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ABSTRACT

We present a novel algorithm to compute intersections of two point clouds. It can be used to detect collisions between implicit
surfaces defined by two point sets, or to construct their intersection curves. Our approach utilizes a proximity graph that allows
for quick interpolation search of a common zero of the two implicit functions.
First, pairs of points from one point set are constructed, bracketing the intersection with the other surface. Second, an inter-
polation search along shortest paths in the graph is performed. Third, the solutions are refined. For the first and third step,
randomized sampling is utilized.
We show that the number of evaluations of the implicit function and the overall runtime is in O(log logN), where N is the point
cloud size. The storage is bounded by O(N).
Our measurements show that we achieve a speedup by an order of magnitude compared to a recently proposed randomized
sampling technique for point cloud collision detection.

Keywords: Collision detection, weighted least squares, proximity graphs, implicit surfaces.

1 INTRODUCTION
In the past few years, point clouds have had a renais-
sance caused by the wide-spread availability of 3D
scanning technology. Interaction with objects thus rep-
resented often requires intersection tests between pairs
of objects. Other applications, such as Boolean oper-
ations [1] or physically-based simulation [10], require
fast construction of points on the intersection curves.

In order to do that, one must define an appropri-
ate surface (even if it is not explicitly reconstructed).
The simple weighted least-squares (WLS) definition of
point cloud surfaces is quite attractive and can be eval-
uated very fast [3]. In order to overcome a problem
caused by Euclidean distances in the weighting func-
tions, [12] proposed a method that utilizes (concep-
tually) a Voronoi diagram and a geometric proximity
graph to approximate geodesic distances between the
query point and the cloud points.

In this paper, we present a method that can quickly
find intersection points on objects represented by point
clouds. It converges even if the sampling is sparse,
compared to the surface areas, and even if the distance
between the surfaces contains local minima.

The idea is to utilize a proximity graph over the point
clouds and perform interpolation search along geodesic
paths through these graphs. The search is initialized
by randomized sampling that tries to find two points on
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Figure 1: One of our point clouds for benchmarking our
novel intersection method (> 137000 points).

one object and on different sides of the other object.
Then, our interpolation search converges quickly to an
approximate intersection point. Finally, the space sur-
rounding that is sampled to get very accurate (discrete)
intersection points.

Our new algorithm can be combined very easily with
any acceleration data structure for collision detection or
intersection construction. For instance, with bounding
volume hierarchies [11], the algorithm presented here
would be invoked at the leaves.

In the following, we will first give a review of related
work. Section 3 gives a quick recap of the WLS surface
definition and the proximity graph we are using. Sec-
tion 4 describes the details of our new algorithm while
Section 5 shows its performance.

2 RELATED WORK
An attractive way of handling point clouds is to define
the surface as the zero set of an implicit function that is
constructed from the point cloud. Usually, this function
is not given analytically but “algorithmically” [2, 3, 4].



This is a general method that can be used for recon-
struction as well as ray-tracing or collision detection.
Another very popular method is to define the surface as
the set of fixed points of a projection operator based on
local polynomial regression [5].

Geometric queries on point clouds have been studied
extensively. An interesting result related to our problem
can be found in [7, p. 908f]. They use a divide-and-
conquer algorithm to find the closest pair of n points
in time O(n logn) which is, of course, not applicable to
realtime collision detection.

However, there is very little literature on geometric
queries on the implicit surfaces defined by such object
representations. The work most related to ours is [21].
They sample an implicit function with a stochastic dif-
ferential equation to detect intersections. Since it is a
method for general implicit surfaces, they do not ex-
ploit the proximity graph available here. In addition,
our new method is much simpler.

In [11] a bounding volume (BV) hierarchy for point
cloud collision detection was proposed. The BV traver-
sal first visits leaves where intersections are more likely.
Then, a sampling technique similar to [21] determines
the intersection points.

An algorithm to perform Boolean operations on
solids was presented in [1]. However, their algorithm
does not work for surfaces implicitely defined, and it
requires closed surfaces.

As mentioned above, our method is based on prox-
imity graphs, which have been studied extensively in
the past decade. There is a broad spectrum of them,
including the Delaunay graph, nearest-neighbor graph,
γ-graph, α-shape, and the spheres-of-influence graph,
to name but a few; see [9] for a good survey.

3 IMPLICIT SURFACE MODEL
In this section, we give a quick recap of the weighted
least-squares (WLS) method [2, 3], which was origi-
nally introduced by McLain [13] in the context of con-
touring, plus its geodesic extension based on proximity
graphs [12].

3.1 Weighted Least Squares
Let a point cloud P with N points pi ∈ R3 be given.
Then, an appealing definition of the surface from P is
the zero set S = {x | f (x) = 0} of an implicit function

f (x) = n(x) · (a(x)− x) (1)

where a(x) is the weighted average of all points P

a(x) = ∑
N
i=1 θ(x, pi)pi

∑
N
i=1 θ(x, pi)

. (2)

Usually, a Gaussian kernel (weight function)

θ(x, p) = e−d(x,p)2/h2
, d(x, p) = ‖x− p‖, (3)

is used, but other kernels work as well.
The bandwidth h of the kernel allows us to tune the

decay of the influence of the points. It should be chosen
such that no holes appear.

The normal n(x) is defined as the direction of
smallest weighted covariance, which is the small-
est eigenvector of the centered covariance matrix
B(x) = {bi j(x)} with

bi j(x) =
N

∑
k=1

θ(x, pk)(ei(pk−a(x)))(e j(pk−a(x)))

(4)
where ei, i ∈ {0,1,2} is a basis of R3.

The above definition can produce artifacts in the sur-
face S, which are mainly caused by the Euclidean dis-
tance function d(x, p) that does not take the topology
of S into account. This problem can be solved by us-
ing a different distance function dgeo(x, p) in (3) that
is based on geodesic distances on the surface S. There-
fore, a geometric proximity graph can be utilized where
the nodes are points ∈P . Then, geodesic distances be-
tween the points can be approximated by shortest paths
on the edges of the graph.

We use the following geodesic kernel :

θ(x, p) = e−dgeo(x,p)2/h2
(5)

when computing f by (1)–(4).

3.2 Geodesic Distance Approximation
There is a whole spectrum of different proximity graphs
over a set P of points. We decided to use the the
sphere-of-influence graph (SIG) as it has reduced ar-
tifacts in WLS point cloud surfaces dramatically [12].
In this section, we will give a short overview of this
fairly little known proximity graph [6, 14]. Moreover,
we will shortly summarize how to precompute and store
the geodesic distances.
The Sphere-of-Influence Graph (SIG). The idea is to
connect points if their “spheres of influence” intersect.
More precisely, for each point pi the distance di to its
nearest neighbor (NN) is determined and two points pi
and p j are connected by an edge if ‖pi− p j‖ ≤ di +d j.

As a consequence, the SIG tends to connect points
that are “close” to each other relative to the local point
density. In noisy or irregularly sampled point clouds,
however, a lot of isolated “mini-clusters” can appear,
even though there are no holes in the original surface.
Because our root bracketing will utilize the graph, it
would fail in such a situation.

Therefore, we use the r-SIG(P): instead of comput-
ing the distance to the NN for each node, we compute
the distance to the r-nearest neighbor and then proceed
as in the case of r = 1. That means, the larger r, the
more nodes are directly connected by an edge. In our
experience, it seems best to choose r = 3 or r = 4, and
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Figure 2: Outline of our point cloud collision detection.

then prune away all “long” edges by an outlier detection
algorithm [22].
Precomputing Geodesic Distances. Computing short-
est paths on-the-fly during the collision detection pro-
cess would be, of course, prohibitively expensive, so we
pre-compute and store them in a close-pairs shortest-
paths (CPSP) map [12].

Since the Gaussian (3) decays fairly quickly, we need
to store only paths up to some length for defining the
surface. The contribution of nodes in Equations 2 and 4
that are farther away can be neglected. That means, for
each point pi we have to run a single-source-shortest
path algorithm, but only for points whose influence in
pi is larger than some small threshold.

In [12] it is shown that all these geodesic distances
for a whole point cloud of size N can be computed and
stored in O(N) time and space.

4 CONSTRUCTING POINTS ON THE
INTERSECTION

Given two point clouds A and B, the goal is to deter-
mine whether or not there is an intersection, i.e., a com-
mon root fA(x) = fB(x) = 0, and, possibly, to compute
a sampling of the intersection curve(s), i.e., of the set
Z = {x | fA(x) = fB(x) = 0}. Both can be achieved
very quickly by exploiting the proximity graph.

First, our algorithm tries to bracket intersections by
two points on one surface and on either side of the other
surface (see Figure 2). Second, for each such bracket,
it finds an approximate point in one of the point clouds
that is close to the intersection (see Figure 3). Finally,
this approximate intersection point is refined by subse-
quent randomized sampling. This last step is optional,
depending on the accuracy needed by the application.

In the following, we describe each step in detail.

4.1 Root Bracketing
Finding common roots of two (or more) nonlinear func-
tions is extremely difficult [17]. Even more so here, be-
cause the functions are not described analytically, but
algorithmically.

As mentioned before, our algorithm starts by con-
structing random pairs of points on different sides of
one of the surfaces. The two points should not be too
far apart, and, in addition, the pairs should evenly sam-
ple the surface.

+
+

-
-
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p2

I1 I2

B

A

Figure 3: Two point clouds A and B and their inter-
section spheres I1 and I2. Our root finding procedure,
when initialized with p1, p2 ∈A, will find an approximate
intersection point inside the intersection sphere I1.

An exhaustive enumeration of all pairs is, of course,
prohibitively expensive. Therefore, we propose the fol-
lowing randomized (sub-)sampling procedure.

Assume that the implicit surface is conceptually(!)
approximated by surfels (2D discs) of equal size [16,
19]. Let Box(A,B) = Box(A)∩Box(B) and A = A∩
Box(A,B). Then, we want to randomly draw points
pi ∈ A such that each surfel si gets occupied by at least
one pi; here, “occupied by pi” means that the projec-
tion of a(pi) along the normal n(pi) onto the supporting
plane of si lies within the surfel’s radius.

For each pi we can easily determine another point p j
(if any) in the neighborhood of pi so that pi and p j lie
on different sides of fB. We represent the neighborhood
of a point pi by a sphere ci centered at pi.

An advantage of this is that the application can spec-
ify the density of the intersection points that are to be
returned by our algorithm. From these, it is fairly easy
to construct a discretization of the complete intersection
curves (for instance, by utilizing randomized sampling
again).

Note that we never need to actually construct the
surfels, or assign the points from A explicitly to the
neighborhoods, which we describe in the following.
Section 4.2 describes how to choose the radius of the
spheres ci.

In order to find a p j ∈ A∩ ci on the “other side” of
fB, we use fB(pi) · fB(p j) ≤ 0 as an indicator. This, of
course, is reliable only if the normals n(x) are consis-
tent throughout space. If the surface is manifold and
connected, this can be achieved by a method similar
to [8].

Utilizing our proximity graph (which is a supergraph
of the nearest-neighbor graph), we can propagate a nor-
mal to each point pi ∈ A. Then, when defining f (x),
we choose the direction of n(x) according to the normal
stored with the NN of x in A.1

1 Surprisingly, the direction of n(x) is consistent over fairly large vol-
umes without any preconditioning.
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Figure 4: If the spherical neighborhoods ci (red) are
too small, not all collisions can be found. (i) adjoin-
ing neighborhoods do not overlap sufficiently, their in-
tersection contains no cloud point. (ii) surface is not
covered by neighborhoods ci.

In order to sample A such that each (conceptual) sur-
fel is represented by at least one point in the sample, we
use the following

Lemma 1
Let A be a uniformly sampled point cloud. Further,
let SA denote the set of conceptual surfels approxi-
mating the surface of A inside the intersection volume
of A and B, and let a = |SA|. Then, in order to oc-
cupy each surfel with at least one point with probability
p = e−e−c

, where c is an arbitrary constant, we have
to draw n = O(a · lna + c · a) random and independent
points from A.

Proof: see Appendix A.
For instance, if we want p≥ 97%, we have to choose

c = 3.5, and if a = 30, then n≈ 200 random points have
to be generated.

Now, given a point pi ∈ A, we have to determine an-
other point p j ∈ A∩ ci on the other side of fB.

This is done by testing fB(pi) · fB(p j) ≤ 0 for all
points p j ∈ A∩ ci. In the next section, we show that
ci∩A is only a small, constant number of points. There-
fore, a point p j on the other side of fB can be deter-
mined in time O(1) (if it exists). We utilize our proxim-
ity graph and a breadth-first search to access the points
in the spherical neighborhood ci.

4.2 Size of Neighborhoods

The radius of the spherical neighborhoods ci has to be
chosen so that, on the one hand, all ci cover the whole
surface defined by A. On the other hand, the intersec-
tion with each adjoining neighborhood of ci has to con-
tain at least one point in A to miss no collisions lying in
the intersection of two neighborhoods. The situation is
illustrated in Figure 4.

To determine the minimal radius of a spherical neigh-
borhood ci, we introduce the notion of sampling radius.

Definition 1 (Sampling radius)
Let a point cloud A as well as a subset A′ ⊆ A be given.
Consider a set of spheres, centered at A′, that cover the
surface defined by A (not A′), where all spheres have
equal radius. We define the sampling radius r(A′) as
the minimal radius of such a sphere covering.

Remember that we draw n = O(a · lna + c · a) random
and independent points from A. Let A′ denote the point
cloud consisting of these random points. Then, spheres
with radius 2 · r(A′) centered at points in A′ contain al-
ways points of the neighboring spheres and, of course,
cover the surface.

The sampling radius r(A′) can obviously be estimated
as the radius r of a surfel si ∈ SA.

Let FA denote the surface area of the implicit surface
over A. Then, the surfel radius r can be determined by

FA

a
= π · r2 ⇒ r =

√
FA

a ·π
.

Assume that the implicit surface over A can also be
approximated by surfels of size r(A). Then, FA can be
estimated by

FA = |A| ·πr(A)2.

Overall, r(A′) can be estimated by

r(A′) = r(A) ·

√
|A|
a

≈ r(A) ·

√
Vol(A,B)
Vol(A) ·a

· |A| .

The size of A can easily be estimated depending on the
ratio of Vol(A) and Vol(A,B), the sampling radius r(A)
can easily be determined in the preprocessing.

In [12] it has already been shown that for uniformly
distributed points pi ∈R3 and a sampling radius of r(A)
only O(d

√
2 ·me2) points ∈ A lie in a sphere with ra-

dius m · r(A). If we choose m = 2r(A′)/r(A), then at
most O(d

√
2 ·2r(A′)/r(A)e2) = O(1) points ∈ A lie in

a spherical neighborhood with radius 2 · r(A′) because
m = 2r(A′)/r(A) is constant.

4.3 Interpolation Search
Having determined two points p1, p2 ∈ A on different
sides of object B, the next goal is to find a point p̂ ∈ A
“between” p1 and p2, such that the approximate dis-
tance from B is small enough, i.e., | fB(p̂)| < ε . In
the following, we will call such a point approximate
intersection point (AIP). The true intersection curve
fB(x) = fA(x) = 0 will pass close to p̂ (usually, it does
not pass through any points of the point clouds).

Depending on the application, p̂ might already suf-
fice. If the true intersection points are needed, then we
refine the output of the interpolation search by the pro-
cedure described in Section 4.5.

If B does not have boundaries (e.g., holes) and A is
sufficiently densely sampled, then there must be a point



l,r = 1,n
dl,r = fB(P1), fB(Pn)
while |dl |> ε and |dr|> ε and l < r do

x = l + d −dl
dr−dl

(r− l)e {*}
dx = fB(Px)
if dx < 0 then

l,r = x,r
else

l,r = l,x
Algorithm 1: Pseudo-code of our root finding algorithm
based on interpolation search. P is an array containing
the points of the shortest path from p1 = P1 to p2 = Pn,
which can be precomputed. di = fB(Pi) approximates
the distance of Pi to object B. (*) Note that either dl or
dr is negative.

p̂ ∈ A lying on the shortest path between p1 and p2 for
which | fB(p̂)| < ε . Let us assume that fB is mono-
tone along the path p1 p2 (this can always be ensured
by making the surfels small enough). Then, instead of
doing an exhaustive search along the path, we could uti-
lize binary search to find p̂. Better yet, we can utilize
interpolation search, which makes sense here, because
the “access” to the key of an element, i.e., an evaluation
of fB, is fairly expensive [20]. The runtime of interpola-
tion search is in O(log logm), m = number of elements.

Algorithm 1 for our interpolation search assumes that
the shortest paths are precomputed and stored in the
CPSP map (Section 3.2). Analogously to [12], it is easy
to see that the storage is still linear.

However, in practice, the memory consumption could
be too large for huge point clouds. In that case, we
can compute the path P on-the-fly at runtime by Algo-
rithm 2. Theoretically speaking, the overall algorithm
is now in linear time. However, in practice, it still be-
haves sublinear because the reconstruction of the path is
negligible compared to evaluating fB (see Section 5.3).

4.4 Models with Boundaries

If the models have boundaries and the sampling rate
of our root bracketing algorithm is too low, not all in-
tersections will be found (see Figure 5). In that case,
some AIPs might not be reached, because they are not
connected through the proximity graph.

Therefore, we propose to modify the r-SIG. After
constructing the graph, we usually prune away all
“long” edges by an outlier detection algorithm (see
Section 3.2). Now, we only mark these edges as
“virtual”. Thus, we can still use the r-SIG for defining
the surface as before. For our interpolation search,
however, we can also use the “virtual” edges so that
small holes in the model are bridged.

q.insert(p1); clear P
repeat

p = q.pop
P.append( p )
for all pi adjacent to p do

if dgeo(pi, p2) < dgeo(p1, p2) then
insert pi into q with priority dgeo(pi, p2)

until p = p2

Algorithm 2: This algorithm can be used to initialize P
for Algorithm 1 if storing all shortest paths in the CPSP
map is too expensive. (q is a priority queue.)

4.5 Precise Intersection Points
If two point clouds are intersecting, our interpolation
search returns a set of AIPs. Around each of them, an
intersection sphere of radius r = ‖x− p1‖ where

x =
1

d1 +d2
(d2 p1 +d1 p2)

contains a true intersection point (p1 and p2 are the
points ∈ A with smallest distance to B lying on differ-
ent sides of B, di = fB(pi)). The idea is illustrated in
Figure 6. If AIPs are not precise enough, then we can
sample each such sphere to get more accurate (discrete)
intersection points.

More precisely, if a precise collision point’s distance
from the surfaces is to be smaller than ε2, we cover a
given intersection sphere by s smaller spheres with di-
ameter ε2 and sample that volume by s · lns+c ·s points
so that each of the s spheres gets a point with high prob-
ability (see Appendix A). For each of these, we just
determine the distance to both surfaces.

Rogers [18] showed that a sphere with radius a ·b can
be covered by at most s = d

√
3 ·ae3 smaller spheres of

radius b. Since we would like to cover the intersec-
tion sphere by spheres with radius b = ε2/2, we have to
choose a = 2r/ε2, so that a ·b = r. As a consequence,

s = d
√

3 · 2r
ε2
e3.

For example, if we would like to cover an intersection
sphere with spheres of radius ε , then ε2 = 2 · ε and s =
d
√

3 · r/εe3.

4.6 Complexity Considerations
In this section we analyze the runtime of our novel ap-
proach and the number of evaluations of the implicit
function that are necessary to detect all intersections for
a given sampling density described by the number a of
surfels.

In general, evaluating f (x) takes O(logN) time, even
if the support of the kernel is bounded, because the NN
of x has to be determined (using, for instance, a kD-
tree). Here, fortunately, one evaluation can be done in
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Figure 6: An intersection sphere centered at an AIP pi.
Its radius r can be determined approximately with the
help of a second point on the other side of B.

only O(1) time: the root bracketing and interpolation
search evaluate f (x) only at points x ∈ A∪B, and com-
puting the precise intersection points can use a brute
force NN search in constant time, starting from the AIP.

Our root bracketing algorithm looks O(a lna) times
for a pair (pi, p j) of points lying on different sides.
Each time, f (x) has to be evaluated only O(1) times, as
the spherical neighborhood around pi contains only a
constant number of points. As a consequence, O(a lna)
evaluations of fB have to be performed which is also the
overall runtime of our root bracketing algorithm.

Then, for at most O(a lna) many pairs, our interpo-
lation search has to be started. Each single interpola-
tion search needs O(log logm) evaluations of fB where
m denotes the number of points along the shortest path
between pi and p j.

Overall, the fB has to be evaluated at most O(a lna ·
log logm)) times. As N � m and a is constant, this
number can also be bounded by O(log logN).

5 RESULTS
We implemented our new algorithm in C++. As of yet,
the implementation is not fully optimized. All results
were obtained on a 2.8 GHz Pentium-IV.

For timing the performance, we used a set of ob-
jects (see Fig. 11), most of them with several resolu-
tions. Benchmarking was performed by the procedure
proposed in [23], which computes average collision de-
tection times for a range of distances between two iden-
tical objects, which are scaled uniformly so that they fit
into a cube of size 23.
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5.1 Minimal Bracket Density
As mentioned before, if the number of (conceptual) sur-
fels is too small, then the size of their neighborhoods
can become too large,and, as a consequence, the like-
lihood can become too large that the normal n(x) flips
its sign without x actually changing sides. In that case,
our method could fail to find pairs of points on different
sides of the surface.

Therefore, we propose to estimate the minimal num-
ber of surfels (which directly influences the radius of
the spherical neighborhoods) by the following prepro-
cessing procedure. For each distance, a large number of
collisions tests is performed, each with a different con-
stellation between the objects. A collisions test stops
after the first intersection has been found. Each of these
tests is performed with a different sampling density, ex-
pressed by the number n = O(a lna) (see Section 4.1).
Then, we use the minimal sampling density for which
all collisions have been found.

The results for one object can be found in Figure 7,
which shows the error rate depending on different sam-
pling densities. All our other models of our test suite
show a similar behavior and it turned out that nmin =
200 is the minimal number, so that the error rate of all
intersection tests for all our models is only 0.1%. This
number was used for all further tests.

5.2 Interpolation Search vs Randomized
Sampling

In order to evaluate the performance of our new algo-
rithm, we compared it to the simpler randomized sam-
pling technique (RST) proposed in [11]. No BV hierar-
chies were used.

The number of sample points ns that have to be gen-
erated for the RST can be determined as proposed in
Section 4.5, depending on the same ε that is used for
our new approach. As this number would always be
large, we once again terminate both collision detection
algorithms after the first intersection is found.
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Figure 8: Timings for different models. Comparison of our novel technique and RST [11].
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Figure 9: The number of evaluations of f (x) can be decreased by an order of magnitude by our new approach.

However, in the case of non-collision, in particular in
the case of small distances between the objects, the run-
time of the RST would be very long because of the large
ns, which is a big drawback of the old method. There-
fore, if ns is too large, we bound this number by 500.
Note that in such cases the old method fails to report
all intersection tests correctly, in contrast to our new
method, which is another drawback of the old method.

Figure 8 shows that the collision queries can be an-
swered much more quickly by our new approach.

The corresponding number of evaluations of the im-
plicit function can be found in Figure 9. Note that the
number of evaluations can exceed ns in the case of the
RST, since for each random point two evaluations are
necessary.

5.3 Timings depending on Point Density
Figure 10 shows the runtime for detecting all intersec-
tions between two objects, depending on different den-
sities of the point clouds. We define the density of an
object A with N points as the ratio of N over the number
of volume units of the AABB of A (which is at most 8
as each object is scaled uniformly so that it fits into a
cube of size 23). This experiment supports our theoret-
ical considerations of Section 4.6.

Note that the CPSP maps (see Section 3.2) were built
so that the time for evaluating the implicit function re-
mains constant.

We also measured the time that would be needed to
compute all nodes on the shortest path between (pi, p j)
used to initialize the interpolation search (see Algo-
rithm 2). For all our models, this was at most 10% of
the overall runtime. Therefore, one can save a signifi-
cant amount of memory in the CPSP map by computing
array P in Algorithm 1 during run-time.

6 CONCLUSION AND FUTURE
WORK

We have presented a novel algorithm for sampling the
intersection curves between surfaces defined implicitly
by point clouds with the weighted least-squares method
plus proximity graph. It can be used, for instance, to ac-
celerate hierarchical collision detection or Boolean op-
erations on this kind of object representation.

Our approach exploits the proximity graph by inter-
polation search along shortest paths in the graph. The
technique of randomized sampling has proven to be ef-
ficient for initializing that search.

Our measurements show that the number of function
evaluations is reduced by an order of magnitude and a
speedup of factor 5–10 is achieved in many cases, com-
pared to a previous randomized sampling technique.

Moreover, theoretical and experimental evidence is
given that the runtime grows only as log logN, (N = the
size of the point clouds).

We believe that this work opens up a number of fur-
ther avenues for future work. Our new approach could
be a way to handle deformable point clouds, since it
does not utilize any spatial acceleration structure and
the SIG can be updated in time O(log3 N). From a the-
oretical point of view, a mathematically more rigorous
estimation of the minimal sampling density would be
appealing.
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A PROOF OF LEMMA 1

We can reduce the problem to a simple urn model.
Given a bins (corresponding to the number of surfels),
how many balls (corresponding to the number of points
to be drawn) have to be thrown i.i.d. into the bins so that
every bin gets at least one ball with high probability?

Let X denote the number of drawings required to put
at least one ball into each bin. It is well known that
the expectation value of X is a ·Ha where Ha is the a-th
harmonic number [15, p. 57f].

Let c be an arbitrary constant. The a-th harmonic
number is about lna ±1 which is asymptotically sharp,
and so c · a additional balls are enough to fill each bin
with probability p which depends on c. Therefore, n =
a · lna+ c ·a points ∈ Vol(A∩B) have to be generated.

To compute the dependence of p on c, we refer to
the proof given by Motwani and Raghavan [15, p. 61ff].
They showed that the probability p = Pr[X ≤ n] = e−e−c

for a sufficiently large number of bins.
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