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ABSTRACT

Light fields are a computer graphics modeling technique that represents objects using radiance samples instead of geometry.
Radiance samples may be stored as sets of images or 4D arrays of pixel values. Light fields have various advantages: their
rendering complexity only depends on the output image’s, they can represent sophisticated illumination effects, and they are
well-suited for display using autostereoscopic devices.
To study different light-field representations, as well as their capture, generation, resampling, storage, composition, rendering
and display, we have developed a light-field based API and graphics system. The system supports models based on different
light-field parameterizations, as well as different generation and capture methods, rendering methods, data caching algorithms
and output displays. The API will also support hybrid light-field and geometry based models, as well as light-field resampling
and composition.

Keywords: Image-based models, the light field, graphics APIs, modeling and rendering systems.

1 INTRODUCTION

Advances in imaging and graphics hardware in the past
ten years have motivated the appearance of novel ren-
dering techniques based on image data. Image-based
rendering methods build up a 3D representation of an
object using radiance data obtained from 2D image
samples of the object. These methods can synthesize
non-existent image samples from the information of
the existent ones, granting the observer a perspective-
correct view from either sampled or unsampled view-
points.

Image-based rendering techniques offer simple ac-
quisition capabilities coupled with realistic representa-
tion of complex lighting conditions. Furthermore, in
contrast to geometry based techniques, purely image-
based models provide two additional advantages. First,
rendering complexity of image-based models depends
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only on the complexity of the output images. Second,
most compression and simplification algorithms per-
form better on image data than geometric data. Addi-
tionally, both geometry-based models and image-based
models can be merged to produce hybrid models using
information originating from both geometry and im-
ages.

Light fields are a Computer Graphics modelling tech-
nique that relies on radiance or image data to represent
complex geometric objects. These objects are ineffi-
cient to store and render using geometry, but radiance
data can be organized in different arrangements of im-
ages or 4D pixel arrays to represent and display the ob-
jects [Lev06].nswered 58 12/19/2007 Roberto V

We introduce a light-field modelling system to
efficiently build, store, combine, resample, retrieve
and render light fields based on different represen-
tations. Our goal is to compare the representations,
combine them, and display them on autostereoscopic
displays [DEA+06].

We want to achieve interactive rendering framerates
together with an intuitive API for light-field capture and
generation. This paper describes the design of our light-
field representations, our API and the architecture of
the underlying graphics system. We also report work in
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progress in multiple light-field rendering and light-field
models augmented with geometry.

Light fields can be applied to many computer graph-
ics related areas. These include rendering, scientific
visualization, advertisement and virtual reality appli-
cations. Our main interest is driving autostereoscopic
displays and other volumetric displays. These displays
typically output 3D or 4D light-field data. They are the
future of graphics devices because they provide multi-
ple users with correct perspectives for both eyes without
using intrusive devices, like goggles.

Our paper starts with a review of previous work in
light-field modelling and rendering systems. Then,
we formalize light-field representations and review
light-field parameterizations. We introduce then the
functionality of our system and describe thoroughly
its goals. Section 4 describes our API, Section 5 our
implementation, and Section 5.6 our results. Finally,
we present some conclusions and directions for future
work.

2 BACKGROUND
Among the different image-based rendering tech-
niques, light fields are one of the newest and most
complex ones. Light fields were introduced in the
papers by Levoy and Hanrahan [LH96] and Gortler et
al. [GGSC96], where they were called lumigraphs.

Formally, the light field or plenoptic function is de-
fined as a 5D function that describes the radiance flow-
ing through all the points in a scene in all possible direc-
tions [AB91]. A static light field can be represented as
a 5D scalar function that can be simplified to 4D in the
absence of occluders, as shown in [GGSC96, LH96].

In order to render a light field, the radiance function
is sampled at points positioned on a sampling pattern,
determined by the kind of parameterization used in the
model. There are planar anisotropic [LH96] and spher-
ical quasi-isotropic [CLF98] parameterizations. They
result in different parameter arrangements and light-
field configurations. Additionally, unstructured light-
fiel models can also be built [Tak05].

The most important examples of planar param-
eterizations are Levoy and Hanrahan’s “light slab”
fields [LH96] and the Lumigraph [GGSC96]. Both use
a 2 plane parameterization. They select a planar grid of
camera positions and take an image for each camera.
They require multiple pairs of planes, called slabs, to
represent entire objects.

Schirmacher [SHS99] uses the same representation,
but adds a simple geometric model (called proxy) sim-
ilar to the lumigraph’s. The entire light-field model
is then built using an adaptive sampling method starts
with a simple set of views, then attempts to add a new
image from a different view. In order to determine
which point of view to use for the new image, several
candidates are considered. Candidate views are then

prioritized using a cost function that takes into account
disocclusion artifacts and a radiance error measure.

(a) Two-plane parameteriza-
tions.

(b) Direction-and-point parame-
terizations.

Figure 1: Two related light-field parameterizations.

In the case of spherical arrangements, cameras are
positioned throughout a sphere’s surface, pointing to-
wards its center. Images are thus sampled from the
sphere’s surface as described in [CLF98]. This way the
sphere acts as a simple approximation to the convex hull
of an object centered inside the sphere.

Using this approach, camera positions are determined
by the sampling directions needed, and sampling direc-
tion distribution is determined by the specific set of di-
rections selected. Examples of these arrangements are
those used in [CLF98, IPL97], where the chosen distri-
bution of the samples follows quasi-uniform triangula-
tions of the sphere’s surface [EDA+06].

In unstructured light fields, however, camera posi-
tions need not to be positioned following any specific
arrangement. Among these methods, it is possible to
make a difference between those in which correct ren-
derings are based on camera positions but also on a
priori knowledge about geometry information from the
scene, and those that use other approaches.

For example in [Tak05], where an algorithm for light-
field rendering that does not make use of any geometry
information is presented. The technique is based on a
3-step algorithm. In this algorithm a series of depth lay-
ers are created and pixels from the captured images are
positioned on those layers according to an estimation of
their depth based on an in-focus measurement.

In the case of geometric information support, the
use of geometric proxies to enhance object represen-
tations has been researched since the birth of light-
field modeling [GGSC96, PPS, CBCG02, WAA+00,
BBM+01] and greatly resembles view-dependent tex-
ture mapping[DTM96] in the use of transformed cap-
tured images as textures for the geometric proxies.

For instance, in [BBM+01] the authors use approx-
imate geometry models to build a map containing the
weight of the images obtained from each position for
every pixel. A subsequent sampling of the image plane
uses these weights to render images from cameras with
non-zero weights at every sample point used in the rep-
resentation. Each sample is rendered m times, being m
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the number of cameras. These samples are also taken
based on geometry information, and are determined by
projecting the geometric approximation of the scene on
the image plane.

We want to support these different types of
light-field representations: planar, spherical and
unstructured. Our work thus builds on the results
of [LH96], [GGSC96], [?], [SHS99] and [Tak05]
among others. But our focus is on the systems and
implementation issues of building, managing and
rendering multiple types of light-field models. In
this paper we focus on a management system for
general light fields and the associated API to access the
functionality (features) of our system.

3 FUNCTIONALITY
Providing support for light-field modelling and render-
ing requires a fairly sophisticated hardware and soft-
ware system. We may need to support different mod-
els and camera arrangements, different robot configura-
tions for image capture, several storage strategies, and
multiple rendering algorithms and display devices. Ad-
ditionally, we may want to compare different sampling,
resampling, composition and compression algorithms.
In this Section we describe which of these features we
want to support in our light-field system.

3.1 Light-Field Representations
We want a system capable of drawing and capturing dif-
ferent light-field representations. With this in mind, we
have designed software that can be easily configured
and extended to support different types of light-field
representations. The flexibility of our API also sup-
ports models that include geometric information like,
for example, depth information. Our architecture sup-
ports adding new representations by configuring light-
field plugins in a simple way.

We have developed a plugin based on spherical light
fields. It is based on the direction-and-point parameter-
ization [EDA+06]. A planar light-field plugin is also
being currently developed. This added functionality, is
useful to combine and resample different types of light
fields.

3.2 Generation and Capture
Light-field models can not exist without generating or
capturing them. Generation produces models of syn-
thetic object, while capture samples radiance data from
real-world objects. Light-field generation is performed
using methods that are specific to each type of repre-
sentation. Typically, the methods are camera iterators
that produce the camera parameters needed to properly
obtain the images of the light-field model. To generate
synthetic models, we support rendering using OpenGL,
Blender, POV or YafRay.

Figure 2: The robot arm is controlled by a PC. The arm
is moved to different locations and takes snapshots of
the object to capture.

Our software also allows the capture of light fields
from real-world objects providing a list of camera pa-
rameters for each of the images needed. This camera
parameters are also produced by iterators and they al-
low us to create snapshots from the real world objects.
This capture of real-object light-fields is performed us-
ing a camera mounted on a robotic arm(see figure 2).

3.3 Spherical Light-Field Plugin
Light fields have a major drawback. Obtaining high-
quality renderings needs a huge amount of images, up
to 20000, which uncompressed result in approximately
3.7 GBytes of storage. Use of fewer images produces
artifacts due to discretization errors. These errors pro-
duce seams visible across triangle boundaries when ren-
dering is done without interpolation (this kind of arti-
fact can be noticed in figure 11). Use of interpolation
however turns this seams into ghosting (see figure 3(b)).

(a) With constant kernel. (b) With quadralinear kernel.

Figure 3: A light-field model with caustics. The model
was rendered using two algorithms with different inter-
polation kernels. .

An alternative to higher-resolution light fields is the
use of depth information and lower directional reso-
lutions. Gortler et al. implemented depth-corrected
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light-field rendering using a representation extended
with a low-resolution geometric proxy of the target ob-
ject [GGSC96]. Shade et al. introduced layered depth
images, images extended with a depth value associated
to each pixel [SGHS98].

Using depth information rendering can be improved
to compute accurate texture coordinates. With this tech-
nique the amount of storage required by a light field’s
radiance data can be reduced by a factor of 1/4 or 1/16.

3.4 Light-field Composition
Another of our goals is the composition of different
light-field models and addition to external geometric in-
formation such as labels, tags and regular objects into
a single scene. This goal can be accomplished with the
use of depth maps, multiple images per directional sam-
ple, and improved rendering algorithms.

Handling of multiple light fields is managed by stor-
ing multiple images per directional sample. Images are
sorted according to their position in 3D space along
each direction and then multiple images for each vis-
ible triangle are reprojected. Drawing of these images
in proper back-to-front order must be ensured for ob-
taining of correct renderings.

Geometry and light-field rendering can also be ac-
complished using depth information associated to the
light-field data. Again, texture-mapped triangles are
generated for each directional sample and each light-
field model. They are drawn in 3D space at roughly the
same location as the surface of the light fields’ original
geometric objects. Geometric objects are drawn subse-
quently.

4 API DESIGN
Light-field capture and generation have been simplified
to provide an intuitive programmatical interface in our
light-field software. Acquisition can be accomplished
by following four simple steps. First, the light-field pa-
rameters are initialized. Second, a list of the camera
positions, which may vary depending on the parame-
terization plugin used, is provided. Images from the
different positions are then obtained sequentially, and
once all of them have been processed, the light field is
finally stored. The whole process is depicted in figure 4.

The rendering process has been simplified in a similar
way. In this case, after the initialization of the light-field
plugin of choice, the user needs to select and load the
algorithm responsible for its rendering, and assign its
concerning properties in case they exist. After that, the
renderer and the image cache need to be created before
starting the actual rendering.

Our software uses multiple threads, so that rendering
and image caching can run separately (see figure 5).

Control of the image retrieval thread is done by the
rendering thread, which decides which images to trans-
fer depending on the time available for each frame. The

Figure 4: Capture system architecture.

rendering thread also decides the size of the working set
based on the number of light-field images that the GPU
can display in 1/25 seconds.

The whole set of light-field data is difficult to fit
into main memory concurrently, so we use out-of-core
storage techniques. Our system uses a texture least-
recently-used (LRU) cache that manages the light-field
images so that only new images need to be loaded from
disk at any time.

Using a two-level cache architecture we support ren-
dering of light-field models requiring up to several gi-
gabytes of storage. The architecture transfers image
data from secondary storage to main memory, and from
main memory to GPU memory. The size of a light-
field model requires storing it in a hard drive, but load-
ing the image data from a hard drive produces really
poor performance, so we need a faster way of loading
the images. The fastest way stores the images in GPU
memory and loads them directly when needed for a vis-
ible triangle. However, GPU memory is not enough to
hold all the image data, so we have added an interme-
diate cache system in main memory to provide a better
capacity/response time ratio as seen in figure 8)

Figure 5: Render system architecture.

5 IMPLEMENTATION
In this section, we discuss the implementation of the
above features. For the implementation we use C++,
because it provides the expressiveness and performance
needed for both the image processing and the rendering
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of the light-field data. We start with an overview of our
class architecture.

5.1 Light-Field Interface
A light-field class represents an abstract interface to all
of the different light-field representations. It is in charge
of managing the light-field model and also possesses
knowledge about the organization of the images stored
in secondary storage.

Figure 6: Light–Field and Kernel interface diagram

The light-field class knows how to load, save and
generate its light-field representation, but knows noth-
ing about the rendering of the light-field (see figure 6).
The class responsible for the task of rendering the light
field is the Kernel class.

5.2 Kernel Interface
A light-field parameterization can be rendered using
different algorithms providing different results (see fig-
ure 15 for an example). Control of the different algo-
rithms used in the rendering stage has been modelled
with the use of Kernels. In this system, a Kernel is the
class in charge of the rendering of a light-field type (see
figure 6).

A light-field representation is able to use different
kernels to render the light field. As an example of this
fact, rendering of a direction-and-point parameteriza-
tion (DPP) based light-field can be performed by using
various kernels. At the present moment these consist
of a constant reconstruction kernel, a quadratic recon-
struction kernel and a kernel using depth-maps for geo-
metric information supported rendering.

Examples of the use of such kernels with the DPP
light-field plugin can be observed in figures 3(a), 3(b)
and 15. The different results obtained with the use of
the various kernels are clearly visible.

5.3 Plugin Architecture
Our system uses a plugin architecture in order to
support multiple light-field parameterizations. In this
way, different light-field parameterizations can be
implemented in plugins that the base library can load
on demand.

We support two kinds of plugins: LightFields and
Kernel modules (see figure 7). Our plugin system al-
lows us to check which plugins are registered in the
system and inspect which kind of plugin the loaded plu-
gins represent, as well as which properties the plugins
support. All of this processing can be performed in ex-
ecution time.

Figure 7: Classes that implement the plugin function-
ality.

Each LightField or Kernel may have different prop-
erties to configure. For example, the DPP LightField
implementation has a property related to the level of
the icosahedron subdivision, but PDP LightField has a
property related to the number of horizontal and verti-
cal plane subdivisions. This properties can be accessed
directly by their name, and they are fully configurable
and independent of the rest of the architecture.

5.4 Cache Architecture
As it was said in section 4, our system uses a two-level
cache architecture, that allows us to render light-field
models requiring a huge storage capacity.

As new images are needed by the renderer, the system
caches the corresponding images, first obtaining them
from disk and fitting them into main memory (when
they are not directly available in there) and then from
main memory into GPU memory (see figure 8).

Figure 8: Two-level cache architecture: images are ad-
dressed using unique triangle identifiers (CPU memory
and secondary storage) and texture identifiers (GPU
memory).
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The caching algorithm has also been designed to steer
image retrieval following camera movement. During
rendering, the most probable new camera position and
orientation is computed using the last camera move-
ment. This prediction provides an estimate of the next
frame’s viewing frustum. The frustum is then used to
determine the set of images that are most likely to be
needed soon.

5.5 Implementing a new Light-field type
In order to add a new light field, a series of steps are to
be performed. First of all, a new class inheriting from
the LightField interface and implementing its methods
must be created. Class DPP_LightField is an example
implementation, as figure 9 shows.

Figure 9: DPP light-field implementation diagram

The most important methods needed to implement
in this class are loadLightField, writeLightFieldModel
and getCameraIterator. The loadLightField method
is responsible for the setup of the light-field informa-
tion, while the writeLightFieldModel method will be in
charge of the information dump to a massive storage de-
vice at the end of the acquisition process. Finally, get-
CameraIterator is the most important method regard-
ing the obtaining of the camera position arrangements
of the plugin in use (see figure 9).

Once the light-field class for the new model has been
implemented, the user must adapt, if needed, a new
CameraIterator for it. This iterator will provide the new
LightField class with the desired camera arrangement.
At this stage, the system is already capable of acquiring
light fields based on the new model, see figure 9.

In order to render the acquired light fields, the user
must also implement the rendering algorithm to do so.
This is accomplished by implementing one or more
adapted classes inheriting the Kernel interface. This
class will be the placeholder of the rendering algorithm,
and will work jointly with a corresponding triangle it-
erator, that should be implemented too if needed. An
example of this class architecture is shown in figure 10.

5.6 Results
The DPP light-field plugin for our system has been
tested on several datasets. Figures 11, 12 and 13 show
renderings from different models at different levels of
detail. The models used were large polygon meshes,
with polygon counts ranging from 226k to 478k poly-
gons. In figure 14, complex lighting effects like caustics

Figure 10: Kernel module architecture example

were also added to the scene. All of these light fields
were obtained using the Blender and Yafray renderers.

Rendering of the original geometric models took 60
seconds for Models 1 and 2, 90 seconds for Model 3 and
roughly 3.5 minutes for Model 4. The light-field mod-
els, however, were rendered at 50–60 frames per second
using the constant and quadralinear kernels, and two
seconds per frame using depth correction. This greatly
improves on the rendering times of the geometric mod-
els.

Figure 11: Model 1: The UMA model was scanned
with our 3D scanner. We captured the light field us-
ing Blender. The image shows the render of model at
level 4.

In figure 15 two different renderings of the Stanford
dragon model can be observed, showing the differences
in image quality obtained when depth information is
used for the rendering of the light fields. In this case
the light field was obtained using OpenGL.
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Figure 12: Model 2: A gargoyle model rendered al
level 4. The light field was captured using Blender and
the model geometry was acquired with our 3D scanner.

Figure 13: Model 3: Chinese lion light field rendered
at level 3. Model is provided courtesy of INRIA by the
AIM@SHAPE Shape Repository.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we address the issue of light-field mod-
eling and rendering in a generalized way, through the
creation of a system which allows abstraction from the
different features that different light-field parameteriza-
tions have.

We presented a system that creates an abstract frame-
work for light-field modelling and rendering, allowing
a quicker development of novel techniques of this kind,
which may use different parameterizations, or be sup-
ported by information coming from varied sources like
radiance, depth or others. The system has been imple-

Figure 14: Model 4: The Stanford armadillo model
with a green glass material. The light field was cap-
tured with YafRay raytracer to obtain high quality im-
ages with effects like caustics and reflections. Ren-
dered at level 2.

mented in standard C++, also granting its flexibility and
portability.

Current work includes creation of a spherical light
field plugin for the system, while implementation of ad-
ditional plugins like a planar light field plugin are still
under development.

The reader is referred to the webpage http://
www.sig.upv.es/ALF/papers/wscg2008/
for some videos produced with our system.
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