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ABSTRACT 

Feature or keypoint matching is a critical task in many computer vision applications, such as optical 3D 
reconstruction or optical markerless tracking. These applications demand very accurate and fast matching 
techniques.  We present an evaluation and comparison of two keypoint matching strategies based on supervised 
classification for markerless tracking of planar surfaces.  We have applied these approaches on an augmented 
reality prototype for indoor and outdoor design review. 
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1. INTRODUCTION 
The main goal of the Augmented Reality (AR) 
technology is to add computer-generated information 
(2D/3D) to a real video sequence in such a manner 
that real and virtual objects coexist in the same world. 
In order to get a realistic illusion, the registration 
problem must be addressed.  Real and virtual objects 
must be properly aligned with respect to each other. 
In this way, the position-orientation (pose) of the 
camera relative to a reference frame must be 
accurately estimated or updated over time. One of the 
key task for the registration problem to be solved is 
the keypoint or feature matching. Optimal markerless 
tracking uses natural features such as edges or 
corners extracted from images. In this work, we 
address the registration problem for interactive AR 
applications, using tracking by detection techniques 
based on supervised classification techniques (see 
Fig.2).  

Our approach to solve the registration problem is 
based on tracking of plane surfaces. In indoor or 
outdoor scenarios, planes are commonly present. The 
ground, the building facades or walls can be seen as 
planes. These 3D world planes and its projection in 

the image are related by  homography transformation. 
By recovering this transformation it is possible to 
estimate the position and orientation (pose) of the 
camera. 

Keypoint matching is a critical task in many 
computer vision applications, such as optical 3D 
reconstruction or optical markerless tracking. As 
described in [Lep06], we propose to treat wide base-
line matching of features points as a classification 
problem. We have implemented a Random Forest 
classifier [Bre01] and a semi-Naïve Bayes classifier 
[Özu07], and carried out an evaluation of both in the 
context of optical markerless tracking for Augmented 
Reality applications.  

The article is structured as follows. Section 2 gives an 
overview of current optical tracking techniques and 
methods in augmented reality applications. Section 3 
describes two approaches based on supervised 
classification. Section 4 gives an overview of the 
behavior of both approaches. In Section 5 a case 
study augmented reality application using our 
implementations is described. Section 6 summarizes 
some conclusions and future work. 

2. RELATED WORK 
Although the real-time registration problem using 
computer vision techniques has received a lot of 
attention during recent years, it is still far from being 
solved. Ideally, an augmented reality application 
should work without the need of landmarks or 
references for the object or the environment to be 
tracked. This issue is known as markerless tracking.  
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We can divide optical markerless tracking technology 
in two main groups: recursive techniques or model-
based techniques. Recursive techniques start the 
tracking process from an initial guess or a rough 
estimation, and then refine or update it over time. 
They are called recursive because they use the 
previous estimation to propagate or calculate the next 
estimation. During the estimation process several 
errors may occur, such as wrong point matching or ill 
conditioned data that can degenerate the estimation. 
Due to the recursive nature of this kind of tracking, 
they are highly prone to error accumulation. The 
error accumulation over time may induce a tracking 
failure that requires a re-initialization of the tracking 
process, which can be cumbersome and not feasible 
in practical applications. 

Other approaches are known as tracking by detection 
or model-based tracking. In this kind of techniques 
some information of the environment or the object to 
be tracked is known a priori. They are also known as 
model-based tracking because the identification of 
some features in the images (texture patches or 
corners) corresponding to a known model are used to 
recognize such objects. This kind of tracking does not 
suffer from error accumulation (drift) because, in 
general, does not rely on the past. Furthermore, they 
are able to recover from a tracking failure since they 
are based on a frame by frame detection not 
depending on the past. They can handle problems 
such as matching errors or partial occlusion, being 
able to recover from tracking failure without 
intervention [Wil07]. 

Tracking by detection needs information data about 
the object or objects to be tracked prior to the 
tracking process itself. This data can be in the form of 
a list of 3D edges (CAD model) [Vac04], color 
features, texture patches or point descriptors 
[Low01]. A good comparison about different point 
descriptors can be found in [Mik05]. The tracker is 
trained with a priori data, to be able to recognize the 
object from different points of view. A good survey 
about different model-based tracking approaches can 
be found in [Lep05].  

Some authors propose the use of machine learning 
techniques to solve the problem of wide baseline 
keypoint matching [Özu06]. Supervised classification 
systems require a previous pre-processing, in which a 
system “is trained” with a determined set of known 
examples (training set) that present variations in all 
their independent variables. Once the process is 
finished, the system is trained and ready to classify 
new examples. Some of the most widely used 
supervised classifiers are for example, k-Nearest 
Neighbors, Support Vector Machine or decision 
trees.  

While k-Nearest Neighbors or Support Vector 
Machine can achieve good classification results, they 
are still too slow and therefore not suitable for real-
time operation [Lep04]. Recently the approach based 
on decision trees has been successfully applied on 
tracking by detection during feature point matching 
task (see Fig.1), by training the classifier to establish 
correspondences between detected features in a 
training image and those in input frames [Özu06]. 
This approach has been also applied to object 
recognition in [Moo06]. 

 

Figure 1: Feature Points recognition and matching. 

 

Figure 2: Example of an outdoor augmented reality scene 
(San Telmo square in San Sebastian, Spain.) 

Based on this recent progress in the field, we 
integrate two supervised classifiers in the 
implementation of a tracking module and carry out 
some evaluation studies. 

3. DESCRIPTION 
In this section we briefly describe two approaches for 
feature point recognition based on supervised 
classifiers that have been recently applied in some 
real-time implementations [Bof06, Özu07, Wil07]. In 
these approaches the problem of wide-baseline 
matching problem is treated as a classification 
problem. 
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Random Forest 
Random Forest classifiers were firstly introduced by 
[Ami97]. Recently, such classifier has been applied in 
optical tracking for interest point matching and 
recognition [Lep06]. It is able to detect key-point 
occurrences even in the presence of image noise, 
variations in scale, orientation and illumination 
changes. This classifier is a specific variation of a 
decision tree[Bre01].  

When the tree is constructed and trained, it classifies 
a given data (example) by pushing it down the tree. 
While the data is going down the tree, a discriminant 
criteria at  every node  is deciding to which child the 
example has to go. 

A Random Tree is called random because instead of 
doing exhaustive search for the best combination of 
features to be tested at each node, only some random 
combinations are used. When the number of classes 
to be recognized and the size of the class descriptor 
are high, an exhaustive analysis is not feasible. In 
addition, the examples that are going to be used 
during the training process are selected at random 
from the available ones. The combination of some 
random trees forms a multi-classifier known as 
Random Forest. One of the advantages of the 
Random Forest is their combinational behavior. Even 
when a random tree is poor  with a low recognition 
rate, the combination with other classifiers can 
generate an efficient one. 

3.1.1 Random Forest Training 
In supervised classification each class must be 
defined and labeled before the training process itself. 
In order to define the classes, we use a point extractor 
[Rosten06] to get the candidate points and their 
surrounding patches. Then the classifier assigns a 
class number to each patch, and their class descriptor 
is defined. The descriptor of each class is constructed 
as the intensity values of the pixels that forms the 
extracted patch centered at interest point p (see 
Fig.3). 

 

Figure 3: (left) Interest point. (Right) Pixels 
surrounding interest point p. [Ros06]. 

 Once the classes to be recognized by the classifier 
are defined, the training set must be generated.  

As described in [Lepe06], we can exploit the 
assumption that the patches belong to a planar 
surface, so we can synthesize many new views of the 
patches using warping techniques as affine 
deformations(see Fig.4).These affine transformations 
are used to allow the classifier to identify or 
recognize the same class but seen from different 
points of view and at different scales. This step is 
particularly important for tracking, where the camera 
will be freely moving and rotating in space. 

Synthetically generated views will allow to build up 
new training and test data sets, that will be used 
during classifier training and testing steps.  

 
 Figure 4: Randomly generated training examples of 
four classes by applying affine transformations. 

Once the training set is ready, the training task can be 
performed. During this task, a number of examples 
are randomly selected from the available ones. These 
examples are pushed down in the trees. In order to 
decrease the correlation between trees, and therefore 
increase the strength of the classifier, different 
examples from the training set must be pushed down 
in each tree. This randomness injection favors the 
minimization of trees correlation. 

While building up the tree, each node of the tree is 
treated as follows: 

� N training examples from the training set are in 
the node. 

� S random sets of n pixels are selected.  
� For each set, its information gain [Brei01] is 

calculated. 
� The variable set with the greatest information 

gain value is selected. 
� The examples are tested with the selected set of 

pixels. Depending on the result of this test, they 
are pushed down to their corresponding child 
node. 

� The above process is recursively done for the 
children nodes, whether until there is only one 
example, or only one class is represented in the 
remaining examples or the maximal predefined 
depth is reached (see Fig.4). 

 
Once the descriptors reach the bottom (maximal 
depth) of the tree, it is said that they reached a leaf 
node and the recursion stops. In leaf nodes the class 
posterior distributions are stored. These distributions 
represent the number of class examples from the 
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training set that has reached that node. Once an 
example of a given class reaches a leaf node, the 
posterior probability distribution stored in that node 
must be updated accordingly. 

The tests to be performed in each node can be simply 
binary tests, based on the comparison of the intensity 
values of two pixels, as: 

( )


 ≥−

=
otherwise

rpvpvif
T

0

)()(1 21  

Where )( 1pv  and )( 2pv represent the intensity 

values of two pixels located at positions 1p  and 2p  

respectively. The values of 1p , 2p , i.e, the pixel 

locations to be tested are randomly selected during 
the training step. The value of r represents a threshold 
that was also randomly selected while training. In our 
experiments, we select a random value for r between 
0 and 25. We have also experiment that, given the 
weakness of the tests, smoothing every patch before 
training and classification, significantly increases the 
final reliability of the classification. 

 
Figure 4: Random Tree construction example. 

3.1.2 Classification 
Once the classifier is built, i.e, the pixels to be tested 
in each node and the class posterior distributions are 
calculated, it is ready to classify new examples 
different from the ones in the training set. During the 
classification task any new example is dropped down 
in every tree that constitutes the forest. These 
examples will reach a leaf node depending on the 
results of the tests obtained in the previous nodes they 
visit (see Fig. 3). The posterior distributions stored in 
leaf nodes are used to assign a class probability value 
to the examples that reach that node, 

( )η=== nTTcYP l ,| 1  where lT  is a given tree of 

the forest and η  is the reached node by the example 
(patch) Y and c is the assigned class label. 

As any multi-classifier, the random forest needs to 
combine the independently generated output by each 
tree in the forest, in order to assign a final class label 
to the examples to be classified. 

Depending on the number of classes to be trained, the 
output of the trees during classification can reach a 
very low value. When combining these outputs 
among the trees, the final value can be close to zero 
because of floating point precision (underflow) 
[Alk00]. Therefore, instead of using the addition or 
the product rules for classifier combination, we apply 
the addition of the logarithms of the posteriors to 
generate the final class label. 

Ferns 
Random Ferns like Random Forest is also a multi-
classifier, compound of a determined number of 
entities or classifiers. This approach was firstly 
introduced in [Özu07], and it was also independently 
proposed in [Wil07]. In opposite to Random Forest, 
Ferns is a non-hierarchical structure where each 
entity that constitutes the multi-classifier is basically 
a set of tests. In Random Forest the test set of each 
tree is the collection of different tests that are 
distributed along the nodes that forms the tree. Due to 
the flat structure of every entity in a Ferns classifier 
the test set is a simple ordered list of positions of  
pixels to be evaluated.   

3.1.3  Training 
As in Random Forest, we use the interest point 
extractor proposed in [Rosten06] to get the candidate 
points and their surrounding patches. The extracted 
patches will be the classes to be recognized by the 
classifier. 

Due to the non-hierarchical structure of the classifier, 
during the training step not information gain is 
calculated. Therefore, in contrast to Random Forest 
where only the data that falls in a child node is taken 
into account in the test, in Ferns classifiers the test set 
(the pixels to be evaluated in each example) is 
applied to the whole training data set. 

Instead of saving the posterior distributions over the 
classes in leaf nodes, Ferns classifiers build up a 
look-up table where those distributions are stored 
[Özu07]. This look-up table is a NxM matrix where N 
represents the number of different classes that are 
going to be classified by the classifier and M the 
number of possible outputs given a test set. The 

number of columns, M, is calculated as p2 where p is 
the number of tests that forms a test set. The result of 
each individual test and the ordering on the set 
defines a binary code that, interpreted as a decimal 
number, can be used as an index for the look-up table 
to get the corresponding posterior probability 
distribution of the class. Access to a position in the 
look-up table is similar to reach a leave node in the 
Random Forest approach. The class posterior 
distributions are computed as in Random Forest.  
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The process for building up the training data set 
remains the same as the one proposed for Random 
Forest.  

3.1.4 Classification 
During classification, the examples are tested by the 
whole entities that form the classifier. In every entity 
the complete test set is evaluated given an example. 
This test generates the binary code that allows the 
classifier to access a position in the table (column) 
and recover the posterior probability stored for each 
class (row). 

As Random Forest does, the outputs of each entity 
that forms the Ferns classifier must be combined to 
obtain the final class label for the example. During 
combination numerical errors (underflow) may occur, 
so we use the addition of logarithms, instead of 
addition or product combination rules. 

4. EVALUATION 
We have implemented our own API to evaluate the 
influence of different factors on the behavior of 
Random Forest and Ferns classifiers during training 
period as well as during execution period. Depending 
on different factors such as, number of different 
classes, the number of classifiers, or the size of the 
training set, the point classification rate may vary.  

Due to the random selection of features, all tests were 
carried out ten times and the results were averaged. 
The entire evaluation was conducted by using feature 
points extracted from well-textured images. Due to 
the weakness of tests performed in each step of both 
classifiers, well textured and non-symmetric textured 
images are needed to obtain accurate results (see 
Fig.5). 

 
Figure 5: Image used for the evaluation 

We have evaluated the performance of Random 
Forest and Ferns classifiers by using the same number 
of structures in both approaches. The same number of 
trees is tested against the same number of entities that 
constitutes a Ferns classifier. Moreover, the number 
of tests to be evaluated in each entity in the Ferns 
classifier is equal to the maximal allowable depth of 
every tree in the forest. 

The following tests were all carried out by using the 
same training data set for both classifiers, in order to 
obtain consistent and reliable results.  

Rotation Range 
We are interested in the evaluation of the behavior of 
both approaches depending on the allowable rotation 
range to be applied to the patch examples during the 
training phase. During the generation of the training 
set each patch representing a class is transformed by 
applying it an affine transformation that approximates 
the homography. This affine transformation can be 
decomposed as a rotation matrix R and a scaling 
matrix S with parameters[ ]21,λλ . These affine 

transformations are generated by extracting values at 
random from uniformly distributed intervals for 
rotation and scale parameters.  

Obtaining robustness against variation in rotation and 
scale is particularly important for tracking, where the 
camera will be freely moving around the object. In 
this way, the classifier must be trained to be able to 
recognize the classes (points) from different 
orientations and scales.   
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Figure 6: Rotation Range evaluation results. 

Figure 6 shows the classification rate of Random 
Forest and Ferns classifiers trained with 225 different 
classes, no variation in scale and 325 examples per 
class. Both classifiers show similar behavior. In our 
test Random Forest classifier performs slightly better. 

As expected, by increasing allowable rotation range 
with a fixed trained set size, the classification rate 
decreases.  

Scale Range 
As the rotation range test, the scale range test in 
intended to evaluate the robustness of the classifier 
against changes in scale. In this test we trained 225 
different classes, with no variation in orientation and 
325 examples per class. We define the scale range as 
follows: a value v of 1 means no variations in scale, a 
value (v <1) means a maximum possible reduction of 
scale of (1-v) percent, while value (v>1) means a 
maximum increase of scale of (1+v) percent. The 
following results were obtained by applying an 
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isotropic scaling to the examples in the training set, 
where the scaling matrix S of the affine 
transformation matrix is 21 λλ = , with a randomly 

generated value, given a predefine range. 
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Figure 7: Scale range evaluation results. 

We can conclude that the accuracy of the classifiers is 
drastically affected when severe changes in scale 
occur (see Fig.7). Also, while the range of scales is 
increased, the possible variations in appearance of 
every class also increase, spanning bigger subspaces. 
In order to be able to handle such subspaces the 
training data set must be increased accordingly.  

Training Set 
The training set size is a key factor during the 
training step of a supervised classifier. These 
classifiers are very dependent of the quality and size 
of the training set. The training set has a real 
influence in the final accuracy of the classifier. We 
have evaluated the behavior of Random Forest and 
Fern classifier by varying the size of the training set, 
i.e, the number of examples, while the number of 
classes remains constant.  

The training sets are built with 225 different classes, 
where the examples were generated by applying 
random affine transformations with [ ]π2,0  allowable 
rotation range, and [0.5,1.5] scale range. We have 
evaluated the behavior of both classifiers by 
modifying the number of different examples per 
class. 
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Figure 8: Training set size tests result. 

Both classifiers get convergence when a number of 
examples per class are about 3500. At this value 
Random Forest classifier gets slightly better results 
reaching 78% of well recognized examples (see 
Fig.8). 

Number of Classes 
Feature or keypoint matching is a critical task in 
many computer vision applications, such as optical 
3D reconstruction or optical markerless tracking. 
Related to tracking by detection techniques, is 
important that the tracker can cope with a large 
number of different points in order to get robustness 
against factors such as partial object occlusion or 
noise. In this way, we measured how the classifiers 
handle different number of classes, while the size of 
the training set remains fixed. More precisely, the 
following results were obtained by using 1000 
examples per class, [ ]π2,0  allowable rotation range 
and [0.8,1.2] scale range. 
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Figure 9: Number of different classes test result. 

As expected, (see Fig.9) as the number of different 
classes increases the accuracy of both classifiers 
decrease. Our results show that Ferns classifier 
performs better than Random Trees being able to 
cope with a bigger number of different classes. 

Discussion 
Both classifiers perform well when the range of scale 
values is about [0.7,1.4]. We estimate that this range 
is sufficient to handle many views when tracking 
operation. When this range increases, the 
classification rate starts to decrease rapidly.  Both 
approaches are robust against rotation changes when 
the training set size is large enough according to the 
number of supported classes. 

When the classification rate is low, the number of 
miss-matched points (outliers) increases. Once the 
population of outliers is high, posterior processes 
related with tracking such as outlier filtering with 
RANSAC or non-linear minimization methods like 
Levenberg-Marquardt are seriously afected due to the 
number of iterations they need to reach convergence.  
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5. APPLICATION 
The approaches described previously were applied 
within a prototype using head mounted displays 
(HMD) for collaborative mobile mixed reality design 
reviews. Figure 11 shows the markerless tracking 
module by using a camera attached to a laptop 
working outodoors, while figure 12 shows the same 
module but working indoors.  

Our tracking module uses natural features to estimate 
the position and orientation of the camera, mounted 
on the HMD. Once this transformation is computed, 
the virtual object can be registered and viewed 
through the HMD as part of the real world. During 
the tracking process, the transformation must be 
updated over time. 

By using automatically extracted natural features (see 
Fig.10), the use of artifacts such as reflective markers 
is avoided, allowing the system to be more flexible 
and being able to work in non-well controlled 
conditions, such as outdoor environments.  

 
Figure 10: Feature or interest point extracted from a 
building facade to train a random forest classifier. 

The internal camera parameters estimation task is 
performed only once, when the camera is to be used 
for the first time.  

As described earlier, tracking by detection techniques 
requires an off-line process where the classifier is 
trained. During this period, one image of a highly 
textured plane, such as a building facade or a picture 
over a table, must be acquired. After the acquisition, 
some features points and their surrounding texture 
patches are extracted from the image [Ros06], and 
synthetic views of the plane are generated.  

Based on the results described previously, the 
integrated classifier in the tracking module of the 
prototype is trained to be able to recognize about 
200-250 different classes (interest points). The forest 
or Fern classifiers are constructed with 20 entities and 
a training set compound of 1000 synthetically 
generated examples for each class in less than 10 
minutes. This size of the training set is a good 
compromise between training time and final accuracy 
of the classifier. Training time is a very important 
factor in practical situations such as outdoor setup 

preparation time. Once the training set is ready, the 
system is ready for tracking. 

The obtained frame rate is about 20-25 frames per 
second (near real-time) on a 1.6Ghz dual core CPU. 
This frame rate may vary depending on the accuracy 
of the tracker, i.e, depending on the number of 
different points to be recognized. The drift and jitter 
are well controlled, so no severe movements of the 
objects occur. On a lower CPU (1Ghz) the obtained 
frame rate is only 5 frames per second.  

Independently on the robustness of the classifier, the 
wrong classified points (outliers) are removed by 
using RANSAC. The final estimation is refined by 
using Levenberg-Marquardt non-linear minimization 
method using all the inlier points, starting from the 
estimation obtained by RANSAC. This final 
minimization is very useful to avoid virtual object 
jittering, what is an uncomfortable behavior during 
augmented reality scene visualization. 

 
Figure 11: Outdoor Tracking of a building facade. 

The tracking by detection approach based on feature 
point classification and matching allows the tracker to 
be robust against partial plane occlusion, or fast 
camera movement. The tracker can run indefinitely 
without requiring re-initialization. 

 

 
Figure 12: Indoor tracking of a textured floor. 

6. CONCLUSION AND FUTURE 
WORK 
In this work we have presented an approach of 
tracking by detection for plane homography 
estimation using the Random Forest based classifier 
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and Ferns classifier for interest point matching. A 
comparative evaluation of both approaches was 
carried out by analyzing their behavior while 
modifying important parameters, such as number of 
classes or training set size. Our results show that both 
approaches are very similar with no clear advantage 
of one approach over the other.  

 Also, an augmented reality prototype using these 
classifiers was described. The prototype is able to 
robustly track a plane even if partial plane occlusion 
occurs, at real-time frame rate. 

We want to extend our work to support on-line 
training classification [Wil07]. On-line training 
allows the tracking to update the model with new 
feature points not present in the original training set. 
On-line training can be exploited in several 
frameworks such as Simultaneous Localization and 
Mapping (SLAM). 
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