
Rendering diffuse objects using particle systems inside
voxelized surface geometry

Thorsten Juckel Steffi Beckhaus
University of Hamburg
Vogt-Koelln-Strasse 30

22527 Hamburg, Germany
juckel@blurredvision.de

steffi.beckhaus@uni-hamburg.de

ABSTRACT

This paper presents an unique method for rendering complex shapes as fuzzy or diffuse objects inside virtual environments. It
uses surface geometry that is converted into a voxel-like grid to specify the appearance of the shape. A particle system displays
the outline of the object at runtime. Particles are allowed to move freely inside the voxel-grid but obtain certain attributes
from the voxels they currently reside in. Those attributes assign color, size, textures, transparency to the particles, as well as
forces that influence the movement of the particles. Force effects include linear and spiral movements, gravitational points, and
helix-shaped motion of particles. Through this, complex movement of the particles inside the voxel-space can be created at
interactive rates, while still maintaining the approximate form of the original surface geometry.
Keywords: Particle systems, voxels, interaction, real-time rendering

1 INTRODUCTION

Rendering diffuse changing shapes like fire, dust, or
smoke is a common task in computer graphics. Since
such shapes have a limited complexity, rendering them
can be done efficiently in real-time using simplified
models and techniques. When extending those shapes
to more complex models, such as the rendering of
ghost-like figures, this is no longer easily performed.
Our aim is the rendering of diffuse, fuzzy, potentially
ghost-like objects and characters. Like classic polygo-
nal 3D objects, they have a specific shape and texture,
but react to collisions, for example, by floating around
the colliding solid object and re-assembling their shape
afterwards. Waving inside the ghost-like character would
result in stirring up the colors and rough shape of the
character, as happens when color drops in water are
stirred. Once left alone, however, the character should
gradually re-adjust itself to its original form. If the char-
acter moves or changes shape, this may have a tempo-
rary blurring effect or may happen immediately. Fur-
thermore, forces inside and around the character could
make the character itself include dynamic components,
such that, for example, the eyes glow by emitting fire or
light particles moving in form of tornados.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Copyright UNION Agency – Science Press Pilzen, Czech Re-
public.

The application of such characters is best exempli-
fied by 3D ghost-like or cartoon characters in 3D games
that behave like normal figures, but additionally show
the described fuzzy and dynamic visual and shape be-
havior. Also, virtual narrators and guides in 3D envi-
ronments and storytelling applications could have these
features. They are often superimposed onto the running
story and, as they are superimposed external "add-on"s,
may potentially be more believable inside a story if they
show a more fantasy-like appearance.

The idea is not bound to characters but can also com-
prise the visualization of normally invisible phenomena
like energy fields in open space and aura-like phenom-
ena around characters.

Figure 1: Marvin the Martian rendered as a diffuse
character with point-sprite particles.

Full Papers 89 ISBN 978-80-86943-98-5

To visualize characters with the described features
and behavior using traditional polygonal representa-
tions of objects, complex models are needed. Those
tend not to act well in interactive applications such
as real-time interactive virtual environments or games.
However, a simplified approach can be found using
voxelized geometry in combination with common par-
ticle systems.

This paper introduces a unique method for render-
ing diffuse figures that extends the normal use of par-
ticle systems to display fuzzy characters and complex
shapes (see Figure 1). It uses a representation of surface
geometry transformed into the voxel-space to approxi-
mate the outline and appearance of the shape. This vox-
elized grid is generated in advance as a computational
step. Particles are later generated inside this space to
visualize the diffuse shape in real-time. Additional at-
tributes can be stored inside the voxels to obtain a more
complex behavioral model for the fuzzy shape. Cur-
rently, size, color, animation speed, and some sophisti-
cated movement models can be used inside the voxels.

In Sections 2 and 3, we will give an overview of the
work previously done in this area. A short introduction
on particle systems and also on methods used to cre-
ate a voxel-space model of surface geometry is given.
This information is applied later in the paper to give a
detailed description of the particle system used. Fur-
thermore, the voxelization algorithm is explained in de-
tail. In Section 4, the implementation of the method is
presented. We describe the changes made to the origi-
nal voxelization algorithm to obtain further information
about the original surface geometry. We also describe,
how the particle system is attached to the voxel-space
and how the attributes of the voxels influence the parti-
cles. That information is later extended in Section 5 to
include common interaction techniques. Specifically,
manipulation practices, complex forces inside the vox-
els, and collision with solid models will be discussed.
Section 6 presents the results of the particle shape and
Section 7 concludes the work with an outlook on further
work.

2 RELATED WORK
To render atmospheric effects, such as dust, smoke, or
fire, the number of approaches is numerous. Realis-
tic rendering of dust has been developed by Blinn [2]
to display dusty surfaces and Dobashi et al. [3] intro-
duced a hardware-accelerated method for rendering at-
mospheric scattering. While those approximations pro-
duce extremely good results, they are hardly capable
of real-time rendering inside large interactive environ-
ments that are often present in 3D virtual environments.
They furthermore do not support direct interaction with
the effect itself.

In 1983, Reeves introduced particle systems to render
fuzzy objects like fire, explosions and forests [7]. The

complex phenomena were separated into tiny parts that
could individually move around given some common
constraints. This concept was later converted to use par-
allel computations [9] and also used by Reynolds inside
behavioral systems to model the complex movement of
flocks of birds [8]. Particles were not only seen as in-
dividual points anymore, but could interact with each
other and form a much more complex behavior. Us-
ing constraints for the particle system, like attaching the
particles to vertex elements, fairly complex shapes can
be achieved.

Oriented particles [11] can be attached to surface ge-
ometry or be used for point-based rendering or some-
times to display clothing. Here, particles are intercon-
nected by springs to make up a piece of cloth. Simple
dynamic computations are performed to simulate the
movement of the cloth. Since the tessellation can be
varied in the cloth simulation, this method is also ca-
pable of running in real-time. Today, particle systems
have advanced to be the common way for displaying
fuzzy phenomena like smoke, dust, or fire. Unfortu-
nately, those phenomena are often limited in their be-
havior and complexity, when rendering them in real-
time. Current systems, like the one Kipfer and Segal
introduced, are capable of rendering up to a million
particles in real-time [4]. Even though a mass of par-
ticles are computed and rendered, interaction with the
particles and control over them is very limited. Other
uses of particles include point-based rendering that very
closely defines the shell of a geometric object but act as
another approach for surface modeling and accelerated
rendering.

Since we are looking for dynamic movement of the
surface and close interaction with the particles, nor-
mal particle systems are sufficient. Particle systems are
also used as the integral part of fluid simulations us-
ing the Navier-Stokes equation as proposed by Stam
[10]. Here, particles are moved through a computa-
tional grid to represent the density of a simulated fluid.
Even though particles are used there, they only con-
tribute to the calculation of the fluid dynamics and not
directly to the visual appearance.

An image-based method to represent three dimen-
sional objects is the use of voxels. Individual pixels are
extended into 3D as a grid of small equidistant boxes to
build the shape of an object. This method is often used
in interactive visualization of medical data, but can also
be used in other fields of real-time computer graphics.
Mostly, it is used to represent three-dimensional images
of scanned data.

There are several methods to convert image data to
surface geometry, with the most prominent being the
marching cubes algorithm [5]. Oomes, Snoeren, and
Dijkstra looked at the other direction [6], trying to cre-
ate voxel objects from surface geometry. While their
method yields good results, the cost of the computation

Full Papers 90 ISBN 978-80-86943-98-5

is high. Since that would have to be done every time
the triangle model is updated, this becomes impracti-
cable for real-time animations. Another method, using
todays standard graphics hardware, can be used to ap-
proximate surface geometry using voxels. Beckhaus et
al. used a method to render whole scenes as slices to
create a voxel-based representation of the scene used
for spacial analysis and collision detection [1].

3 BACKGROUND AND DESIGN
As particle systems and voxelization are the basic tech-
niques from which our method draws, both are intro-
duced here in more detail.

3.1 Particle systems
Most objects in a virtual environment can easily be
created as surface geometry and animated using key-
frames, functions, or other methods of direct manipula-
tion. Some elements, though, that are common in the
real world, are too complex to animate and to display
manually. Those include the rendering of rain, where
it is not possible to create every single raindrop in the
scene. However, since most raindrops exhibit the same
behavioral model, it is efficient to just define one ob-
ject that is generating all the raindrops inside the scene
automatically.

Particle system are often used in real-time graphics
for this kind of common special effects, because they
are very easy to implement and have the visual consis-
tency needed by the programmers or animators. They
consist mainly of an emitter, that manages the creation
and update cycle of the individual particles. For every
time-step in the simulation, the emitter has to perform a
couple of tasks to keep the particle system alive. First,
old particles that have exceeded their lifetime are extin-
guished. Then, new particles are generated by the emit-
ter and initial attributes are assigned. The current set of
living particles is moved and transformed according to
the rules defined inside the particle system.

In the particles themselves, individual attributes are
stored. In Reeves’ original work, those included color,
size, lifetime, and transparency. Additionally, a posi-
tion and velocity were stored to determine the move-
ment of the particles. As individual particles reach
their predetermined lifetime, they fade away and can be
deleted by the emitter, since they do not contribute to
the simulation any further. During their lifetime, they
can be influenced by outside forces, such as wind or
gravity, but also other, more direct, forces, like the col-
lision with solid objects.

When rendering the particles, they are often repre-
sented as tiny primitives, such as points, lines or small
polygons. Later, their representation was extended to
use textured billboarded quads or point sprites. Even
animated sprites or video-textures can be used.

3.2 Voxelization
Using several slices of image scans through a human
body, a three dimensional image can be created. Com-
monly used in the medical field, voxels are volume ele-
ments of a certain size, that are defined by their color or
opacity. The information stored in the image scans can
be used to obtain a volume representation of a model.
Voxels are not limited to store just color information in-
side them. They can, for example, be easily extended to
include velocity information about movement to form a
vector field. They can also be used to include all kinds
of attributes. We decided to store all the visual charac-
teristics that were discussed earlier as well as informa-
tion about the forces influencing the particles.

Figure 2: Several render passes through the model
create the voxel representation of the shape

With todays standard graphics hardware, a special
method can be used to approximate surface geometry
using voxels. [1] used a method to render whole scenes
as slices to create a voxel representation used for spacial
analysis and collision detection. While they used this
method to create a voxel representation of a complete
scene in a virtual environment, it can also be applied to
create texture layers from a single model.

The Marching Cubes algorithm took into account that
a triangle, passing through a set of four voxels is al-
ways coloring the voxel the same way. Accordingly, a
small set of triangles can be defined for different color-
ing configurations of the voxel-space. Using this infor-
mation, creation of voxel-based images is similar. At
positions where an object, composed of triangles, is in-
side the viewing plane, the intersection points are col-
ored by the rasterizer unit of the graphics card. Us-
ing several viewing planes that are closely fitted behind
each other, a whole set of layers can be created (see Fig-
ure 2). These layers are then used to generate a voxel
representation of the surface geometry that can be used
to determine the particles appearance.

Full Papers 91 ISBN 978-80-86943-98-5

4 IMPLEMENTATION
The presented method combines the use of voxelized
objects with the benefits of displaying diffuse sets of
particle clouds to create complex looking objects or
characters in virtual environments. The focus of the de-
sign was more on the simulation and interaction pro-
cess and not on the efficiency of the rendering step,
even though different methods were considered or im-
plemented.

4.1 System design
The system is made up of two layers (see Figure 3).
In the representation layer, the voxelized version of the
surface geometry that was previously created is used.
Voxels are either active, or deactivated. If they are acti-
vated, the voxels are part of the original surface geome-
try outline. Those voxels contribute directly to the par-
ticle system. Deactivated voxels do not contribute to the
particle system in any way. Inside each activated voxel,
a set of attributes is stored that defines the behavior and
appearance of the particles currently residing inside it.
The voxel-space is generated automatically as an early
computational step and can later be edited as needed by
the animator or designer of the model.

The second layer contains the particle-emitter that is
generating new particles inside the voxel-space during
runtime. Even though the voxel-space is defined by the
whole bounding box of the original surface geometry,
particles are only created in activated voxels, i.e. voxels
that have color and attributes assigned to them. They
define the outline of the surface geometry.

Particle System

Voxel Object

Virtual Environment

Update attributesLookup of voxel

ParticleShape

Location in Scene Rendering content

Representation
layer

Simulation and
rendering layer

Figure 3: The layout of the system.

4.2 Voxelization
To use the voxelization algorithm of Beckhaus et al. [1]
for our purposes, their method had to be slightly modi-
fied. Since they needed only spatial information about
the geometry, the color information was ignored. We
use the color information to store our initial attributes
inside the voxel. Since this color can also be the same

as the color of the back buffer, we take into considera-
tion values stored inside the depth buffer after the ren-
dering pass. This saves a lot of time in terms of coloring
the model afterwards, since this can be done as part of
the modeling step. Other attribute values stored inside
the voxel are current density, maximum density, force
effect, particle color, particle size, particle fading color,
particle fading size, particle lifetime, particle interpola-
tion time, animation speed for textures, and a flag for
indicating, if the voxel is active, i.e. contributing to the
appearance of the shape. This flag can be used dur-
ing collision detection and response to make the shape
move fluently through solid objects. By temporarily de-
activating the voxels, particles are not created inside a
solid object the particle-based shape is moving through.

Every voxel can have its own set of attributes and ma-
nipulates only the particles currently residing inside the
voxel. As particles move freely in world space, they
check at every time-step, ∆t, which voxel they currently
reside in and receive updated attribute values from the
voxel accordingly. Since the voxels are evenly spaced
inside the object, this can be done very fast in one sim-
ple computational step for every particle.

4.3 Update cycle
New particles are generated by an emitter inside vox-
els that have not reached their maximum density yet.
Unlike normal particle systems, particles receive their
initial values not from that emitter, but from the voxel
directly. Particle movement is determined by the cur-
rent force effect inside the voxel. This can be either a
linear force or a rotational force. Rotational forces are
projected onto linear forces, because small time-steps
are assumed during the calculation steps. This allows a
simple calculation of movement inside the particles in-
dependent of the complexity of the original forces. For
simplification of the calculation, forces are stored at the
center of the voxels. Linear forces act uniformly inside
the whole voxel. The axis for rotational forces or the
gravitational point are also placed at the center of the
voxel but act differently on particles at different loca-
tions.

Since the voxels are all evenly spaced, the particle–
voxel assignment can easily be established as an ar-
ray access in linear time. The size and resolution of
the voxel-grid does not contribute notably to the update
time of the animation.

Unlike the common implementations discussed ear-
lier, particles are kept alive for an indefinite period of
time while they are inside any activated voxels. This
helps to keep the animation stable. When a particle en-
ters a new voxel, it gets new target attributes assigned.
Interpolation is done linearly for color and size and tex-
ture animation speed. The interpolation time is also re-
trieved from the new voxel. Particles can, therefore,
change their appearance at different speeds inside dif-

Full Papers 92 ISBN 978-80-86943-98-5

ferent voxels. This ensures more freedom for the ani-
mator as well as smooth transitions between the voxels,
but still makes it possible to have the particles react to-
tally independent inside the separate voxels. Having a
set of target attributes also makes it possible to change
the attribute instantly, for instance when the voxel at-
tributes change or the particle leaves the defined voxel
space, or changes into a new medium, such as bubbles
moving from water into the air. This interpolation can
be seen in Figure 4. The interpolation between the two
voxels is surrounded by the green circle.

Figure 4: Particle shape with only two voxels. Particles
on the left fade away slowly when leaving their voxel,
on the right they fade away instantly.

As soon as a particle leaves an activated voxel and
enters the free space surrounding the model, the normal
fading behavior is triggered. The fading corresponds
to the fading behavior attributes of the last visited ac-
tive voxel and is consistent with the behavior described
by Reeves. However, if a particle re-enters an activated
voxel, it’s lifetime will be reset to zero again and the
particle will continue to live. The normal animation
model can be followed then as described earlier.

4.4 Displaying the particle system
There are different ways to render particles. Reeves ex-
plained in his original paper that he draws the particles
as simple points or lines for every particle. This is suf-
ficient for small fast moving objects. However, when
displaying larger, slow moving objects, it is common to
use billboards to display the particles. These are com-
monly mapped with textures to provide additional level
of detail. These textures can be animated or video tex-
tured. In our implementation, texture-sets can be de-
fined and played at different intervals. Those intervals
are stored inside the voxel definition.

Today’s graphic frameworks like OpenGL or DirectX
provide different kinds of functions that define how
transparent objects are combined on screen. Blending
is the mechanism for combining color already in the

frame buffer with the color of the incoming primitive.
The result is then stored back in the frame buffer.

Rendering every particle independently may be suit-
able if additive blending of colors is used. Many over-
laid particles become very bright. They get a white,
glowing look to them. This may be reasonable for ef-
fects like fire and other light emissive special effects.
When rendering more complex phenomena, however,
such as cloud layers or diffuse objects, it becomes im-
portant to use additional alpha values that are stored in-
side the color information or the alpha channel of the
textures to perform the blending operation.

Rendering transparent objects is always performed
with the depth-buffer being disabled. When display-
ing the particles in arbitrary order, overlapping particles
from further away may occlude others that are closer to
the viewing plane. Because of that, they have to be ren-
dered in the right order from back to front. The hard-
ware’s method to achieve this, is writing values into the
depth buffer. As new primitives are rendered, their z-
values are checked against the ones stored inside the
depth buffer. If they are smaller than the previous ones,
the primitives can be rendered. To display particles that
have alpha values stored for transparency and need to
be rendered accordingly, a sorting algorithm should be
used. We chose a simple quick sort algorithm, since it
is directly supported by C++ through the standard tem-
plate library and does not need any specialized hard-
ware. Since sorting thousands of particles in real-time
can limit the frame-rate drastically, sorting should be
limited to a minimum. Sometimes, it is sufficient, to
just sort parts of the particles for adequate visual effect.

5 INTERACTION, MANIPULATION,
AND DYNAMICS

There are a few common interaction techniques for ma-
nipulating scenes and objects in 3D virtual environ-
ments. The most basic include translation, rotation,
and scaling of objects. Normally those actions are per-
formed by a transformation matrix that can be applied
to the original vertices of the geometric models. This
works fine there, since the geometry is connected and
all the vertices still have the same relation to each other.

As the particles used in the presented method form a
highly chaotic system and are not attached to anything
solid, transformation matrices can not be applied that
easily. Every manipulation of the whole system, i.e. a
transformation of the voxelized model, acts as a kind
of force onto the particles. The particles, in turn, have
to move accordingly. Movement and rotation of the
system influences different particles in differing ways.
While old particles typically keep their current momen-
tum and move according to their force values, newly
generated particles receive additional momentum from
the movement of the underlying structure. Therefore,
interaction and manipulation with the objects mainly

Full Papers 93 ISBN 978-80-86943-98-5

Figure 5: The bounding boxes of the voxelized shape
of a car.

has to deal with the application of forces to the par-
ticle system, both overall and on voxel level. Those
forces can in addition be used to create additional vi-
sual features in the resulting shapes and characters. The
reminder of this section describes interaction with and
animation of the fuzzy objects by discussing forces ap-
plied to the system or to single voxels and forces that
happen through collisions.

5.1 External forces and forces inside a
voxel

In addition to the color, size, or animation speed, par-
ticles can be influenced by different forces inside the
voxel-space. We distinguish forces that act on the
whole system from the outside, which include move-
ment, wind, or gravity, and forces that act on every par-
ticle differently. Transformation of the whole system
is modeled as just another external force that affects
newly generated particles as an initial momentum act-
ing on the particles.

In our implementation, the designer can decide, which
force he wants to use in certain voxels and can set them
individually. We implemented four different kinds of
forces to be used inside every voxel. They are linear
forces, like wind or gravity; spiral forces, that move
the particle around an arbitrary axis at the center of the
voxel; a gravitational point at the center of a voxel,
that attracts particles and forces them to move around
in an orbit; and a helix-like movement, that rotates
the particles around an axis in a specified direction.
Fluid dynamics were also considered, especially since
the voxel-grid already implies the computational grid
used there, but were dismissed in the initial approach,
because their calculations were too complex for large
voxel-grids in the real-time virtual environments that
were targeted.

Figure 6: A chopper made of particles. Though it has
a quite solid appearance, particles move constantly.

5.2 Collisions with solid objects
When looking at smoke in reality, any collision with
the system, like moving a hand through a cloud of fog
impacts the movement of the particles. However, since
collision is also a very time consuming progress, espe-
cially when dealing with thousands of different parti-
cles, it has to be limited. To decrease the time for the
calculation drastically, a hierarchical system has been
added to the particle based shape.

Bounding volume collision of the whole system can
nicely be performed by the application’s framework.
The voxel-object’s bounding box is tested against ev-
ery other object in the virtual environment. If an ob-
ject is penetrating the surrounding bounding box of the
whole system, a more detailed test can be performed.
This is done using the volumes of the individual voxel
(see Figure 5). If a voxel penetrates a solid object or
vice versa, voxels are temporarily deactivated. This is
important, since particles would otherwise still be gen-
erated inside the voxels, leading to particles appearing
inside the solid object.

Additionally, every particle that is currently inside
colliding voxels has to be checked for direct collision
with the object. This has to be done on a per triangle
basis, since particles hit an object directly and the col-
lision response needs to be as accurate as possible. As
the particles position before and after the update-step
can be considered as a line, collision detection is done
using a line-triangle algorithm.

6 RESULTS
This section shows some images we have generated us-
ing our particle based system. Figure 6 shows how
closely surface geometry can be approximated with our
particle system. Even though this example uses only a
grid of 403 voxels and about 30,000 particles, many de-
tails of the chopper are visible. It can be noted, how the
initial coloring of the model was used to include addi-
tional detail at the position of the indicator.

Full Papers 94 ISBN 978-80-86943-98-5

Figure 7: Using just one voxel, even conventional ef-
fects, like this fire can be created.

Simple effects, like the fire shown in Figure 7 can
easily be created by our system. This example uses
just one voxel and an animated texture for the parti-
cles. More complex models or video textures may also
be used. Rendering the model using additive blending
is useful for rendering fire and other light emitting ob-
jects. All results were generated using an AthlonXP
2000+-based laptop with a ATI Radeon 9000 mobility
graphic-card. Because of this, most shader-based opti-
mization could not be employed. Further optimizations
using more current graphic hardware or multi-processor
systems will increase the frame output immensely.

For our method, most objects could be sufficiently
represented as a voxel-grid with a dimension of 503. As
the complexity of the models rises, the voxel-grid needs
to be more precise. It should be mentioned though,
that memory consumption increases rapidly and large
voxel-grids are not encouraged, even though the time
for the computation does not rise. Since packing the
voxel-grid to save memory will result in eliminating the
fast access of voxels through positions of the particles,
compression cannot be performed easily.

The image on the first page (Figure 1) shows the pop-
ular TV character Marvin the Martian from the show
Looney Tunes. The diffuse model was voxelized with a
503 grid and rendered with 40,000 particles visualized
as point sprites. The rendering times are at about 10 to
15 frames per second.

The model of the Stanford bunny in Figure 8 was ren-
dered to simulate the "fluffy" fur of the bunny. At the
nose, eyes and ears voxel where colored red, at the rear,
the tail was colored white. Particles were instantly col-
ored in the correct way.

Figure 8: The Stanford bunny as a "fluffy" version using
our particle based system.

7 CONCLUSION AND FUTURE WORK
This paper presented a new method to approximate
fully controllable, complex, fuzzy shapes to be used
inside interactive 3D virtual environments. The shape
approximates the provided polygonal geometry closely,
while still having a fuzzy and dynamic exterior, with
interaction and reaction to other objects being possi-
ble. Forces are integrated into the shape to change
the appearance during runtime. For this method, a fast
structure for creating, rendering, changing, and updat-
ing structures was required.

To achieve this, regular surface models are converted
into voxelized versions. Particles are spawned after-
ward inside the voxels to create a highly dynamic ver-
sion of the previous surface geometry. Forces that are
stored inside the voxels act on the particles and move
them along paths. Complex rotational forces make the
particles move in spirals, orbits, or as vortices inside
the voxel. Additional attributes inside the voxels, like
size and textures define the appearance of the particles
during the render process. Particles are created during
runtime inside the voxels to approximate the original
shape. Generation is done inside the world’s coordinate
system, to let simplify calculations when the particles
interact directly with other objects.

Voxels are created efficiently through hardware, mak-
ing it possible to create voxels as needed in limited time
to let the user focus on the design and appearance of the
model using traditional surface modeling tools. Vertex
colors are used during the conversion step to create the
initial coloring attributes of the voxels. Through simple
force calculations inside the particles, the performance
impact for updating the particle attributes could be re-
duced to a minimum. This leaves most of the compu-

Full Papers 95 ISBN 978-80-86943-98-5

tational power to the application. Interaction between a
particle system and rigid bodies inside the virtual world
have been implemented through a structured collision
detection and response algorithm.

The applications for this system range from tradi-
tional rendering of fire, clouds, and dust to diffuse
ghost-like characters and objects. The presented par-
ticle system can also be used for visualization of stress
fields inside materials. Particles would move through
the force field created by the voxels to form clusters,
where the forces are too high to maintain further struc-
tural integrity of the material. Other, more artistically
oriented methods include drawing of voxels in an vir-
tual environment directly to use as an interactive diffuse
paint metaphor.

The new particle system produces satisfying results
inside a controlled environment. Some design aspects
had to be considered during the creation of the sys-
tem. Using highly detailed geometry is only useful
if the voxelization is performed with a fine resolution.
This, necessarily, requires smaller particles and, there-
fore, a higher number of particles inside the system. As
a result, the particle system’s performance rapidly de-
creases as the amount of particles rises. Coarser models
with a resolution of 60 voxels per side prove to be suf-
ficient for the trade-off between visual complexity and
real-time performance. Additional tuning of the parti-
cle system can also enhance the visual appearance.

When using models with very detailed parts or small,
thin spikes, holes occur, where only a single row of vox-
els is representing the originating geometry. This can be
avoided, by adjusting the forces inside the voxels along
the path of the geometry. An automated approach could
be employed to aid the design process.

The system works well with simple independent mod-
els. To further extend our system, interaction between
more than one particle system should be implemented.
Pressure fields and fluid dynamics were not added yet,
because of calculation time issues, but would enhance
the visual complexity of the system. As hardware
implementations progress, fluid calculations should be
possible even for large grids. Complex lighting calcula-
tions inside the particle system would also improve the
system and will probably be integrated later.

REFERENCES
[1] Steffi Beckhaus, Jürgen Wind, and Thomas

Strothotte. Hardware-based voxelization for 3d
spatial analysis. In Proceedings of CGIM ’02,
pages 15–20. ACTA Press, 2002.

[2] James F. Blinn. Light reflection functions for sim-
ulation of clouds and dusty surfaces. In Proceed-
ings of the 9th annual conference on Computer
graphics and interactive techniques, pages 21–29.
ACM Press, 1982.

[3] Yoshinori Dobashi, Tsuyoshi Yamamoto, and
Tomoyuki Nishita. Interactive rendering of
atmospheric scattering effects using graphics
hardware. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graph-
ics hardware, pages 99–107. Eurographics Asso-
ciation, 2002.

[4] Peter Kipfer, Mark Segal, and Rüdiger Wester-
mann. Uberflow: A gpu-based particle engine.
Graphics Hardware, 2004.

[5] William E. Lorensen and Harvey E. Cline. March-
ing cubes: A high resolution 3d surface construc-
tion algorithm. In Proceedings of the 14th annual
conference on Computer graphics and interactive
techniques, pages 163–169. ACM Press, 1987.

[6] Stijn Oomes, Peter Snoeren, and Tjeerd Dijk-
stra. 3d shape representation: Transforming poly-
gons into voxels. In Proceedings of the First
International Conference on Scale-Space Theory
in Computer Vision, pages 349–352. Springer-
Verlag, 1997.

[7] W. T. Reeves. Particle systems – a technique for
modeling a class of fuzzy objects. ACM Trans.
Graph., 2(2):91–108, 1983.

[8] Craig W. Reynolds. Flocks, herds, and schools: A
distributed behavioral model. Computer Graph-
ics, 21(4):25–34, 1987.

[9] Karl Sims. Particle animation and rendering us-
ing data parallel computation. In SIGGRAPH
’90: Proceedings of the 17th annual conference
on Computer graphics and interactive techniques,
pages 405–413, New York, NY, USA, 1990. ACM
Press.

[10] Jos Stam. Stable fluids. In SIGGRAPH ’99:
Proceedings of the 26th annual conference on
Computer graphics and interactive techniques,
pages 121–128, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[11] Richard Szeliski and David Tonnesen. Surface
modeling with oriented particle systems. In Pro-
ceedings of the 19th annual conference on Com-
puter graphics and interactive techniques, pages
185–194. ACM Press, 1992.

Full Papers 96 ISBN 978-80-86943-98-5

	!WSCG2007_Full_Proceedings_Final-all_1.pdf
	!WSCG2007_Full_Proceedings_Numbered.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	TEMP.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References

	!WSCG2007_Full_Proceedings_Numbered_NEW.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References

	!WSCG2007_Full_Proceedings_Final-All-2.pdf
	!WSCG2007_Full_Proceedings_Numbered.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	TEMP.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References

	!WSCG2007_Full_Proceedings_Numbered_NEW.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK

	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES

	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

	!Full-N.pdf
	H07-full.pdf
	KeyWord pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References

	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES

	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References

