Range

90

92

94

96

98

100

0 PI/2 PI 3PI/2 2PI

%
 C

la
ss

if
ic

at
io

n
 R

at
e

FERNS Random Forest

Figure 6: Rotation Range evaluation results.

Figure 6 shows the classification rate of Random
Forest and Ferns classifiers trained with 225 different
classes, no variation in scale and 325 examples per
class. Both classifiers show similar behavior. In our
test Random Forest classifier performs slightly better.

As expected, by increasing allowable rotation range
with a fixed trained set size, the classification rate
decreases.

Scale Range
As the rotation range test, the scale range test in
intended to evaluate the robustness of the classifier
against changes in scale. In this test we trained 225
different classes, with no variation in orientation and
325 examples per class. We define the scale range as
follows: a value v of 1 means no variations in scale, a
value (v <1) means a maximum possible reduction of
scale of (1-v) percent, while value (v>1) means a
maximum increase of scale of (1+v) percent. The
following results were obtained by applying an

WSCG2008 Full papers 163 ISBN 978-86943-15-2

isotropic scaling to the examples in the training set,
where the scaling matrix S of the affine
transformation matrix is 21 λλ = , with a randomly

generated value, given a predefine range.

Scale Range

0

20

40

60

80

100

0,8-1,0 0,5-1.0 1,0-1,2 1,0-1,5 0,8-1,2 0,5-1,5

%
 C

la
ss

if
ic

at
io

n
 R

at
e

FERNS Random Forest

Figure 7: Scale range evaluation results.

We can conclude that the accuracy of the classifiers is
drastically affected when severe changes in scale
occur (see Fig.7). Also, while the range of scales is
increased, the possible variations in appearance of
every class also increase, spanning bigger subspaces.
In order to be able to handle such subspaces the
training data set must be increased accordingly.

Training Set
The training set size is a key factor during the
training step of a supervised classifier. These
classifiers are very dependent of the quality and size
of the training set. The training set has a real
influence in the final accuracy of the classifier. We
have evaluated the behavior of Random Forest and
Fern classifier by varying the size of the training set,
i.e, the number of examples, while the number of
classes remains constant.

The training sets are built with 225 different classes,
where the examples were generated by applying
random affine transformations with []π2,0 allowable
rotation range, and [0.5,1.5] scale range. We have
evaluated the behavior of both classifiers by
modifying the number of different examples per
class.

Training Set Size

50

55

60

65

70

75

80

350 550 750 1000 1300 1500 1800 2100 2800 3800 4550

%
 C

la
ss

if
ic

at
io

n
 R

at
e

FERNS Random Forest

Figure 8: Training set size tests result.

Both classifiers get convergence when a number of
examples per class are about 3500. At this value
Random Forest classifier gets slightly better results
reaching 78% of well recognized examples (see
Fig.8).

Number of Classes
Feature or keypoint matching is a critical task in
many computer vision applications, such as optical
3D reconstruction or optical markerless tracking.
Related to tracking by detection techniques, is
important that the tracker can cope with a large
number of different points in order to get robustness
against factors such as partial object occlusion or
noise. In this way, we measured how the classifiers
handle different number of classes, while the size of
the training set remains fixed. More precisely, the
following results were obtained by using 1000
examples per class, []π2,0 allowable rotation range
and [0.8,1.2] scale range.

Number of Classes

80

85

90

95

100

200 325 425 525 625 725

%
 C

la
ss

if
ic

at
io

n
 R

at
e

FERNS Random Forest

Figure 9: Number of different classes test result.

As expected, (see Fig.9) as the number of different
classes increases the accuracy of both classifiers
decrease. Our results show that Ferns classifier
performs better than Random Trees being able to
cope with a bigger number of different classes.

Discussion
Both classifiers perform well when the range of scale
values is about [0.7,1.4]. We estimate that this range
is sufficient to handle many views when tracking
operation. When this range increases, the
classification rate starts to decrease rapidly. Both
approaches are robust against rotation changes when
the training set size is large enough according to the
number of supported classes.

When the classification rate is low, the number of
miss-matched points (outliers) increases. Once the
population of outliers is high, posterior processes
related with tracking such as outlier filtering with
RANSAC or non-linear minimization methods like
Levenberg-Marquardt are seriously afected due to the
number of iterations they need to reach convergence.

WSCG2008 Full papers 164 ISBN 978-86943-15-2

5. APPLICATION
The approaches described previously were applied
within a prototype using head mounted displays
(HMD) for collaborative mobile mixed reality design
reviews. Figure 11 shows the markerless tracking
module by using a camera attached to a laptop
working outodoors, while figure 12 shows the same
module but working indoors.

Our tracking module uses natural features to estimate
the position and orientation of the camera, mounted
on the HMD. Once this transformation is computed,
the virtual object can be registered and viewed
through the HMD as part of the real world. During
the tracking process, the transformation must be
updated over time.

By using automatically extracted natural features (see
Fig.10), the use of artifacts such as reflective markers
is avoided, allowing the system to be more flexible
and being able to work in non-well controlled
conditions, such as outdoor environments.

Figure 10: Feature or interest point extracted from a
building facade to train a random forest classifier.

The internal camera parameters estimation task is
performed only once, when the camera is to be used
for the first time.

As described earlier, tracking by detection techniques
requires an off-line process where the classifier is
trained. During this period, one image of a highly
textured plane, such as a building facade or a picture
over a table, must be acquired. After the acquisition,
some features points and their surrounding texture
patches are extracted from the image [Ros06], and
synthetic views of the plane are generated.

Based on the results described previously, the
integrated classifier in the tracking module of the
prototype is trained to be able to recognize about
200-250 different classes (interest points). The forest
or Fern classifiers are constructed with 20 entities and
a training set compound of 1000 synthetically
generated examples for each class in less than 10
minutes. This size of the training set is a good
compromise between training time and final accuracy
of the classifier. Training time is a very important
factor in practical situations such as outdoor setup

preparation time. Once the training set is ready, the
system is ready for tracking.

The obtained frame rate is about 20-25 frames per
second (near real-time) on a 1.6Ghz dual core CPU.
This frame rate may vary depending on the accuracy
of the tracker, i.e, depending on the number of
different points to be recognized. The drift and jitter
are well controlled, so no severe movements of the
objects occur. On a lower CPU (1Ghz) the obtained
frame rate is only 5 frames per second.

Independently on the robustness of the classifier, the
wrong classified points (outliers) are removed by
using RANSAC. The final estimation is refined by
using Levenberg-Marquardt non-linear minimization
method using all the inlier points, starting from the
estimation obtained by RANSAC. This final
minimization is very useful to avoid virtual object
jittering, what is an uncomfortable behavior during
augmented reality scene visualization.

Figure 11: Outdoor Tracking of a building facade.

The tracking by detection approach based on feature
point classification and matching allows the tracker to
be robust against partial plane occlusion, or fast
camera movement. The tracker can run indefinitely
without requiring re-initialization.

Figure 12: Indoor tracking of a textured floor.

6. CONCLUSION AND FUTURE
WORK
In this work we have presented an approach of
tracking by detection for plane homography
estimation using the Random Forest based classifier

WSCG2008 Full papers 165 ISBN 978-86943-15-2

and Ferns classifier for interest point matching. A
comparative evaluation of both approaches was
carried out by analyzing their behavior while
modifying important parameters, such as number of
classes or training set size. Our results show that both
approaches are very similar with no clear advantage
of one approach over the other.

 Also, an augmented reality prototype using these
classifiers was described. The prototype is able to
robustly track a plane even if partial plane occlusion
occurs, at real-time frame rate.

We want to extend our work to support on-line
training classification [Wil07]. On-line training
allows the tracking to update the model with new
feature points not present in the original training set.
On-line training can be exploited in several
frameworks such as Simultaneous Localization and
Mapping (SLAM).

7. ACKNOWLEDGMENTS
This work has been partially funded under the 6th
Framework Programme of the European Union
within the IST project “IMPROVE” (IST FP6-
004785, http://www.improve-eu.info/).

8. REFERENCES
[Alk00] Alkoot,F.M.,and Kittler, J. Improving the

Performance of the Product Fusion Strategy. In
Proc. International Conference on Pattern
Recognition. Vol.(2), pages: 164-167, 2000.

[Ami97] Amit, Y. and Geman, D. Shape quantiation
and recognition with randomized trees. Neural
Computation, Vol.(9) pages: 1545-1588, 1997.

[Bof06] Boffy, Aurélien, Tsin, Yanghai and Genc,
Yakup. Real-Time Feature Matching using
Adaptative and Spatially Distributed Classification
Trees. In Proc. British Machine vision Conference,
Vol.(2) pages: 529-539, 2006.

[Bre01] Breiman, L. Random Forests. Machine
Learning Journal, Vol. (45), pages: 5-32. ISSN
0885-6125, 2001.

[Lep04] Lepetit, V., Pilet, and J., Fua, P. Point
Matching as a Classification Problem for Fast and
Robust Object Pose Estimation. In Proc.

Conference on Computer Vision and Pattern
Recognition. ISBN: 0-7695-2158-4, 2004.

[Lep05] Lepetit, V., and Fua, P. Monocular model-
based 3D object tracking of rigid objects: A survey.
Foundations and Trends® in Computer Graphics
and Vision., Vol.(1), pages 1–89, 2005.

[Lep06] Lepetit, V., and Fua, P. Keypoint
Recognition Using Randomized Trees. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 28(9), pages: 1465-1479. ISSN:
0162-8828, 2006.

[Low04] Lowe, D. Distinctive Image Features from
Scale Invariants Keypoints. International Journal
of Computer Vision. Vol. 20(2), pages: 91-110,
2004.

[Mik05] Mikolajczyk, K., Tuytelaars, T., Schmid, C.,
Zisserman, A., Matas, J., Schaffalitzky, F., Kadir,
T., and Gool, L. V. A Comparison of Affine Region
Detectors. Int. Journal of Computer Vision. Vol.
65(1-2), pages: 43-72. ISSN:0920-5691, 2005.

[Moo06] Moosmann, F., Triggs, B., and Jurie, F. Fast
discriminative visual codebooks using randomized
clustering forest, NIPS, 2006.

[Ros06] Rosten, E., and Drummond, T. Machine
Learning for High-Speed Corner Detection. In
Proc. European Conference on Computer Vision.
Pages: 430- 443. ISBN 3540338322, 2006.

[Özu06] Özuysal, M., Fua, P., and Lepetit, V. Feature
Harvesting for Tracking-By-Detection. In Proc.
European Conference on Computer Vision, pages
592-605. ISBN:3-540-33836-5, 2006.

[Özu07] Özuylan, M, Fua. P, and Lepetit, V. Fast
keypoint recognition in ten lines of code. Computer
Vision and Pattern Recognition, pages: 1-8, ISBN-
1-4244-1180-7, 2007.

[Vac04] Vacchetti, L., Lepetit, V., Fua, P. Combining
Edge and Texture Information for Real-Time
Accurate 3D Camera Tracking. In Proc. IEEE and
AM International Symposium on Mixed and
Augmented Reality. Vol. (4), pages: 48-57. ISBN:0-
7695-2191-6, 2004.

[Wil07] Williams, B., Klein, G. and Reid, I. Real-
time SLAM Relocalisation. In Proc. IEEE
International Conference on Computer Vision,
2007.

WSCG2008 Full papers 166 ISBN 978-86943-15-2

	wscg2008_FULL_Numbered.pdf.pdf
	B31-full.pdf
	B31-full.pdf

	B59-full.pdf

