
Feature Preserving Volumetric Data Simplification
for Application in Medical Imaging

C. Jin T. Fevens S. Li S. P. Mudur

Computer Science and Software Engineering Department
Concordia University

1455 de Maisonneuve Blvd. W.
Canada, H3G 1M8, Montreal, QC

{chao_jin, fevens, shuo_li, mudur}@cs.concordia.ca

ABSTRACT

In this paper, we propose a new simplification algorithm to reduce the large amount of redundancy in 3D
medical image datasets and generate a new representation in tetrahedral meshes with considerably lower storage
requirements. In the proposed algorithm, we first apply level set segmentation to partition the volume data into
several homogenous sub-regions. We consider the interior boundaries between sub-regions as contributing more
to the significant visible features. Next we convert the regular grid data into a tetrahedral representation and
simplify the irregular volume representation by iteratively removing tetrahedra without significantly altering the
exterior boundary or interior field distribution features. Within each sub-region, field gradients, tetrahedral
aspect ratio changes and variances of interior region values are further used so as to maintain features of the
original dataset in regional interiors. We tested our algorithm on several 3D medical datasets. The promising
results show that we reduce redundancy and yet preserve important features and structures present in the original
data set for decimation rates up to 50%.

Keywords
Medical Imagery, Mesh Simplification, Irregular Tetrahedral Meshes, Level of Detail

1. INTRODUCTION
In the past few decades, 3D medical image analysis
has become one of the most active research areas
supporting computer aided diagnosis. Medical
scanning devices, such as those generating Computed
Tomograph (CT) or Magnetic Resonance Imaging
(MRI) scans, are continuously increasing in their
resolution capabilities. The resulting volumetric data
sets are thus getting larger with increasing demands
on time and storage resources for tasks such as
archiving, loading, rendering, transmission, etc.

A more efficient volumetric representation, which

maintains the same features but uses less physical
storage space, is necessary for further visualization or
analysis [Kau91a, Kau93a, Nie00a]. However, due to
the specific characteristics of regular grids, it is very
hard to achieve accurate simplification. For example,
to simply replace clusters of voxels (a volume
element in a 3D regular grid) with ‘supervoxels’
would introduce too much noise and blur significant
features. Therefore, we use another representation of
volume data, a tetrahedral mesh, to perform the
simplification. The tetrahedral mesh has attracted
much attention over the last decade or so since it
provides greater flexibility and other representations
can be converted into tetrahedral meshes relatively
easily. The basic representational primitives,
tetrahedra, are easy to deform and to merge or
subdivide. It is convenient to assign properties and
functions to the vertices and to tetrahedral cells.
Computational steps such as interpolation,
integration, and differentiation are fast and often can
be done in similar forms. For example, finite element
analysis is conveniently performed on tetrahedral
meshes. Also, the triangles that are generated by the
faces of tetrahedra may be rendered using hardware
acceleration [Yao00a].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Simplification of tetrahedral meshes has been studied
in the past decade [Chi03a, Cho02a, Cig00a, Gel99a,
Hong03a, Sta98a, Tro98a, Tro99a]. In 1998 and
1999, Trotts et al. [Tro98a, Tro99a] presented a
method for simplification by extending a polygonal
geometry deduction technique with a trivariate spline
function associated with each tetrahedron to detect
the features. In 1998, Staadt and Gross [Sta98a]
extended the work of Hoppe [Hop96a] on
progressive triangular meshes to tetrahedral meshes
to generate an incrementally refined progressive
tetrahedralization based on edge collapse. In 2000,
Cignoni et al. [Cig00a] gave a framework for
incremental 3D mesh simplification also based on
edge collapse. In 2002, Chopra and Meyer [Cho02a]
introduced a fast tetrahedral decimation algorithm
called TetFusion. It preserves all cells, with large
gradients. Recently, two groups of researchers, Hong
and Kaufman [Hong03a], and Chiang and Lu
[Chi03a] used Morse theory to detect topological
critical points of original data, with the aim to
preserve the topological structure of isosurfaces
during simplification.

However, existing algorithms are not well suited for
3D medical data sets because the data are naturally
divided into different regions, which need to be
treated individually, and the data obtained from
scanning devices are usually noisy. Traditional
volumetric simplification algorithms deal with
features based on local measurement, such as
gradient or aspect ratio [Cho02a, Cig00a, Sta98a,
Tro98a, Tro99a]. But local measurements sometimes
lead to the misidentification of features. For example,
in Fig. 1, we can see that the data is composed of two
regions. However, by the local feature measurement
method, based on the gradients, it cannot partition the
two regions. Instead these methods misidentify the
boundary feature as a set of horizontal lines.

Figure 1: a) a 2D dataset which includes the two
Gaussian distributions shown in f). b) the incorrect
features detected by gradient method. c) and d) two

intermediate stages in level set segmentation process.
e) feature detection result by using level set method.

The drawback in the method of maintaining the
topological structure of isosurfaces [Chi03a,
Hong03a], is that it is too sensitive to noise, which is
very likely to be present in 3D medical data
[Web03a]. Thus, they cannot achieve high
decimation rates.

To meet the requirement of simplifying tetrahedral
medical images while preserving visible features, our
new method first applies level set segmentation,
which is robust to noise, to partition the volumetric
medical data into several homogenous regions. Then,
it simplifies each region individually. The final result
of our method is a tetrahedral mesh, which maintains
the fidelity of features as present in the original data
while using much less physical storage space.

This paper is organized as follows. In section 2, we
introduce our methodology. Section 3 shows our
experimental results, and the final section 4 contains
our conclusions.

2. METHODOLOGY
The first step of our algorithm is to apply level set
segmentation in a preprocessing phase to partition
the data into several homogenous regions. Then, the
regular grid data is converted into an irregular mesh
by simple tetrahedralization. The boundaries between
sub-regions represent different features and should
be preserved during the simplification phase. Finally,
the tetrahedral cell decimation is applied to each sub-
region individually. Within each sub-region, the
algorithm will always preserve features detected by
local feature measurement. Thus, by this approach,
we preserve more of the significant features than
other existing algorithms. Also by simplifying within
regions without worrying about topology, we have
greater flexibility during the simplification phase
while at the same time not losing out on any visible
features.

Level set segmentation
2.1.1 Level Set Function
In 1988, Osher and Sethian [Osh88a] proposed a new
segmentation approach based on the class of
deformable models, referred as “level set” or
“geodesic active contours or surfaces”. The
approach, based on an evolving curve naturally
dividing the image, represented as the domain
Ω∈r2, into two parts. The method has become
popular because of its ability to capture the topology
of shapes in 3D datasets. The curve C is represented
implicitly via a Lipschitz Function, which is also
referred to as the level set function φ, where
C={(x,y) |φ(x, y) = 0}. The curve divides the image
into a region where φ(x, y) is positive valued and a
complementary region where φ(x, y) is negative

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

valued. The evolution of the curve is given by the
zero-level curve at time t, and the curve C evolves
according to direction and speed of dictated by force
F, as described in Equation (1).

),(),,0(

,||

0 yxyx

F
t

φφ

φφ

=

∇=
∂
∂

 (1)

Equation (1) is level set function, where the set
C = {(x, y)| φ 0(x, y) = 0} defines the initial contour.
A particular case is the motion by mean curvature.
This is given by

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

=
|| φ

φdivF

as the curvature of φ passing through (x, y), which
when substituted into Equation (1) gives us:

⎪
⎩

⎪
⎨

⎧

∈=

∈∞∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

∇=
∂
∂

2
0

2

),,(),,0(

),,0(,
||

||

R

R

xyxyx

xtdiv
t

φφ
φ
φφφ

 (2)

where φ 0 is initial level set function.

2.1.2 Level Set Segmentation
In 2000, Samson et al. [Sam00a] proposed a
supervised classification model to find a partition
composed of homogeneous regions, assuming that
the number of classes and their attribute value
properties are known. Therefore, for segmentation
into K regions, the proposed method uses K level set
functions φi : (i ∈[1, K]) to represent each of region
as shown in Equation (3), which demonstrates the
energy function. It consists of three terms: minimal
variance energy Eminv, minimal length energy Eminl,
and non-overlap energy Enonover.

() () ()
()kinonover

kiminlkiminvki

E
EEE
φφ

φφφφφφ
L

LLL

,
,,,

+
+=

 (3)

where

()

()

()

 R,∈∀

∫ ∑ −=

∑ ∫ ∆=

∑ ∫ −=

Ω =

= Ω

= Ω

λγ

φλφφ

φφδγφφ

φφφ

α

α

α

,,,

)1)((
2

,

||)(,

)1)((,

2

1

1

1

2

ii

k

i
ikinonover

k

i
iiikiminl

k

i
iiikiminv

ei

dxdyHE

dxdyE

dxdycHeE

L

L

L

The evolution of the level function φi is shown in
Equation (4).

⎥
⎥
⎦

⎤
−

⎢
⎣

⎡
−−−

∆
∆

⋅⋅∆=−

∑
=

+

2

1

2

1

)1)((

)()
||

(

)(

i
i

ii
i

i
i

t
i

t
i

t
i

kH

cIedivv

t

φβ

φ
φ

φδφφ

α

α

 (4)

In Equation (4), the Hα(·) is the Heaviside Function,
ci are the means of positive areas in level set function
φk, and α(·) is the Dirac delta function and vi and β
are constants.

Figure 2: Region partition results. The

segmentation phase divides the data into three
homogenous regions, which are shown in white,
gray and black. a) to d) are segmentation result

for the CT-neck data; and e) to h) are for the CT-
head data, shown in slices for easier identification.

a) b)

c) d)

e) f)

g) h)

After performing the level set segmentation, we
divide the data into different homogeneous regions
(see Fig. 2), and label all vertices located on the
interior boundaries of homogeneous regions as
feature vertices; and all vertices located inside
homogeneous regions as normal vertices (see Fig. 3).

Region Based Feature Preserving
Simplification Algorithms
2.2.1 Definitions
Before we begin the discussion of the feature
preserving simplification algorithm, we introduce
some definitions which we will need later.
• Neighbor Sets

For a tetrahedral cell , A() defines a set of cells
which share one and only one vertex with ;
D() defines a set of cells which share at least
two vertices with . We denote the union of A()
and D() as Neighbor(), the neighbor set of cell
.

• Normal Cell
If all vertices of a cell  are normal vertices and
they are all located in same sub-region, we
denote the cell  as a normal cell.

• Feature Cell
If a cell contains one or more feature vertex, we
label it as a feature cell.

• Cross-Region Cell
If a cell has vertices in more than one sub-
region, but it is not a feature cell, we label it as a
cross region cell.

• Cross-Region Neighbor Cell
If a cell is a normal cell, and it has a neighbor
cell which is a cross region cell, we label it as a
cross region neighbor cell.

• Boundary Cell
If a cell contains at least one vertex on the
external boundary, we label it as a boundary cell.

2.2.2 Feature Preserving Rules
After feature detection, a number of rules are defined
to preserve both interior and exterior features.
1. Normal Cell: The normal cells may be collapsed

freely. Here we define the collapse operation for
normal cells as  to υc, where υc is the centroid
of the cell. By choosing the centroid, the volume
of the deleted cell is distributed evenly amongst
the remaining local neighboring cells.

2. Feature Cells: If any feature cell  has more than
one feature vertex, we do not perform the

collapse operation on it. If it has exactly one
feature vertex υf, we define the collapse
operation as collapsing  to υf.

3. Cross-region Cell: For any cross-region cell , to
achieve the decimation of different sub-regions
individually, we do not perform the collapse
operation on it.

4. Cross-region Neighbor Cells: For any cell , if
its A() or D() contains only one cross-region
cell, doing a collapse operation to the centroid
will cause the change of the structure of the sub-
region. To avoid this problem, we define the
collapse operation for such a cell as the collapse
of  to the vertex υn which is the common vertex
with the cross-region cell. If its A() or D()
contains more than one feature cell and more
than one feature vertex, we do not collapse the
cell. Cells in D() may contain any number of
feature points.

Sub-region 1

Sub-region 2

Sub-region 1

Sub-region 2

Interior
Boundary

Interior
Boundary

Candidate
cell for collapse

Feature
vertex

Figure 3: The operation  to υf. The candidate

cell, which is in center, is a feature cell. Its feature
vertex is labeled by υf. As rule 1 describes, we

collapse the cell  into its feature vertex υf.

The above tests are defined so as to ensure that there
is no large change in interior boundaries of sub-
regions. In some cases, the geometry of the exterior
boundary should also be preserved. Therefore, we
define a boundary cell check as follows:

5. Boundary Cells: If the boundary cell  has
exactly one vertex on the boundary, we define
the decimation operation as a collapse of  to υb
(the vertex on the exterior boundary). We denote
the operation as  to υb. If it has more than one
vertex on the boundary, we do not perform the
collapse operation on it.

We also define a flipping check to ensure no flipping
occurs during the simplification process.
6. Flipping Check: For any cell inside the A(),

where υo moves to υ’o , υ’o should stay on the
same side of its facing triangle, see Fig. 4. We
test all the cells in A() and check whether its
signed volume has the same sign (positive or
negative) before and after the collapse operation.
If any cell changes the sign of its volume, we do
not allow the collapse operation and return the
dataset to the previous state before the collapse.

Figure 4: The flipping problem. After the collapse

operation, it is possible for some cell that the
moving vertex υo goes to the other side of the

unchanged triangle face υ1υ2υ3.

2.2.3 Error Prediction
We use a combination of regional and local error
prediction functions to choose the cell to be collapsed
next.

2.2.3.1 Regional Error Prediction Function
Because each sub-region has homogenous field value
distribution within it, we expect our error prediction
function to reflect the modification of distribution
affected by decimation operation. Therefore, we
forbid any large change of the homogenous
distribution. We suppose the mean value of the
attributes in each homogenous sub-region will not
change. The cell, whose distribution is close to the
mean of the region, has more priority to be chosen as
the collapse candidate.

We define the regional error prediction function as
shown in Equation (5):

∑ −=∑ −=

=

==

3

0

2

0

2)(
4
1,)(1

,

i
ic

N

i
iN

N

c
r

ssss
N

δδ

δ
δε

 (5)

Where si is the attributes value of original vertices of
collapse cell, s is the mean of distribution of region
N, δN is the variance of distribution of region N, and
δc is the variance of cell .

2.2.3.2 Local Error Prediction Function
A large gradient change means there is a possible
feature [Cho02a, Chi03a, Kin98a, Kau93a, Sta98a].
We define the gradient error prediction function as in
Equation (6):

∑ −=
=

3

0

' ||
4
1

i
nig ssε (6)

Here si is the attribute values of the original vertices
of the collapse cell, and s’

n is the attribute value of
new vertex which is created after the collapse
operation.

Also, we do not want the decimation operation to
change the attributes distribution of candidate’s
neighbor sets very much. Therefore, we define three
measurements for the aspect ratio of cell as the form
in Equation (7), where υi is the original vertex of cell
; υn is the new vertex generated after collapse
operation; a, b and c represent the three edges of cell
 which share one common vertex:

∑
∪∈

=

)()(
)(

)(

τττ
τ

τε

DA
i

n

i

volume
volume (7)

∑
=

−=
3

0
||

4
1

i
nis υυε

 |)(|
!3

1 cbav ×⋅=ε

The final error prediction function is the combination
of regional and local functions, shown in Equation
(8):

nnvvssggrr εωεωεωεωεωε ++++=∆ (8)

2.2.4 Greedy Decimation Based Simplification
To achieve fast processing speed, we choose the
greedy method to implement our algorithm.
1. Compute the predicted error based on the error

prediction function shown in Equation (8) for all
tetrahedral cells, and arrange them into a priority
queue, ordered by predicted error.

2. While there is still at least one cell remaining in
the priority queue, with the predicted error less

than the user specified tolerance, pick the first
cell , and do following:
a. Delete  from the priority queue.
b. Determine A() and D() of the cell τ.
c. Check the type of the current cell : feature

cell, cross-region cell, cross-region neighbor
cell, boundary cell or normal cell, as
described in Section (2.1.2).

d. If the cell is a cross-region cell, or has two
or more feature vertices, skip step 2e, 2f and
2g. Otherwise, perform the collapse
operation based on feature preservation
rules 1, 2, 3 described in Section (2.1.2).

e. Carry out the flipping check (feature
preservation rule 6) among the cells in A().
If the collapse operation causes any flipping
problem, then recover the original vertices
of  and skip steps 2f and 2g.

f. Delete all cells in D() from the priority
queue, and update cell-vertex index.

g. Remove all cells in A() from the priority
queue, and label it to forbid any further
selection of collapse candidates.

3. Save the result.

3. EXPERIMENTAL RESULTS
We have implemented our algorithm on a Windows
Platform with a 2.39GHz Intel Pentium 4 CPU and
NVIDIA Quadro4900 XGL adapter with 128 Meg
RAM. We use ZSweep [Far00a] as our irregular
mesh rendering technique to obtain the final images.
We have tested our algorithm on several medical
datasets. Below we provide the results for dataset
CT-head with the resolution 128x128x53, and CT-
neck with the resolution 128x128x13. Results for
other datasets show similar performance statistics.

Data Number
of cells

Number of
vertices

Number
of feature
vertices

CT-head 4,193,540 868,352 140,233
CT-neck 967,740 212,992 27,528

Table 1 Detailed information of data sets

Data ωr ωg ωs ωv ωn
CT-head 10 2 1 1 0.5
CT-neck 10 2 1 1 0.8

Table 2 Parameters used in simplification
algorithm.

Table (1) shows the detailed information of our
testing data. Table (2) shows the parameters we have
used in error prediction function to perform our
simplification algorithm.

Fig 5 is the comparison of our method with the
simplification algorithm, TetFusion [Cho02a]. It
clearly shows that for the same decimation rate, our
method is better than the algorithm that uses only
local error measurement. The horizontal line shows
the number of cells that has been decimated. The
vertical line shows the average difference of color
defined, in form of Equation (9) defined on average
of difference in image color per pixel, of the
rendering result with the original one, where n is the
number of pixel.

n

bbggrr
diff

n

i
iiiiii∑ −+−+−

= =0

2
10

2
10

2
10

1

)()()(
 (9)

With increasing decimation numbers, we draw two
plots. The upper one is obtained by TetFusion
method, which is based on local measurement, and
the lower one is obtained by our method, which has a
regional based measurement. As it is shown clearly,
for the same number of decimation cells, the color
difference of our method is less than the one of
TetFusion. That shows our method maintains more
volume interior information than TetFusion does.

Figure 5: Demonstration that our feature
preserving simplification algorithm is an

improvement of previous approaches. a) is
generated by our method, and b) is generated by
TetFusion [Cho02a]. c) demonstrates the average
color comparison as the form in Equation (9). The

upper plot shows the diff1 of TetFusion, and the
lower one shows our method.

a)

c)

b)

diff1

Decimation numbers

Figure 6: The rendering result of CT head data.
a) The original image; b) The 50% simplified
result.

Fig. 6 shows that after applying our simplification
algorithm, the resultant dataset contains half size of
original one. However, the direct rendering result is
very promising. The half size dataset maintains
nearly the same information of the original one. We
can clearly identify the structure of original data.
Fig. 7 shows another experimental result with a
numerical comparison between the original image
with simplified one. The value, shown in Fig. 7-(c),
demonstrates the total error (diff2) per pixel between
Fig. 7-(a) and (b) as defined by Equation (10), which
is defined on difference in image color per pixel. The
color bar shows the range of the difference.

2
10

2
10

2
102)()()(iiiiii bbggrrdiff −+−+−= (10)

Figure 7: Demonstration of the simplification
results on CT-Head data. a) is the image rendered
by original data. b) is the image rendered by 48%

simplified data. c) is a comparison image by
analyzing the color difference between a) and b)
pixelwise. The value, shown in c), is obtained by

the Equation 9. The color bar represents the
range of the difference.

c)

 b)

 b)

a) a)

4. CONCLUSION
In this paper, we have proposed a new simplification
algorithm to reduce the large amount of redundancy
of 3D medical datasets. A cutting edge technique of
image processing, namely level set segmentation, is
applied in a preprocess phase to simplify the data to
achieve a noise robust region partition of volume
data. We convert the regular grid data into a
tetrahedral representation and then simplify the data
while preserving both regional and local features.
Our final result is a simplified tetrahedral mesh,
which can be further analyzed, visualized, and
animated. The experimental results amply show the
advantages of this approach.

5. ACKNOWLEDGMENTS
We thank Dr. R. Farias, Computer Science Dept.,
Mississippi State University, Dr. Joseph S.B.
Mitchell, Department of Applied Mathematics &
Statistics, and Dr. C. T. Silva, School of Computing,
University of Utah, for providing us the ZSweep
code [Far00a]. We thank the maintainers of the web
page www.volvis.org for the CT head, CT-neck, and
other medical datasets used in our testing of the
algorithm.

6. REFERENCES
 [Chi03a] Chiang, Y. J. and Lu, X., “Progressive

Simplification of Tetrahedral Meshes Preserving
all Isosurface Topologies”, EG’03, conf. proc.
Granada, Spain, Spring Press, pp.493-504, 2003

[Cho02a] Chopra, P. and Meyer, J., “Tetfusion: An
Algorithm for Rapid Tetrahedral Mesh
Simplification”, IEEE VIS’02, conf. proc.
Boston, MA, USA, IEEE Computer Society,
pp.133-140, 2002

[Cig00a] Cignoni, P., Costanza, C., Montani, C.,
Rocchin, C. and Scopigno, R. “Simplification of
Tetrahedral Meshes with Accurate Error
Evaluation”, in IEEE VIS’00 conf. proc. Salt
Lake City, UT, USA, IEEE Computer Society,
pp. 85-92, 2000

[Far00a] Farias, R., Mitchell, J. S.B., and Silva, C.
T., “Zsweep: An Efficient and Exact Projection
Algorithm for Unstructured Volume Rendering”,
IEEE VolVis’00, symposium, Salt Lake City, UT,
USA, IEEE Computer Society, pp. 91-99, 2000.

[Gel99a] Gelder, A. V., Verma, V. and Wilhelms, J.,
“Volume Decimation of Irregular Tetrahedral
Grids”, Journal of Computer Graphics
International, pp 222-230, 1999.

[Ger00a] Gerstner, T., and Pajarola, R., “Topology
Preserving and Controlled Topology Simplifying
Multiresolution Isosurface Extraction”, IEEE

VIS’00, conf. proc. Salt Lake City, UT, USA,
pp.259-266. IEEE Computer Society Press, 2000.

[Hong03a] Hong, W. and Kaufman, A. E., “Feature
Preserved Volume Simplification”. ACM
SMA’03, sym. proc. Karlsruhe, Germany, ACM
Press, pp. 334-339. 2003.

[Hop96a] Hoppe, H., “Progressive Meshes”. ACM
SIGGRAPH’96, conf. proc. New Orleans, LO,
USA, pp 99-108. ACM Press, 1996.

[Kau91a] Kaufman, A. E., “3D Volume
Visualization”, EG’00, conf. tutorial, Interlaken,
Switzerland, Springer Press, pp175-203, 1991.

 [Kau93a] Kaufman, A. E., Cohen, D. and Yagel, R.,
“Volume Graphics”. Journal Computer, 26(7):51-
64, 1993.

 [Nie00a] Nielson, G. M., “Volume Modeling”,
Volume Modeling. In: M. Chen et al. (eds.),
Volume Graphics, Springer Press, pp. 29-48,
2000.

[Osh88a] Osher, S. and Sethian, J. A., “Fronts
Propagating with Curvature-dependent Speed:
Algorithms Based on Hamilton-Jacobi
Formulations”, Journal Comput. Phys. 79(1):12-
49, 1988.

[Sam00a] Samson, C., Feraud, L. B., Aubert, G. and
Zerubia, J., “A Level Set Model for Image
Classification”, Journal Computer Vision,
Volume 40, Issue 3, pp 187-197, 2000.

[Sta98a] Staadt, O. G. and Gross, M. H.,
“Progressive Tetrahedralizations”, IEEE VIS’98,
conf. proc., Research Triangle Park, NC, USA,
IEEE Computer Society Press, pp 397-402, 1998.

[Tro98a] Trotts, I. J., Hamann, B., Joy, K. I. and
Wiley, D. F., “Simplification of Tetrahedral
Meshes”, IEEE VIS’98, conf. proc., Research
Triangle Park, NC, USA, IEEE Computer Society
Press, pp. 287-295, 1998.

[Tro99a] Trotts, I. J., Hamann, B., Joy, K. I. and
Wiley, D. F., “Simplification of Tetrahedral
Meshes with Error Bounds”, Journal IEEE
TVCG, vol 5(3):224-237, 1999.

[Web03a] Weber, G. H., Scheuermann, G. and
Hamann, B., “Detecting Critical Regions in Scalar
Fields”, VisSym’03, Sym. Proc., Grenoble,
France, Eurographics Association, pp. 85-94,
2003.

[Yao00a] Yao, J. H., and Taylor, R. H., “Tetrahedral
Mesh Modeling of Density Data for Anatomical
Altases and Intensity-Based Registration”,
MICCAI’00, conf. proc. Pittsburgh, PA, USA,
Springer Press, pp. 531-540, 2000

	IPC_2005.pdf
	IPC_2005.pdf

	!WSCG_2005_FULL_stamped.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	!WSCG_2005_FULL.pdf
	E53-full.pdf
	E53-full.pdf

	J83-full.pdf

