
Human Skeletal and Muscle Deformation Animation Using Motion Capture Data

Ali Orkan Bayer

Department of Computer Engineering, Middle East Technical University, Turkey orkan@ceng.metu.edu.tr

Ayça Müge Sevinç

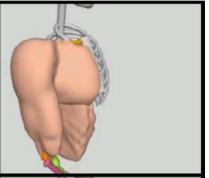
Tubitak Space Technologies Research Institute, Turkey *muge.sevinc@uzay.tubitak.gov.tr*

Tolga Can

Department of Computer Engineering, Middle East Technical University, Turkey tcan@ceng.metu.edu.tr

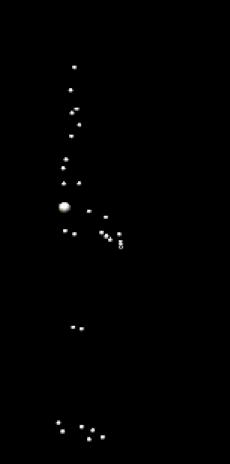
Outline

- Motivation
- Background
- Motion Capture Data
- Motion Generation
- Skeleton Module
- Modeling the Muscles
 Fusiform Muscles
 Multi-Belly Muscles
 - OMulti-Attachment Muscles
- Videos


Motivation

- Realistic human character animation
- Using motion capture to generate realistic motion.
- Modeling skin deformations for realistic look.

Background – Layered Approach


 First proposed by [1] for construction of deformable animated characters.

Applied to human figures by [5].

Taken from [5]

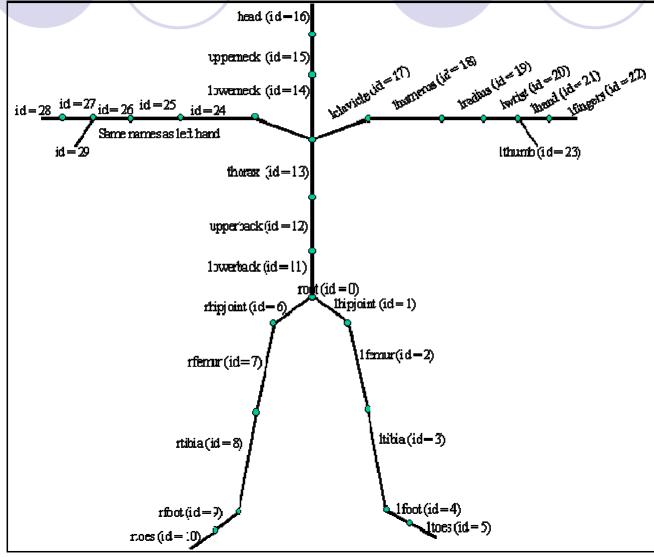
 Currently real anatomical data obtained from CAT scans are used [3].

Motion Capture Data

 CMU Motion Capture Database <u>http://mocap.cs.cmu.edu/</u> [2]

OThe skeleton file is the ASF file (Acclaim Skeleton File).

- The motion file is the AMC file (Acclaim Motion Capture data).
 - The AMC file contains the motion data for a skeleton defined by an ASF file.
 - The motion data is given a sample at a time.


ASF/AMC Samples

end

:root root 0.0153558 18.0056 -30.6689 4.50125 -1.52943 -5.29441 order TX TY TZ RX RY RZ lowerback 16.6573 0.623915 2.31726 axis XYZ upperback 1.63997 1.27324 0.345768 position 0 0 0 thorax -7.54311 0.547018 -1.23472 orientation 0 0 0 lowerneck -1.8004 0.193585 -0.370682 :bonedata upperneck -11.6206 0.265701 0.0867618 begin head -3.4216 0.146142 0.0856841 id 1 rclavicle 3.47873e-015 -5.56597e-015 name lhipjoint . . . direction 0.655637 -0.713449 0.247245 2 length 2.52691 root 0.0242465 17.8811 -30.1748 4.07177 -0.793788 -4.88041 axis 0 0 0 XYZ lowerback 17.0795 0.282084 1.9242 end upperback 1.75822 0.752955 0.268076 thorax -7.67094 0.30618 -0.980861 begin lowerneck -1.92248 0.206817 -0.467365 id 2 upperneck -11.469 0.293671 0.211124 name lfemur head -3.34657 0.159302 0.142233 direction 0.34202 -0.939693 0 rclavicle 3.67752e-015 -7.95139e-016 length 7.59371 axis 0 0 20 XYZ . . . dof rx ry rz root 0.0522549 17.7574 -29.6766 3.55381 0.143059 -4.40369 limits(-160.0 20.0) lowerback 17.1766 -0.260743 1.88678 $(-70.0\ 70.0)$ upperback 2.18061 0.00982433 0.0343028 (-60.070.0)thorax -7.28958 -0.0479967 -1.03734 end lowerneck -2.21714 0.285124 -0.460451 --upperneck -11.5577 0.416179 0.38525 :hierarchy head -3.32363 0.21388 0.195091 begin rclavicle 3.77691e-015 4.37326e-015 root lhipjoint rhipjoint lowerback . . . lhipjoint lfemur •••

Taken from [2]

Skeleton Hierarchy – Rest Pose

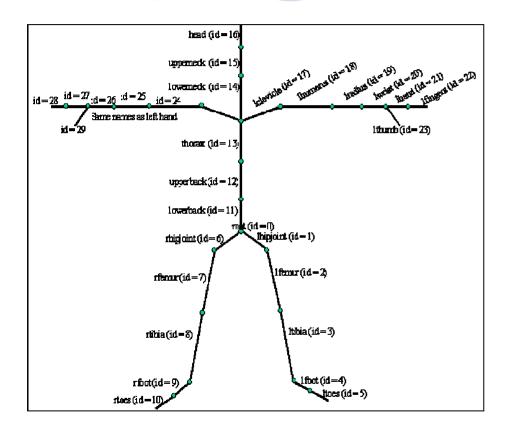
Taken From [4]

Generating Motion

- Each frame is generated by traversing the hierarchy in a breadth first manner.
- The transformations are given in joint's local coordinate system.
- The order of operations applied are:
 - Translation is performed using the direction vector and the length of the joint.
 - The rotation that maps the global coordinate system to local coordinate system is applied.
 - \bigcirc The rotations of the joint are applied.
 - The rotation that maps the local coordinate system to global coordinate system is applied.
 - O The transformation of the parent joint is applied.

Skeleton Module

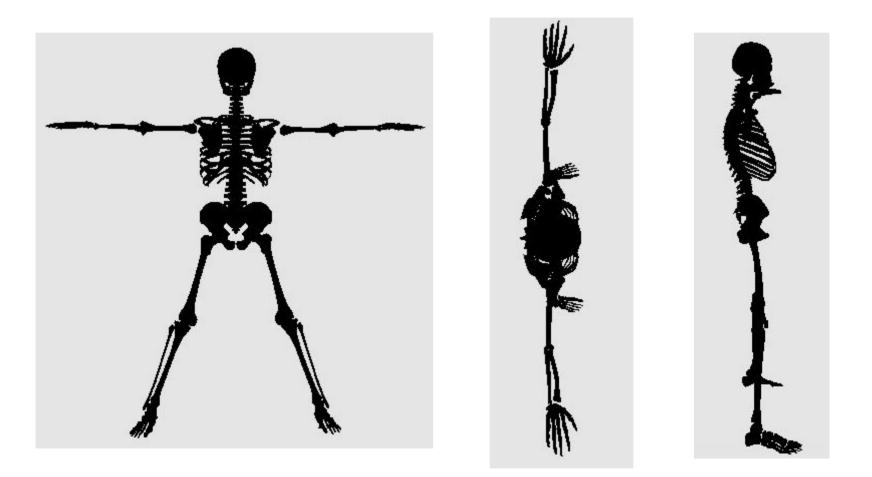
The purpose of skeleton is to support the muscles.


The global coordinates of attachment points of muscles are determined using the skeleton.

Related Problems

 The rest pose of motion capture data and skeleton differs.

- The markers actually show the positions on the subjects' skin not their skeleton.
- Transformation of spine needs extra attention.
- Resolution for hands is not sufficient.

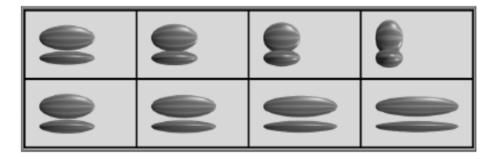

Calibrating the Skeleton

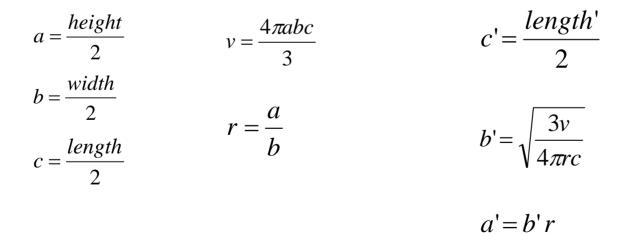
Calibrating the Skeleton

Modeling the Muscles

- Muscles are modeled using geometric primitives.
- Deformations due to isotonic contractions are implemented.
- Muscle models are inspired from [5].
- Brachialis muscle, biceps brachii muscle, triceps brachii muscle, deltoid muscle, and pectoralis muscle are modeled.
- Three different models are used.
 - Fusiform muscles.
 - O Multi-Belly muscles.
 - Multi-Attachment muscles.

Fusiform Muscles


- Fusiform muscles are modeled using ellipsoids [5].
- Brachialis muscle, biceps brachii muscle, triceps brachii muscles are modelled using this scheme.
- Tendons are included.
- Tendons for triceps brachii muscle needs extra attention.



Fusiform Muscle Deformation

Taken from [5]

Multi-Belly Muscles

Used to model the deltoid muscle.

- These muscles consist of several segments and attachment points for each segment are given separately.
- Each segment is a fusiform muscle.
- Make use of the attachment points of the neighboring segments to find the orientation of the each segment.
- The local z-axis of each segment is the vector from the first attachment point to the second.
- The y-axis is the cross-product of two vectors from the first points of the neighboring segments to the second point of the current segment. If the current one is a boundary point one of the vectors is the current z-axis.
- The x-axis can be found by the cross product of the z-axis and the y-axis.

Multi-attachment Muscle

- Used to model pectoralis muscle.
- The cross-section area of the muscle gets smaller as moved from sternum to humerus. Thus, we have used cones.

$$r = \sqrt{\frac{3v}{l\pi}}$$

,where r is the base radius of the cone with volume v and length l.

- Length is the sum of the Euclidean distances between the consecutive control points and the attachment points.
- The orientation of each segment is found separately.
 - The z-axis of each segment is found using two attachment points
 - The x-axis is found by the cross product of the z-axis with the vector from the point of the joint that the muscle connects and its parent joint.
 - The y-axis is similarly determined as the cross product of x and z axes.

Conclusions and Future Work

- We have constructed some of the human upper body muscles using some geometric primitives and a skeleton model which supports the muscles.
- One of the problems is the segmented rotation of the spine. We have solved that problem by applying rotation proportional to the y-coordinate of the bone and made the rotations smoother.
- The produced deformations of the muscles can be used to find the skin surface deformations by attaching a skin over the volume that is formed by the skeleton and the muscles.

Acknowledgments

- The data used in this study were obtained from mocap.cs.cmu.edu. The database was created with funding from NSF EIA-0196217.
- We are grateful to the people at Graphics Laboratory at the Carnegie Mellon University for sharing such a valuable resource.

References

- [1] J. E. Chadwick, D. R. Haumann, and R. E. Parent. Layered construction for deformable animated characters. In *SIGGRAPH'89: Proceedings of the 16th annual conference on Computer graphics and interactive techniques*, pages 243–252, New York, NY, USA, 1989. ACM Press.
- [2] CMU. CMU Graphics Lab Motion Capture Database. http://mocap.cs.cmu.edu, 2001.
- [3] F. Dong, G. J. Clapworthy, M. A. Krokos, and J. Yao. An anatomy-based approach to human muscle modeling and deformation. *IEEE Transactions on Visualization and Computer Graphics*, 8(2):154–170, 2002.
- [4] Nancy Pollard. Description of motion capture file format. http://graphics.cs.cmu.edu/nsp/course/15464/Fall05/assignments/StartupCodeDescription.html, 2005.
- [5] Coenraad Frederik Scheepers. *Anatomy-base Surface Generation For Artivulated Models of Human Figures*. PhD thesis, The Ohio State University, 1996.

Thank You

Any Questions?