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ABSTRACT 

In this paper, we propose a new simplification algorithm to reduce the large amount of redundancy in 3D 
medical image datasets and generate a new representation in tetrahedral meshes with considerably lower storage 
requirements. In the proposed algorithm, we first apply level set segmentation to partition the volume data into 
several homogenous sub-regions. We consider the interior boundaries between sub-regions as contributing more 
to the significant visible features. Next we convert the regular grid data into a tetrahedral representation and 
simplify the irregular volume representation by iteratively removing tetrahedra without significantly altering the 
exterior boundary or interior field distribution features. Within each sub-region, field gradients, tetrahedral 
aspect ratio changes and variances of interior region values are further used so as to maintain features of the 
original dataset in regional interiors. We tested our algorithm on several 3D medical datasets.  The promising 
results show that we reduce redundancy and yet preserve important features and structures present in the original 
data set for decimation rates up to 50%. 

Keywords 
Medical Imagery, Mesh Simplification, Irregular Tetrahedral Meshes, Level of Detail 

 

1. INTRODUCTION 
In the past few decades, 3D medical image analysis 
has become one of the most active research areas 
supporting computer aided diagnosis. Medical 
scanning devices, such as those generating Computed 
Tomograph (CT) or Magnetic Resonance Imaging 
(MRI) scans, are continuously increasing in their 
resolution capabilities. The resulting volumetric data 
sets are thus getting larger with increasing demands 
on time and storage resources for tasks such as 
archiving, loading, rendering, transmission, etc.  

A more efficient volumetric representation, which 

maintains the same features but uses less physical 
storage space, is necessary for further visualization or 
analysis [Kau91a, Kau93a, Nie00a]. However, due to 
the specific characteristics of regular grids, it is very 
hard to achieve accurate simplification. For example, 
to simply replace clusters of voxels (a volume 
element in a 3D regular grid) with ‘supervoxels’ 
would introduce too much noise and blur significant 
features. Therefore, we use another representation of 
volume data, a tetrahedral mesh, to perform the 
simplification. The tetrahedral mesh has attracted 
much attention over the last decade or so since it 
provides greater flexibility and other representations 
can be converted into tetrahedral meshes relatively 
easily. The basic representational primitives, 
tetrahedra, are easy to deform and to merge or 
subdivide. It is convenient to assign properties and 
functions to the vertices and to tetrahedral cells. 
Computational steps such as interpolation, 
integration, and differentiation are fast and often can 
be done in similar forms. For example, finite element 
analysis is conveniently performed on tetrahedral 
meshes.  Also, the triangles that are generated by the 
faces of tetrahedra may be rendered using hardware 
acceleration [Yao00a]. 
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Simplification of tetrahedral meshes has been studied 
in the past decade [Chi03a, Cho02a, Cig00a, Gel99a, 
Hong03a, Sta98a, Tro98a, Tro99a]. In 1998 and 
1999, Trotts et al. [Tro98a, Tro99a] presented a 
method for simplification by extending a polygonal 
geometry deduction technique with a trivariate spline 
function associated with each tetrahedron to detect 
the features. In 1998, Staadt and Gross [Sta98a] 
extended the work of Hoppe [Hop96a] on 
progressive triangular meshes to tetrahedral meshes 
to generate an incrementally refined progressive 
tetrahedralization based on edge collapse. In 2000, 
Cignoni et al. [Cig00a] gave a framework for 
incremental 3D mesh simplification also based on 
edge collapse. In 2002, Chopra and Meyer [Cho02a] 
introduced a fast tetrahedral decimation algorithm 
called TetFusion. It preserves all cells, with large 
gradients. Recently, two groups of researchers, Hong 
and Kaufman [Hong03a], and Chiang and Lu 
[Chi03a] used Morse theory to detect topological 
critical points of original data, with the aim to 
preserve the topological structure of isosurfaces 
during simplification.  

However, existing algorithms are not well suited for 
3D medical data sets because the data are naturally 
divided into different regions, which need to be 
treated individually, and the data obtained from 
scanning devices are usually noisy. Traditional 
volumetric simplification algorithms deal with 
features based on local measurement, such as 
gradient or aspect ratio [Cho02a, Cig00a, Sta98a, 
Tro98a, Tro99a]. But local measurements sometimes 
lead to the misidentification of features. For example, 
in Fig. 1, we can see that the data is composed of two 
regions. However, by the local feature measurement 
method, based on the gradients, it cannot partition the 
two regions. Instead these methods misidentify the 
boundary feature as a set of horizontal lines. 

Figure 1: a) a 2D dataset which includes the two 
Gaussian distributions shown in f).  b) the incorrect  
features detected by gradient method. c) and d) two  

intermediate stages in level set segmentation process.    
e)  feature detection result by using level set method. 

The drawback in the method of maintaining the 
topological structure of isosurfaces [Chi03a, 
Hong03a], is that it is too sensitive to noise, which is 
very likely to be present in 3D medical data 
[Web03a]. Thus, they cannot achieve high 
decimation rates. 

To meet the requirement of simplifying tetrahedral 
medical images while preserving visible features, our 
new method first applies level set segmentation, 
which is robust to noise, to partition the volumetric 
medical data into several homogenous regions. Then, 
it simplifies each region individually. The final result 
of our method is a tetrahedral mesh, which maintains 
the fidelity of features as present in the original data 
while using much less physical storage space. 

This paper is organized as follows. In section 2, we 
introduce our methodology. Section 3 shows our 
experimental results, and the final section 4 contains 
our conclusions. 

2. METHODOLOGY 
The first step of our algorithm is to apply level set 
segmentation in a preprocessing phase to partition 
the data into several homogenous regions. Then, the 
regular grid data is converted into an irregular mesh 
by simple tetrahedralization. The boundaries between 
sub-regions represent different features and should 
be preserved during the simplification phase. Finally, 
the tetrahedral cell decimation is applied to each sub-
region individually. Within each sub-region, the 
algorithm will always preserve features detected by 
local feature measurement. Thus, by this approach, 
we preserve more of the significant features than 
other existing algorithms. Also by simplifying within 
regions without worrying about topology, we have 
greater flexibility during the simplification phase 
while at the same time not losing out on any visible 
features. 

Level set segmentation 
2.1.1 Level Set Function 
In 1988, Osher and Sethian [Osh88a] proposed a new 
segmentation approach based on the class of 
deformable models, referred as “level set” or 
“geodesic active contours or surfaces”. The 
approach, based on an evolving curve naturally 
dividing the image, represented as the domain 
Ω∈r2, into two parts. The method has become 
popular because of its ability to capture the topology 
of shapes in 3D datasets.  The curve C is represented 
implicitly via a Lipschitz Function, which is also 
referred to as the level set function φ, where 
C={(x,y) |φ(x, y) = 0}. The curve divides the image 
into a region where φ(x, y) is positive valued and a 
complementary region where φ(x, y) is negative 

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)



valued. The evolution of the curve is given by the 
zero-level curve at time t, and the curve C evolves 
according to direction and speed of dictated by force 
F, as described in Equation (1). 
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Equation (1) is level set function, where the set         
C = {(x, y)| φ 0(x, y) = 0} defines the initial contour. 
A particular case is the motion by mean curvature. 
This is given by 
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as the curvature of φ passing through (x, y), which 
when substituted into Equation (1) gives us:    
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where φ 0 is initial level set function. 

2.1.2 Level Set Segmentation 
In 2000, Samson et al. [Sam00a] proposed a 
supervised classification model to find a partition 
composed of homogeneous regions, assuming that 
the number of classes and their attribute value 
properties are known. Therefore, for segmentation 
into K regions, the proposed method uses K level set 
functions φi : ( i ∈[1, K]) to represent each of region 
as shown in Equation (3), which demonstrates the 
energy function. It consists of three terms: minimal 
variance energy Eminv, minimal length energy Eminl, 
and non-overlap energy Enonover.  
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The evolution of the level function φi is shown in 
Equation (4). 
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In Equation (4), the Hα(·) is the Heaviside Function, 
ci are the means of positive areas in level set function 
φk, and α(·) is the Dirac delta function and vi and β 
are constants. 

  

  

  

  
Figure 2: Region partition results. The 

segmentation phase divides the data into three 
homogenous regions, which are shown in white, 
gray and black. a) to d) are segmentation result 

for the CT-neck data; and e) to h) are for the CT-
head data, shown in slices for easier identification.  

a) b)

c) d)

e) f)

g) h)



After performing the level set segmentation, we 
divide the data into different homogeneous regions 
(see Fig. 2), and label all vertices located on the 
interior boundaries of homogeneous regions as 
feature vertices; and all vertices located inside 
homogeneous regions as normal vertices (see Fig. 3).  

Region Based Feature Preserving 
Simplification Algorithms 
2.2.1 Definitions 
Before we begin the discussion of the feature 
preserving simplification algorithm, we introduce 
some definitions which we will need later. 
• Neighbor Sets 

For a tetrahedral cell , A() defines a set of cells 
which share one and only one vertex with ; 
D() defines a set of cells which share at least 
two vertices with . We denote the union of A() 
and D() as Neighbor(), the neighbor set of cell 
. 

• Normal Cell 
If all vertices of a cell  are normal vertices and 
they are all located in same sub-region, we 
denote the cell  as a normal cell. 

• Feature Cell 
If a cell contains one or more feature vertex, we 
label it as a feature cell. 

• Cross-Region Cell 
If a cell has vertices in more than one sub-
region, but it is not a feature cell, we label it as a 
cross region cell. 

• Cross-Region Neighbor Cell 
If a cell is a normal cell, and it has a neighbor 
cell which is a cross region cell, we label it as a 
cross region neighbor cell.  

• Boundary Cell 
If a cell contains at least one vertex on the 
external boundary, we label it as a boundary cell. 

2.2.2 Feature Preserving Rules 
After feature detection, a number of rules are defined 
to preserve both interior and exterior features. 
1. Normal Cell: The normal cells may be collapsed 

freely. Here we define the collapse operation for 
normal cells as  to υc, where υc is the centroid 
of the cell. By choosing the centroid, the volume 
of the deleted cell is distributed evenly amongst 
the remaining local neighboring cells.  

2. Feature Cells: If any feature cell  has more than 
one feature vertex, we do not perform the 

collapse operation on it. If it has exactly one 
feature vertex υf, we define the collapse 
operation as collapsing  to υf. 

3. Cross-region Cell: For any cross-region cell , to 
achieve the decimation of different sub-regions 
individually, we do not perform the collapse 
operation on it. 

4. Cross-region Neighbor Cells: For any cell , if 
its A() or D() contains only one cross-region 
cell, doing a collapse operation to the centroid 
will cause the change of the structure of the sub-
region. To avoid this problem, we define the 
collapse operation for such a cell as the collapse 
of  to the vertex υn which is the common vertex 
with the cross-region cell. If its A() or D() 
contains more than one feature cell and more 
than one feature vertex, we do not collapse the 
cell. Cells in D() may contain any number of 
feature points. 

Sub-region 1

Sub-region 2

Sub-region 1

Sub-region 2

Interior
Boundary

Interior
Boundary

Candidate
cell for collapse

Feature
vertex

 
Figure 3: The operation  to υf. The candidate 

cell, which is in center, is a feature cell. Its feature 
vertex is labeled by υf. As rule 1 describes, we 

collapse the cell  into its feature vertex υf. 

The above tests are defined so as to ensure that there 
is no large change in interior boundaries of sub-
regions. In some cases, the geometry of the exterior 
boundary should also be preserved. Therefore, we 
define a boundary cell check as follows: 



5. Boundary Cells: If the boundary cell  has 
exactly one vertex on the boundary, we define 
the decimation operation as a collapse of  to υb 
(the vertex on the exterior boundary). We denote 
the operation as  to υb. If it has more than one 
vertex on the boundary, we do not perform the 
collapse operation on it. 

We also define a flipping check to ensure no flipping 
occurs during the simplification process.  
6. Flipping Check: For any cell inside the A(), 

where υo moves to υ’o , υ’o should stay on the 
same side of its facing triangle, see Fig. 4. We 
test all the cells in A() and check whether its 
signed volume has the same sign (positive or 
negative) before and after the collapse operation. 
If any cell changes the sign of its volume, we do 
not allow the collapse operation and return the 
dataset to the previous state before the collapse. 

 
Figure 4: The flipping problem. After the collapse 

operation, it is possible for some cell that the 
moving vertex υo goes to the other side of the 

unchanged triangle face υ1υ2υ3. 

2.2.3 Error Prediction 
We use a combination of regional and local error 
prediction functions to choose the cell to be collapsed 
next. 

2.2.3.1 Regional Error Prediction Function 
Because each sub-region has homogenous field value 
distribution within it, we expect our error prediction 
function to reflect the modification of distribution 
affected by decimation operation. Therefore, we 
forbid any large change of the homogenous 
distribution. We suppose the mean value of the 
attributes in each homogenous sub-region will not 
change. The cell, whose distribution is close to the 
mean of the region, has more priority to be chosen as 
the collapse candidate.  

We define the regional error prediction function as 
shown in Equation (5): 
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Where si is the attributes value of original vertices of 
collapse cell, s is the mean of distribution of region 
N, δN is the variance of distribution of region N, and 
δc is the variance of cell . 

2.2.3.2 Local Error Prediction Function 
A large gradient change means there is a possible 
feature [Cho02a, Chi03a, Kin98a, Kau93a, Sta98a]. 
We define the gradient error prediction function as in 
Equation (6): 
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Here si is the attribute values of the original vertices 
of the collapse cell, and s’

n is the attribute value of 
new vertex which is created after the collapse 
operation. 

Also, we do not want the decimation operation to 
change the attributes distribution of candidate’s 
neighbor sets very much. Therefore, we define three 
measurements for the aspect ratio of cell as the form 
in Equation (7), where υi is the original vertex of cell 
; υn is the new vertex generated after collapse 
operation; a, b and c represent the three edges of cell 
 which share one common vertex: 
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The final error prediction function is the combination 
of regional and local functions, shown in Equation 
(8): 

nnvvssggrr εωεωεωεωεωε ++++=∆            (8) 

2.2.4 Greedy Decimation Based Simplification  
To achieve fast processing speed, we choose the 
greedy method to implement our algorithm. 
1. Compute the predicted error based on the error 

prediction function shown in Equation (8) for all 
tetrahedral cells, and arrange them into a priority 
queue, ordered by predicted error. 

2. While there is still at least one cell remaining in 
the priority queue, with the predicted error less 



than the user specified tolerance, pick the first 
cell , and do following: 
a. Delete  from the priority queue. 
b. Determine A() and D() of the cell τ. 
c. Check the type of the current cell : feature 

cell, cross-region cell, cross-region neighbor 
cell, boundary cell or normal cell, as 
described in Section (2.1.2). 

d. If the cell is a cross-region cell, or has two 
or more feature vertices, skip step 2e, 2f and 
2g. Otherwise, perform the collapse 
operation based on feature preservation 
rules 1, 2, 3 described in Section (2.1.2). 

e. Carry out the flipping check (feature 
preservation rule 6) among the cells in A(). 
If the collapse operation causes any flipping 
problem, then recover the original vertices 
of  and skip steps 2f and 2g. 

f. Delete all cells in D() from the priority 
queue, and update cell-vertex index. 

g. Remove all cells in A() from the priority 
queue, and label it to forbid any further 
selection of collapse candidates. 

3. Save the result. 

3. EXPERIMENTAL RESULTS 
We have implemented our algorithm on a Windows 
Platform with a 2.39GHz Intel Pentium 4 CPU and 
NVIDIA Quadro4900 XGL adapter with 128 Meg 
RAM. We use ZSweep [Far00a] as our irregular 
mesh rendering technique to obtain the final images. 
We have tested our algorithm on several medical 
datasets. Below we provide the results for dataset 
CT-head with the resolution 128x128x53, and CT-
neck with the resolution 128x128x13. Results for 
other datasets show similar performance statistics. 

Data Number 
of cells 

Number of 
vertices 

Number 
of feature 
vertices 

CT-head 4,193,540 868,352 140,233 
CT-neck 967,740 212,992 27,528 

Table 1 Detailed information of data sets 

Data ωr  ωg  ωs  ωv  ωn  
CT-head 10 2 1 1 0.5 
CT-neck 10 2 1 1 0.8 

Table 2 Parameters used in simplification 
algorithm. 

Table (1) shows the detailed information of our 
testing data. Table (2) shows the parameters we have 
used in error prediction function to perform our 
simplification algorithm. 

Fig 5 is the comparison of our method with the 
simplification algorithm, TetFusion [Cho02a]. It 
clearly shows that for the same decimation rate, our 
method is better than the algorithm that uses only 
local error measurement. The horizontal line shows 
the number of cells that has been decimated. The 
vertical line shows the average difference of color 
defined, in form of Equation (9) defined on average 
of difference in image color per pixel, of the 
rendering result with the original one, where n is the 
number of pixel. 
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With increasing decimation numbers, we draw two 
plots. The upper one is obtained by TetFusion 
method, which is based on local measurement, and 
the lower one is obtained by our method, which has a 
regional based measurement. As it is shown clearly, 
for the same number of decimation cells, the color 
difference of our method is less than the one of 
TetFusion. That shows our method maintains more 
volume interior information than TetFusion does.  

 
Figure 5: Demonstration that our feature 
preserving simplification algorithm is an 

improvement of previous approaches.  a) is 
generated by our method, and b) is generated by 
TetFusion [Cho02a]. c) demonstrates the average 
color comparison as the form in Equation (9). The 

upper plot shows the diff1 of TetFusion, and the 
lower one shows our method. 

a) 

c) 

b) 

diff1

Decimation numbers 



 
Figure 6: The rendering result of CT head data. 
a) The original image; b) The 50% simplified 
result. 

Fig. 6 shows that after applying our simplification 
algorithm, the resultant dataset contains half size of 
original one. However, the direct rendering result is 
very promising. The half size dataset maintains 
nearly the same information of the original one. We 
can clearly identify the structure of original data.  
Fig. 7 shows another experimental result with a 
numerical comparison between the original image 
with simplified one. The value, shown in Fig. 7-(c), 
demonstrates the total error (diff2) per pixel between 
Fig. 7-(a) and (b) as defined by Equation (10), which 
is defined on difference in image color per pixel. The 
color bar shows the range of the difference. 
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Figure 7: Demonstration of the simplification 
results on CT-Head data. a) is the image rendered 
by original data. b) is the image rendered by 48% 

simplified data. c) is a comparison image by 
analyzing the color difference between a) and b) 
pixelwise. The value, shown in c), is obtained by 

the Equation 9. The color bar represents the 
range of the difference. 

c) 

 b) 

 b) 

a) a) 



4. CONCLUSION 
In this paper, we have proposed a new simplification 
algorithm to reduce the large amount of redundancy 
of 3D medical datasets. A cutting edge technique of 
image processing, namely level set segmentation, is 
applied in a preprocess phase to simplify the data to 
achieve a noise robust region partition of volume 
data.  We convert the regular grid data into a 
tetrahedral representation and then simplify the data 
while preserving both regional and local features. 
Our final result is a simplified tetrahedral mesh, 
which can be further analyzed, visualized, and 
animated. The experimental results amply show the 
advantages of this approach. 

5. ACKNOWLEDGMENTS 
We thank Dr. R. Farias, Computer Science Dept., 
Mississippi State University, Dr. Joseph S.B. 
Mitchell, Department of Applied Mathematics & 
Statistics, and Dr. C. T. Silva, School of Computing, 
University of Utah, for providing us the ZSweep 
code [Far00a]. We thank the maintainers of the web 
page www.volvis.org for the CT head, CT-neck, and 
other medical datasets used in our testing of the 
algorithm.  

6. REFERENCES 
 [Chi03a] Chiang, Y. J. and Lu, X., “Progressive 

Simplification of Tetrahedral Meshes Preserving 
all Isosurface Topologies”, EG’03, conf. proc. 
Granada, Spain, Spring  Press, pp.493-504, 2003  

[Cho02a] Chopra, P. and Meyer, J., “Tetfusion: An 
Algorithm for Rapid Tetrahedral Mesh 
Simplification”, IEEE VIS’02, conf. proc. 
Boston, MA, USA, IEEE Computer Society, 
pp.133-140, 2002 

[Cig00a] Cignoni, P., Costanza, C., Montani, C., 
Rocchin, C. and Scopigno, R. “Simplification of 
Tetrahedral Meshes with Accurate Error 
Evaluation”, in IEEE VIS’00 conf. proc. Salt 
Lake City, UT, USA, IEEE Computer Society, 
pp. 85-92, 2000 

[Far00a] Farias, R., Mitchell, J. S.B., and Silva, C. 
T., “Zsweep: An Efficient and Exact Projection 
Algorithm for Unstructured Volume Rendering”, 
IEEE VolVis’00, symposium, Salt Lake City, UT, 
USA, IEEE Computer Society, pp. 91-99, 2000. 

[Gel99a] Gelder, A. V., Verma, V. and Wilhelms, J., 
“Volume Decimation of Irregular Tetrahedral 
Grids”, Journal of Computer Graphics 
International, pp 222-230, 1999.  

[Ger00a] Gerstner, T., and Pajarola, R., “Topology 
Preserving and Controlled Topology Simplifying 
Multiresolution Isosurface Extraction”, IEEE 

VIS’00, conf. proc. Salt Lake City, UT, USA, 
pp.259-266. IEEE Computer Society Press, 2000. 

[Hong03a] Hong, W. and Kaufman, A. E., “Feature 
Preserved Volume Simplification”. ACM 
SMA’03, sym. proc. Karlsruhe, Germany, ACM 
Press, pp. 334-339. 2003. 

[Hop96a] Hoppe, H., “Progressive Meshes”.  ACM 
SIGGRAPH’96, conf. proc. New Orleans, LO, 
USA, pp 99-108. ACM Press, 1996. 

[Kau91a] Kaufman, A. E., “3D Volume 
Visualization”, EG’00, conf. tutorial, Interlaken, 
Switzerland, Springer Press, pp175-203, 1991. 

 [Kau93a] Kaufman, A. E., Cohen, D. and Yagel, R., 
“Volume Graphics”. Journal Computer, 26(7):51-
64, 1993. 

 [Nie00a] Nielson, G. M., “Volume Modeling”, 
Volume Modeling. In: M. Chen et al. (eds.), 
Volume Graphics, Springer Press, pp. 29-48, 
2000. 

[Osh88a] Osher, S. and Sethian, J. A., “Fronts 
Propagating with Curvature-dependent Speed: 
Algorithms Based on Hamilton-Jacobi 
Formulations”, Journal Comput. Phys. 79(1):12-
49, 1988. 

[Sam00a] Samson, C., Feraud, L. B., Aubert, G. and 
Zerubia, J., “A Level Set Model for Image 
Classification”, Journal Computer Vision, 
Volume 40, Issue 3, pp 187-197, 2000. 

[Sta98a] Staadt, O. G. and Gross, M. H., 
“Progressive Tetrahedralizations”, IEEE VIS’98, 
conf. proc., Research Triangle Park, NC, USA, 
IEEE Computer Society Press, pp 397-402, 1998. 

[Tro98a] Trotts, I. J., Hamann, B., Joy, K. I. and 
Wiley, D. F., “Simplification of Tetrahedral 
Meshes”, IEEE VIS’98, conf. proc., Research 
Triangle Park, NC, USA, IEEE Computer Society 
Press, pp. 287-295, 1998. 

[Tro99a] Trotts, I. J., Hamann, B., Joy, K. I. and 
Wiley, D. F., “Simplification of Tetrahedral 
Meshes with Error Bounds”, Journal IEEE 
TVCG, vol 5(3):224-237, 1999. 

[Web03a] Weber, G. H., Scheuermann, G. and 
Hamann, B., “Detecting Critical Regions in Scalar 
Fields”, VisSym’03, Sym. Proc., Grenoble, 
France, Eurographics Association, pp. 85-94, 
2003. 

[Yao00a] Yao, J. H., and Taylor, R. H., “Tetrahedral 
Mesh Modeling of Density Data for Anatomical 
Altases and Intensity-Based Registration”, 
MICCAI’00, conf. proc. Pittsburgh, PA, USA, 
Springer Press, pp. 531-540, 2000 

 


	IPC_2005.pdf
	IPC_2005.pdf

	!WSCG_2005_FULL_stamped.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	!WSCG_2005_FULL.pdf
	E53-full.pdf
	E53-full.pdf

	J83-full.pdf



