
Robust Diffuse Final Gathering on the GPU

Tamás Umenhoffer and László Szirmay-Kalos

Dept. of Control Engineering and Information Technology
Budapest University of Technology and Economics

Magyar Tudósok krt. 2., H-1117, Hungary
szirmay@iit.bme.hu

ABSTRACT

This paper presents a method to obtain the approximate indirect diffuse reflection on a dynamic object, caused by a diffuse or a
moderately glossy environment. Instead of tracing rays to find the incoming illumination, we look up the indirect illumination
from a cube map rendered from the reference point that is in the vicinity of the object. However, to cope with the difference
between the incoming illumination of the reference point and of the shaded points, we apply a correction that uses geometric
information also stored in cube map texels. This geometric information is the distance between the reference point and the
surface visible from a cube map texel. The method computes indirect illumination albeit approximately, but providing very
pleasing visual quality. The method fits very well the GPU architecture, and can render these effects interactively. The primary
application area of the proposed method is the introduction of diffuse interreflections in games.
Keywords: Global illumination, GPU programming.

1 INTRODUCTION
Final gathering, i.e. the computation of the reflection
of the indirect illumination toward the eye, is one of
the most time consuming steps of realistic rendering.
According to the rendering equation, the irradiance of
point~x can be expressed by the following integral

I(~x) =
∫

S

Lin(~x←~y) ·v(~x,~y) · cos+ θ~x ·cos+ θ~y

|~x−~y|2 dy,

whereS is the set of surface points,Lin(~x←~y) is the
incoming radiance arriving at point~x from point~y, v is
the visibility indicator between two points, andθ~x and
θ~y are the angles between the illumination direction and
the surface normals at points at~x and~y, respectively.
When the angles get larger than 90 degrees, their co-
sine should be replaced by zero, which is indicated by
superscript+.

The evaluation of this integral usually requires many
sampling rays from each shaded point. Ray casting
finds illuminating points~y for shaded point~x at dif-
ferent directions (Figure 1), and the radiance of these
illumination points is inserted into a numerical quadra-
ture approximating the rendering equation. In practice,
numberP of shaded points is over hundred thousands or
millions, while numberD of sample directions is about
a hundred or a thousand to eliminate annoying sampling
artifacts. On the other hand, in games and in real-time
systems, rendering cannot take more than a few tens of

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Plzen, Czech Republic.
Copyright UNION Agency – Science Press

milliseconds. This time does not allow tracingP·D, i.e.
a large number of rays.

Figure 1: Indirect illumination with sampling rays.

To solve this complexity problem, we can exploit
the fact that in games the dynamic objects are usually
significantly smaller than their environment. Thus the
global indirect illumination of the environment can be
computed separately, since it is not really affected by
the smaller dynamic objects. On the other hand, when
the indirect illumination of dynamic objects is evalu-
ated, their small size makes it possible to reuse illu-
mination information obtained when shading its other
points.

The first idea of this paper is to reuse illuminating
points when the illumination on the dynamic object is
computed. It means that first we obtain a set of virtual
lights that represent the indirect illumination and calcu-
late just the single reflection of these lights during final
gathering (Figure 2). During this, we ignore complex
self-shadowing of the dynamic object and apply just a
simple test based on the normal vector and the illumi-
nation direction to determine whether the virtual light
may illuminate the point.

This approach has two advantages. On the one hand,
instead of tracingP ·D rays, we solve the rendering
problem by tracing onlyD rays. Assuming that the
same set of illuminating points are visible from eachFull Papers 121 ISBN 978-80-86943-98-5 



Figure 2: The basic idea of the proposed method: first virtual lights sampled from reference point~o are identified,
then these point lights are grouped into large area lights. At shaded points~x the illumination of a relatively small
number of area lights is computed without visibility tests.

shaded point, self-shadowing effects are ignored. How-
ever, while shadows are crucial for direct lighting, shad-
ows from indirect lighting are not so visually important.
Thus the user or the gamer finds this simplification ac-
ceptable.

Unfortunately, this simplification alone cannot allow
real time frame rates. The evaluation of the reflected
radiance at a shaded point still requires the evaluation
of the irradiance and the orientation angle, and the mul-
tiplication with the diffuse reflectance for all directions.
Although the number of rays traced to obtain indirect il-
lumination is reduced fromP ·D to D, the illumination
formula must be evaluatedP·D times. These computa-
tions would still need too much time.

In order to further increase the rendering speed, we
propose to carry out as much computation globally for
virtual lights, as possible. Intuitively, global computa-
tion means that the sets of virtual light sources are re-
placed by larger homogeneous area light sources. Since
the total area of these lights is assumed to be visible, the
reflected radiance can be analytically evaluated once for
a whole set of virtual light sources.

2 PREVIOUS WORK
Methods for reusing illumination information for multi-
ple points of a shaded object can be classified according
to whether they encode the irradiance of the receivers
[17] or consider the environment as a set of virtual light
sources [6].

Environment mapping[2] has been originally pro-
posed to render ideal mirrors in local illumination frame-
works, but can also be applied for glossy and diffuse
reflections as well. The usual trick is the convolution
of the angular variation of the BRDF with the environ-
ment map during preprocessing [11, 7] to obtain the ir-
radiance of surfaces of all possible orientations. This
step enables us to determine the illumination of an arbi-
trarily oriented surface patch with a single environment
map lookup during rendering. A fundamental problem
of this approach is that the generated environment map
correctly represents the direction dependent illumina-
tion only at a single point, the reference point of the

object. For other points, the environment map is only
an approximation, where the error depends on the ratio
of the distances between the point of interest and the
reference point, and between the point of interest and
the surfaces composing the environment (see figure 4).

One possible solution is to use multiple environment
maps [4, 18, 10], which can be compressed using spher-
ical harmonics [11, 8] or wavelets [18]. For example,
Greger et al. [4] calculate and store the direction depen-
dent illumination in the vertices of a bi-level grid sub-
dividing the object scene. During run-time, irradiance
values of an arbitrary point are calculated by tri-linearly
interpolating the values obtained from the neighboring
grid vertices. They reported good results even with
surprisingly coarse subdivisions. This means that the
smooth irradiance function is especially suitable for in-
terpolation. While Greger et al. used a precomputed
radiosity solution to initialize the data structures, Man-
tiuk et al.[9] calculated these values during run-time
using an iterative algorithm that simulates the multi-
ple bounces of light. Unfortunately, the generation and
compression of many environment maps require con-
siderable time which is not available during real-time
rendering. Thus most of this computation should be
done during preprocessing, which imposes restrictions
on dynamic scenes.

The idea of approximating the indirect illumination
by a finite set of virtual lights was born in the context
of global illumination algorithms, such as in instant ra-
diosity [6], and has been used many times in Monte
Carlo algorithms [16, 12, 13, 14].

For the computation of diffuse interreflections on the
GPU, Dachsbacher [3] considered shadow map lex-
els as virtual lights, while Lazányi [5] assigned vir-
tual lights to texels of an environment map. Indeed, if
only two-bounce indirect illumination is considered, a
shadow map lexel identifies the point which is directly
illuminated by the light source. Such points may indi-
rectly illuminate other points, so can be considered as
virtual lights.

Virtual light source algorithms suppose that virtual
lights are point sources, and thus use the point-to-pointFull Papers 122 ISBN 978-80-86943-98-5 



form factor (also called geometry factor) when the irra-
diance is computed. Unfortunately, point-to-point form
factor

cosθ~x ·cosθ~y

|~x−~y|2
is numerically unstable since it goes to infinity when
the virtual light gets close to the shaded point, which
results in bright spikes making the position of the vir-
tual lights clearly visible (see figures 4 and 5). Another
problem is that not only the position of the virtual light
source is required, but the normal vector is also needed
to computecosθ~y, which doubles the required storage
space and slows down the generation of the virtual light
sources.

To address the numerical instability, in [5] virtual
lights were supposed to be small disks, which made
the geometry factor bounded. However, this approx-
imation is still quite far from being precise when the
shaded point is close to the virtual light and the shaded
point is not in the normal direction from the virtual light
source.

In this paper we address the numerical instability of
virtual lights and eliminate the need of storing normal
vectors at these lights. The basic idea is that we always
consider four virtual lights that are close to each other
and assume that the surface is roughly planar between
them. Thus instead of point sources we have a set of
homogeneous area light sources. Since self-shadowing
is ignored, the reflection of these area light sources can
be computed analytically, in a numerically stable way.

3 THE NEW ALGORITHM
The first step of the algorithm is the generation of vir-
tual lights that may illuminate the given dynamic ob-
ject. To find these points, the scene is rendered from
reference point~o of the dynamic object, and the re-
sulting images are put into an environment map. Not
only the radiance of the visible points is evaluated but
the distance between the reference point and the visible
surface is found and stored in the alpha channel of the
generated cube map. In each texel of the environment
map a potential virtual light source is visible.

In order to estimate the integral of the rendering equa-
tion, the set of surface points visible from the reference
point is partitioned according to the texels of the en-
vironment map. The surface between four points visi-
ble from the texel corners is approximated by a quadri-
lateral, thus the environment is assumed to be a list of
quadrilateralsSi , i = 1, . . . ,N. After partitioning, the ir-
radiance is expressed by the following sum:

I(~x) =
N

∑
i=1

∫

Si

L(~y) · cos+ θ~x ·cos+ θ~y

|~x−~y|2 dy.

Sincedycos+ θ~y/|~x−~y|2 is the projection of aready
onto the surface of a unit hemisphere placed around~x,

and factorcos+ θ~x represents a further projection from
the sphere onto the tangent plane, the irradiance integral
can also be evaluated on the tangent plane of the surface
at~x:

I(~x) =
N

∑
i=1

∫

Pi

L(~yp) dyp

wherePi is the double projection of the visible surface,
first onto the hemisphere then onto the tangent plane.
Let us assume thatL(~yp) is linear. In this case the irra-
diance is the product of the area ofPi and the average
of the radiances stored at the four corner texels:

I(~x) = |Pi | · L1
i +L2

i +L3
i +L4

i

4

Let us consider a single term of this sum representing
the radiance reflected fromSi .

-

+

+

R l R l 1+

n i

Figure 3: Hemispherical projection of a planar polygon

Area |Pi | is in fact the polygon-to-point form factor
[1]. Consider only one edge line of the polygon first,
and two subsequent vertices,~Rl and~Rl⊕1, on it (fig-
ure 3). The hemispherical projection of this line is a
half great circle. Since the radius of this great circle is
1, the area of the sector formed by the projections of~Rl

and~Rl⊕1 and the center of the hemisphere is simply half
the angle of~Rl and~Rl⊕1. Projecting this sector ortho-
graphically onto the equatorial plane, an ellipse sector
is generated, having the area of the great circle sector
multiplied by the cosine of the angle of the surface nor-
mal~ni and the normal of the segment (~Rl ×~Rl⊕1).

The area of the doubly projected polygon can be ob-
tained by adding and subtracting the areas of the ellipse
sectors of the different edges, as is demonstrated in fig-
ure 3, depending on whether the projections of vectors
~Rl and~Rl⊕1 follow each other clockwise when look-
ing at them from the direction of the surface normal.
This sign value provided by the dot product of the cross
product of the two vertex vectors and the normal vector.
Finally, the double projected polygon is a summation:

L−1

∑
l=0

1
2
·angle(~Rl ,~Rl⊕1) ·

(
(~Rl ×~Rl⊕1)
|~Rl ×~Rl⊕1|

·~ni

)
. (1)

4 IMPLEMENTATION
The proposed algorithm first computes an environment
cube map from the reference point and stores the radi-Full Papers 123 ISBN 978-80-86943-98-5 



600 FPS 60 FPS 11 FPS 30 sec

Figure 4: The Stanford bunny model (about 25000 vertices and 50000 faces) in a colored box. On the right images
diffuse reflections are calculated with only environment map convolution and one environment lookup. On the
second column images point to point form factor while on the third column images polygon to point form factor
is used. On the right column reference images rendered with Mental Ray are shown. The simple one environment
map only produces pleasable results for points that are close to the environment reference point. The point to point
form factor method can handle greater distances, but as the shaded surface gets close to the walls it gets unstable
(see the bright green spikes on the bunny’s tail and back). The polygon to point form factor has good results for
any object positions. Configuration: 700x700 resolution on NVIDIA GeForce 7950 GX2 (SLI turned off), AMD
Athlon64 Dual 4600+ processor.

ance and distance values of the points visible in its pix-
els. We usually generate6×256×256pixel resolution
cube maps. Then the cube map is downsampled to have
M×Mpixel resolution faces (Mis 4 or even 2). One texel
of the low-resolution cubemap represents an area light
source. Note that both radiance and distance values are
averaged, thus finally we have larger lights having the
average radiance of the small lights and placed at their
average position.

During final gathering for each texel in each cube
face we should calculate the virtual light source’s exact
location and area and evaluate it’s contribution to the
reflected radiance. The following fragment shader code
loops through the pixels of one cube face (in positive
z direction), calculates pixel corner directions and calls
thegetContr function to evaluate texel contribution.
The input parameters to this shader are: world space
position (pos ), world space normal (N), the reference
point of the cubemap in world space (referencePoint ),
the diffuse coefficient (kd ) and the cubemap sampler
(SmallEnvmap ). Our downsampled environment map
had 4x4 pixel resolution(M).

float4 DiffuseReflectance(
float4 hPosition : POSITION,
float3 pos : TEXCOORD0,
float3 N : TEXCOORD1,
uniform samplerCUBE SmallEnvMap,
uniform float3 referencePoint,
uniform float kd

) :COLOR
{

pos -= referencePoint;
N = normalize(N);

//reflected radiance
float4 I = 0;

//texel corner directions
float3 L1, L2, L3, L4;
float3 L; //texel center direction
float4 Le; //texel color
float width = 1.0 / M; //width of one texel
float dWidth = 2.0 * width; //double width

for (int x = 0; x < M; x++)
for (int y = 0; y < M; y++)
{

//calculate texel coordinates
float2 p;
p.x = x * width;
p.y = y * width;
p = 2.0 * p - 1.0; //to range [-1,1]

Full Papers 124 ISBN 978-80-86943-98-5 



150 FPS without SLI, 185 FPS with SLI turned on

32 FPS without SLI, 63 FPS with SLI turned on

Figure 5: Sphere (about 2300 vertices and 2300 faces) in a colored box. Upper row with point to point form factor,
bottom row with our polygon to point form factor. As the object gets closer to the walls the virtual light sources
become visible in case of point to point form factor, while the polygon to point form factor method does not have
this artifact. Configuration: 700x700 resolution on NVIDIA GeForce 7950 GX2 with SLI support, AMD Athlon64
Dual 4600+ processor.

//calculate texel corner directions
L1 = float3(p.x, p.y, 1);
L2 = float3(p.x + dWidth, p.y, 1);
L3 = float3(p.x + dWidth, p.y + dWidth, 1);
L4 = float3(p.x, p.y + dWidth, 1);

//calculate texel center direction
L = float3(p.x + width, p.y + width, 1);

//read texel color
Le = float4(texCUBE(SmallEnvMap, L).rgb,1);

//get contribution from texel
I += 0.5 * Le * getContr(L1, L2, L3, L4,

pos, N,
SmallEnvMap);

}
return kd * I;

}

The following code shows thegetContr function
which calculates the contribution of a single texel of the
downsampled, low resolution cubemapSmallEnvMap
to the illumination of the shaded point. It’s input argu-
ments are: the four pixel corner directions (L1, L2,
L3, L4 ), the shaded point position and normal (pos,
N) and the cubemap sampler (SmallEnvMap ). This

function calculates the exact position of pixel corners
with the help of the stored distance values in the cube-
map’s alpha channel. Then evaluates the polygon-to-
point form factor described above: calculates the four
triangle areas given by the four edges of the texel and
summs their signed values. The contribution from light
sources located behind the tangent plane can be elimi-
nated by ignoring the sums with negative values.

float4 getContr(float3 L1, float3 L2,
float3 L3, float3 L4,
float3 pos, float3 N,
samplerCUBE SmallEnvMap)

{
//texel corner distances and positions
//from reference point

float d;
d = texCUBE(SmallEnvMap, L1).a;
L1 = d * normalize(L1);
d = texCUBE(SmallEnvMap, L2).a;
L2 = d * normalize(L2);
d = texCUBE(SmallEnvMap, L3).a;
L3 = d * normalize(L3);
d = texCUBE(SmallEnvMap, L4).a;
L4 = d * normalize(L4);Full Papers 125 ISBN 978-80-86943-98-5 



// corner directions from shaded point
float3 r1 = normalize(L1 - pos);
float3 r2 = normalize(L2 - pos);
float3 r3 = normalize(L3 - pos);
float3 r4 = normalize(L4 - pos);

//calculate projected triangle areas
float3 crossP = cross(r1, r2);
float r = length(crossP);
float dd = dot(r1, r2);
float tri1 = acos(dd) * dot(crossP / r, N);

crossP = cross(r2, r3);
r = length(crossP);
dd = dot(r1,r2);
float tri2 = acos(dd) * dot(crossP / r, N);

crossP = cross(r3, r4);
r = length(crossP);
dd = dot(r1,r2);
float tri3 = acos(dd) * dot(crossP / r, N);

crossP = cross(r4, r1);
r = length(crossP);
dd = dot(r1,r2);
float tri4= acos(dd) * dot(crossP / r, N);

//summation of triangle areas
return max(tri1 + tri2 + tri3 + tri4, 0);

}

5 RESULTS
In order to demonstrate the results, we took a simple
environment consisting of a colored cubic room. The
first set of pictures shows the Stanford bunny model in-
side the room (figure 4). The images of the first column
were rendered by the traditional environment mapping
technique for diffuse materials where a precalculated
convolution enables us to determine the irradiance at
the reference point with a single lookup. This method
has correct results only at the reference point and can-
not deal with the position of the object, thus the bunny
looks similar everywhere. The second column shows
the point to point form factor. Although this method
have pleasing results for points other than the reference
point, it has artifacts for points too close to the virtual
light sources. The right column shows our polygon-
to-point form factor method which has correct results
for arbitrary point positions. The difference between
point to point and polygon-to-point factors can clearly
be seen in the second set of pictures (figure 5). The first
row shows point to point while the second row shows
polygon-to-point form factor results. While the two
methods show similar results when the object is in the
center of the room there is a significant improvement
in case of the polygon-to-point factor method when the
sphere gets close to the walls.

The third set of pictures (figure 6) shows the Stanford
Buddha model in the room with point to point (left) and
polygon-to-point form factors (right). The images on
the left show visual errors at surface points near the en-
vironment (see the keystone of the statue).

In figure 7 the Buddha model is placed in a dimly
lit hallway. This environment was implemented in an
actual game engine called OGRE. The scene has per
pixel shading and reflections too.

In figure 8 the Buddha was placed in an other com-
plex environment: a scientific laboratory. These pic-
tures were also taken from an OGRE implementation.

6 CONCLUSIONS
This paper presented a GPU based method for comput-
ing diffuse reflections of the incoming radiance stored
in environment maps. The environment map is consid-
ered as a definition of large area light sources whose
reflections are obtained analytically without checking
self-shadowing. The presented method runs in real-
time and provides visually pleasing results.

ACKNOWLEDGEMENTS
This work has been supported by OTKA (T042735),
GameTools FP6 (IST-2-004363) project, and by the Na-
tional Office for Research and Technology (Hungary).

REFERENCES
[1] D.R. Baum, H.E. Rushmeier, and J.M. Winget.

Improving radiosity solutions through the use of
analytically determined form-factors.CComputer
Graphics (SIGGRAPH ’89 Proceedings), pages
325–334, 1989.

[2] J. F. Blinn and M. E. Newell. Texture and reflec-
tion in computer generated images.Communica-
tions of the ACM, 19(10):542–547, 1976.

[3] Carsten Dachsbacher and Marc Stamminger. Re-
flective shadow maps. InSI3D ’05: Proceedings
of the 2005 symposium on Interactive 3D graphics
and games, pages 203–231, New York, NY, USA,
2005. ACM Press.

[4] Gene Greger, Peter Shirley, Philip M. Hubbard,
and Donald P. Greenberg. The irradiance vol-
ume.IEEE Computer Graphics and Applications,
18(2):32–43, March/April 1998.

[5] László Szirmay Kalos and István Lazányi. Indi-
rect diffuse and glossy illumination on the gpu. In
SCCG 2006, pages 29–35, 2006.

[6] A. Keller. Instant radiosity. InSIGGRAPH ’97
Proceedings, pages 49–55, 1997.

[7] Gary King. Real-time computation of dynamic
irradiance environment maps. In Parr M., editor,
GPU Gems II, pages 167–170. Addison-Wesley,
2005.

[8] A.W. Kristensen, T. Akenine-Moller, and H.W.
Jensen. Precomputed local radiance transfer for
real-time lighting design. InSIGGRAPH 2005,
2005.

Full Papers 126 ISBN 978-80-86943-98-5 



40 FPS without SLI 7 FPS without SLI
85 FPS with SLI turned on 19 FPS with SLI turned on

Figure 6: Diffuse Stanford Buddha (about 35000 vertices and 67000 faces) in a box. Left image with point to
point form factor, right image with our polygon-to-point form factor method. Configuration: 700x700 resolution
on NVIDIA GeForce 7950 GX2 with SLI support, AMD Athlon64 Dual 4600+ processor.

Figure 7: Screen shots from Buddha in the hallway (the whole scene with the Buddha is about 38000 vertices and
70000 faces). OGRE implementation. 12 FPS, 800x600 resolution on NVIDIA GeForce 7800GT, AMD Athlon
64 3500+ processor.

[9] R. Mantiuk, S. Pattanaik, and K. Myszkowski.
Cube-map data structure for interactive global il-
lumination computation in dynamic diffuse envi-
ronments. InInternational Conference on Com-
puter Vision and Graphics, pages 530–538, 2002.

[10] Mangesh Nijasure, Sumanta Pattanaik, and Vineet
Goel. Real-time global illumination on the GPU.
Journal of Graphics Tools, 2004. To appear.

[11] R. Ramamoorthi and P. Hanrahan. An efficient
representation for irrandiance environment maps.
SIGGRAPH 2001, pages 497–500, 2001.

[12] P. Shirley, C. Wang, and K. Zimmerman. Monte
Carlo techniques for direct lighting calculations.
ACM Transactions on Graphics, 15(1):1–36,
1996.

[13] I. Wald, C. Benthin, and P. Slussalek. Interac-
tive global illumination in complex and highly oc-
cluded environments. In14th Eurographics Sym-

posium on Rendering, pages 74–81, 2003.

[14] B. Walter, S. Fernandez, A. Arbree, K. Bala,
M. Donikian, and D. P. Greenberg. Lightcuts: A
scalable approach to illumination. InSIGGRAPH
2005, 2005.

[15] G. Ward. Adaptive shadow testing for ray tracing.
In Rendering Workshop ’94, pages 11–20, 1994.

[16] G. J. Ward. The RADIANCE lighting simula-
tion and rendering system.Computer Graphics,
28(4):459–472, 1994.

[17] K. Zhou, Y. Hu, S. Lin, B. Guo, and H.-Y. Shum.
Precomputed shadow fields for dynamic scenes.
In SIGGRAPH 2005, 2005.

Full Papers 127 ISBN 978-80-86943-98-5 



Figure 8: Screen shots from Buddha in a laboratory (the whole scene with the Buddha is about 38000 vertices and
70000 faces). OGRE implementation. 15 FPS, 800x600 resolution on NVIDIA GeForce 7800GT, AMD Athlon
64 3500+ processor.

Full Papers 128 ISBN 978-80-86943-98-5 


	!WSCG2007_Full_Proceedings_Final-all_1.pdf
	!WSCG2007_Full_Proceedings_Numbered.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK



	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES



	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES


	!Full-N.pdf
	H07-full.pdf
	KeyWord   pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References


	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES


	TEMP.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK



	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES



	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES


	!Full-N.pdf
	H07-full.pdf
	KeyWord   pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References


	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES


	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References



	!WSCG2007_Full_Proceedings_Numbered_NEW.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf


	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf


	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES


	!Full-N.pdf
	H07-full.pdf
	KeyWord   pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References


	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES


	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References


	!WSCG2007_Full_Proceedings_Final-All-2.pdf
	!WSCG2007_Full_Proceedings_Numbered.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK



	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES



	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES


	!Full-N.pdf
	H07-full.pdf
	KeyWord   pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References


	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES


	TEMP.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK



	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES



	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES


	!Full-N.pdf
	H07-full.pdf
	KeyWord   pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References


	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES


	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References



	!WSCG2007_Full_Proceedings_Numbered_NEW.pdf
	!Full-A.pdf
	H31-full.pdf
	H31-full.pdf
	1.INTRODUCTION
	2.THE PROBLEM OF VIRTUAL WORLDS EXPLORATION
	3.HEURISTIC SEARCH BASED VIRTUAL CAMERA'S MOVEMENT AROUND A SCENE
	4.PRINCIPLES OF GOAL-BASED CAMERA MOVEMENT
	5.IMPLEMENTATION OF EXPLORATION TECHNIQUES AND RESULTS
	6.CONCLUSION AND FUTURE WORK



	!Full-F.pdf
	E43-full.pdf
	E43-full.pdf
	1. INTRODUCTION
	2. EXPONENTIAL B-SPLINES



	!Full-L.pdf
	A19-full.pdf
	INTRODUCTION
	BACKGROUND
	Related Work
	Information-Theoretic Measures
	Information-Theoretic Viewpoint Selection Measures

	SIMPLIFICATION ERROR METRIC BASED ON VIEWPOINT ENTROPY
	SIMPLIFICATION ALGORITHM
	Edge Collapse Error
	Updating Projected Areas

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES


	!Full-N.pdf
	H07-full.pdf
	KeyWord   pencil drawing, line integral convolution, image s
	1. Introduction
	2. Related Works
	3. LIC Pencil Filter
	4. Enhanced Region-based LIC Pencil Filter
	5. Experiment results
	6. Conclusion
	7. Acknowledgements
	8. References


	!Full-M.pdf
	A41-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. RAY-WAVES INTERSECTIONS
	3. LIGHT-WATER INTERACTIONS AND COMPLEX PHENOMENA
	4.1.1 Position
	4.1.2 Radiance

	5. RESULTS
	6. CONCLUSION
	7. REFERENCES


	G03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. SIFT OVERVIEW
	4. GPU-IMPLEMENTATION
	5. CONCLUSION
	6. References





