Upper and Lower Bounds on the Quality of the PCA Bounding Boxes

Darko Dimitrov, Christian Knauer, Klaus Kriegel, Günter Rote

Freie Universität Berlin

Known algorithms that solve bounding box problem $$\mathbbmm{R}^2$$

• Minimum-area bounding rectangle [Tousaint '83]

\mathbb{R}^2

• Minimum-area bounding rectangle [Tousaint '83]

• Heuristics

AABB (Axis Aligned Bounding Boxes)

R-tree

. . .

Packed *R*-tree [Rousopoulos, Leifker '85]

 R^+ -tree [Sellis, Rousopoulos, Faloutsos '87]]

 R^* -tree [Beckmann, Kriegel, Schneider, Seeger '90]

 \mathbb{R}^3

• Minimum-volume bounding box[O'Rourke '85] $O(n^3)$

\mathbb{R}^3

- Minimum-volume bounding box[O'Rourke '85] $O(n^3)$
- $(1 + \epsilon)$ -approximation [Barequet, Har-Peled '99]

$$O(n + \frac{1}{\epsilon^{4.5}})$$
$$O(n \log n + \frac{n}{\epsilon^3})$$
$$O(n \log n + \frac{1}{\epsilon^3})$$

\mathbb{R}^3

- Minimum-volume bounding box[O'Rourke '85] $O(n^3)$
- $(1 + \epsilon)$ -approximation [Barequet, Har-Peled '99]

$$O(n + \frac{1}{\epsilon^{4.5}})$$
$$O(n \log n + \frac{n}{\epsilon^3})$$
$$O(n \log n + \frac{1}{\epsilon^3})$$

• Heuristics

. . .

AABB (Axis Aligned Bounding Boxes) PCA-bounding box O(n), $O(n \log n)$, $O(n^{\lfloor \frac{d}{2} \rfloor + 1})$ OBB-tree [Gottchalk, Lin, Manocha, '96] BOXTREE [Barequet, Chazelle, Guibas, Mitchell, Tal '96]

 $X = \{x_1, x_2, \dots, x_m\}, \quad x_i \text{ is a } d\text{-dimensional vector}$ $c = (c_1, c_2, \dots, c_d) \quad \text{center of gravity of } X.$

 $X = \{x_1, x_2, \dots, x_m\}, \quad x_i \text{ is a } d\text{-dimensional vector}$ $c = (c_1, c_2, \dots, c_d) \quad \text{center of gravity of } X.$

$$v \in \mathbb{R}^d$$
: $var(X, v) = \frac{1}{m} \sum_{i=1}^m \langle x_i - c, v \rangle^2$

 $X = \{x_1, x_2, \dots, x_m\}, \quad x_i \text{ is a } d\text{-dimensional vector}$ $c = (c_1, c_2, \dots, c_d) \quad \text{center of gravity of } X.$

$$v \in \mathbb{R}^d$$
: $var(X, v) = \frac{1}{m} \sum_{i=1}^m \langle x_i - c, v \rangle^2$

most significant directions: v_1, v_2, \ldots, v_d

 $X = \{x_1, x_2, \dots, x_m\}, \quad x_i \text{ is a } d\text{-dimensional vector}$ $c = (c_1, c_2, \dots, c_d) \quad \text{center of gravity of } X.$

$$v \in \mathbb{R}^d$$
: $var(X, v) = \frac{1}{m} \sum_{i=1}^m \langle x_i - c, v \rangle^2$

most significant directions: v_1, v_2, \ldots, v_d

$$var(X, v) = \langle Cv, v \rangle$$
, $C_{ij} = \frac{1}{m} \sum_{k=1}^{m} (x_{ik} - c_i)(x_{jk} - c_j)$.

PCA

Lemma 1. For $1 \le j \le d$, let λ_j be the *j*-th largest eigenvalue of C and let v_j denote the unit eigenvector for λ_j . Let $B_j =$ $\{v_1, v_2, \ldots, v_j\}$, $sp(B_j)$ be the linear subspace spanned by B_j , and $sp(B_j)^{\perp}$ be the orthogonal complement of $sp(B_j)$. Then $\lambda_1 = \max\{var(X, v) : unit vector v in \mathbb{R}^d\}$ and for any $2 \le j \le d$,

i)
$$\lambda_j = \max\{var(X, v) : unit vector v in sp(B_{j-1})^{\perp}\}.$$

ii) $\lambda_j = \min\{var(X, v) : unit vector v in sp(B_j)\}.$

iii) $var(X, B_j) \ge var(X, S)$ for any set S of j orthogonal unit vectors.

$BB_{pca}(P)$

 $BB_{pca}(P)$

 $BB_{opt}(P)$

 $BB_{pca}(P)$

 $BB_{opt}(P)$

$$\lambda_d(P) = \frac{Vol(BB_{pca}(P))}{Vol(BB_{opt}(P))}$$

Ρ

 $BB_{pca}(P)$

 $BB_{opt}(P)$

$$\lambda_d(P) = \frac{Vol(BB_{pca}(P))}{Vol(BB_{opt}(P))}$$

 $\lambda_d = \sup \left\{ \lambda_d(P) \mid P \subseteq \mathbb{R}^d, Vol(CH(P)) > 0 \right\}$

Ρ

 $BB_{pca}(P)$

 $BB_{opt}(P)$

$$\lambda_{d,i}(P) = \frac{Vol(BB_{pca(d,i)}(P))}{Vol(BB_{opt}(P))}$$

 $\lambda_{d,i} = \sup \left\{ \lambda_{d,i}(P) \mid P \subseteq \mathbb{R}^d, Vol(CH(P)) > 0 \right\}$

Proposition 1. $\lambda_{d,0} = \infty$ for any $d \ge 2$.

Proposition 2. $\lambda_{d,i} = \infty$ for any $d \ge 4$ and any $1 \le i < d - 1$.

Proposition 1. $\lambda_{d,0} = \infty$ for any $d \ge 2$.

Proposition 2. $\lambda_{d,i} = \infty$ for any $d \ge 4$ and any $1 \le i < d - 1$.

 $\lambda_{d,d}, \quad \lambda_{d,d-1}$

Theorem 1. Let *P* be a *d*-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H.

Theorem 1. Let *P* be a *d*-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H.

Proof:

 $n = (1, 0, \dots, 0)$ $c = (0, 0, \dots, 0)$

Theorem 1. Let *P* be a *d*-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H.

Proof:

$$n = (1, 0, \dots, 0)$$

$$c = (0, 0, \dots, 0)$$

$$C = \begin{bmatrix} C_{11} & 0 & \dots & 0 \\ 0 & C_{22} & \dots & C_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & C_{d2} & \dots & C_{dd} \end{bmatrix}$$

Theorem 1. Let *P* be a *d*-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H.

Proof:

$$n = (1, 0, \dots, 0)$$

$$c = (0, 0, \dots, 0)$$

$$C = \begin{bmatrix} C_{11} & 0 & \dots & 0 \\ 0 & C_{22} & \dots & C_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & C_{d2} & \dots & C_{dd} \end{bmatrix}$$

 $det(C - \lambda I) = (C_{11} - \lambda)f(\lambda)$

Theorem 1. Let *P* be a *d*-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H.

Proof:

$$n = (1, 0, \dots, 0)$$

$$c = (0, 0, \dots, 0)$$

$$C = \begin{bmatrix} C_{11} & 0 & \dots & 0 \\ 0 & C_{22} & \dots & C_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & C_{d2} & \dots & C_{dd} \end{bmatrix}$$

 $det(C - \lambda I) = (C_{11} - \lambda)f(\lambda)$

 $f(\lambda)$ -polynomial of degree d-1

Theorem 1. Let *P* be a *d*-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H.

Proof:

$$n = (1, 0, \dots, 0)$$

$$c = (0, 0, \dots, 0)$$

$$C = \begin{bmatrix} C_{11} & 0 & \dots & 0 \\ 0 & C_{22} & \dots & C_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & C_{d2} & \dots & C_{dd} \end{bmatrix}$$

 $det(C - \lambda I) = (C_{11} - \lambda)f(\lambda)$

 $f(\lambda)$ -polynomial of degree d-1

 $\lambda = C_{11}$

Theorem 1. Let *P* be a *d*-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H.

Proof:

$$n = (1, 0, \dots, 0)$$

$$c = (0, 0, \dots, 0)$$

$$C = \begin{bmatrix} C_{11} & 0 & \dots & 0 \\ 0 & C_{22} & \dots & C_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & C_{d2} & \dots & C_{dd} \end{bmatrix}$$

 $det(C - \lambda I) = (C_{11} - \lambda)f(\lambda)$

 $f(\lambda)$ -polynomial of degree d-1

$$\lambda = C_{11}$$
 $e = (1, 0, \dots, 0)$

Lower bounds \mathbb{R}^2

Theorem 2. $\lambda_{2,1} \geq 2$ and $\lambda_{2,2} \geq 2$.

Lower bounds \mathbb{R}^2

Theorem 2. $\lambda_{2,1} \geq 2$ and $\lambda_{2,2} \geq 2$.

Theorem 2. $\lambda_{2,1} \geq 2$ and $\lambda_{2,2} \geq 2$.

$$R_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$$

Theorem 3. $\lambda_{3,2} \ge 4$ and $\lambda_{3,3} \ge 4$.

Theorem 3. $\lambda_{3,2} \ge 4$ and $\lambda_{3,3} \ge 4$.

Theorem 3. $\lambda_{3,2} \ge 4$ and $\lambda_{3,3} \ge 4$.

$$R_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}}\\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}}\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Theorem 4. If *d* is a power of two, then $\lambda_{d,d-1} \ge \sqrt{d}^d$ and $\lambda_{d,d} \ge \sqrt{d}^d$.

Theorem 4. If *d* is a power of two, then $\lambda_{d,d-1} \ge \sqrt{d}^d$ and $\lambda_{d,d} \ge \sqrt{d}^d$.

Theorem 4. If *d* is a power of two, then $\lambda_{d,d-1} \ge \sqrt{d}^d$ and $\lambda_{d,d} \ge \sqrt{d}^d$.

$$a_i = (0, \dots, 0, \frac{\sqrt{d}}{2}, 0, \dots, 0), \quad \text{for } i = 1 \dots d$$

$$b_i = -a_i$$

convex polytop P_d with vertices: $V = \{a_i, b_i | 1 \le i \le d\}$

Theorem 4. If *d* is a power of two, then $\lambda_{d,d-1} \ge \sqrt{d}^d$ and $\lambda_{d,d} \ge \sqrt{d}^d$.

$$a_i = (0, \dots, 0, \frac{\sqrt{d}}{2}, 0, \dots, 0), \quad \text{for } i = 1 \dots d$$
$$b_i = -a_i$$

convex polytop P_d with vertices: $V = \{a_i, b_i | 1 \le i \le d\}$

unique PCs: $a_{ii} := a_{ii} + \epsilon_i, \quad i = 1 \dots d, \quad \epsilon_1 > \dots > \epsilon_d$

Theorem 4. If *d* is a power of two, then $\lambda_{d,d-1} \ge \sqrt{d}^d$ and $\lambda_{d,d} \ge \sqrt{d}^d$.

$$a_i = (0, \dots, 0, \frac{\sqrt{d}}{2}, 0, \dots, 0), \quad \text{for } i = 1 \dots d$$

$$b_i = -a_i$$

convex polytop P_d with vertices: $V = \{a_i, b_i | 1 \le i \le d\}$

unique PCs: $a_{ii} := a_{ii} + \epsilon_i, \quad i = 1 \dots d, \quad \epsilon_1 > \dots > \epsilon_d$

 $\epsilon_i \to 0, \quad i = 1 \dots d \quad \Longrightarrow \quad vol(BB_{pca}(P_d)) \to \sqrt{d}^d$

Theorem 4. If *d* is a power of two, then $\lambda_{d,d-1} \ge \sqrt{d}^d$ and $\lambda_{d,d} \ge \sqrt{d}^d$.

$$a_i = (0, \dots, 0, \frac{\sqrt{d}}{2}, 0, \dots, 0), \quad \text{for } i = 1 \dots d$$
$$b_i = -a_i$$

convex polytop P_d with vertices: $V = \{a_i, b_i | 1 \le i \le d\}$

unique PCs: $a_{ii} := a_{ii} + \epsilon_i, \quad i = 1 \dots d, \quad \epsilon_1 > \dots > \epsilon_d$

 $\epsilon_i \to 0, \quad i = 1 \dots d \implies vol(BB_{pca}(P_d)) \to \sqrt{d}^d$

$$R_{d} = \frac{1}{\sqrt{2}} \begin{bmatrix} R_{\frac{d}{2}} & R_{\frac{d}{2}} \\ \hline R_{\frac{d}{2}} & -R_{\frac{d}{2}} \end{bmatrix}$$

Theorem 4. If *d* is a power of two, then $\lambda_{d,d-1} \ge \sqrt{d}^d$ and $\lambda_{d,d} \ge \sqrt{d}^d$.

$$a_i = (0, \dots, 0, \frac{\sqrt{d}}{2}, 0, \dots, 0), \quad \text{for } i = 1 \dots d$$
$$b_i = -a_i$$

convex polytop P_d with vertices: $V = \{a_i, b_i | 1 \le i \le d\}$

unique PCs: $a_{ii} := a_{ii} + \epsilon_i, \quad i = 1 \dots d, \quad \epsilon_1 > \dots > \epsilon_d$

$$\epsilon_i \to 0, \quad i = 1 \dots d \implies vol(BB_{pca}(P_d)) \to \sqrt{d}^d$$

$$R_{d} = \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{R_{\frac{d}{2}} & R_{\frac{d}{2}}}{\frac{R_{\frac{d}{2}}}{2} & -R_{\frac{d}{2}}} \end{bmatrix} \qquad R_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Theorem 4. If *d* is a power of two, then $\lambda_{d,d-1} \ge \sqrt{d}^d$ and $\lambda_{d,d} \ge \sqrt{d}^d$.

$$a_i = (0, \dots, 0, \frac{\sqrt{d}}{2}, 0, \dots, 0), \quad \text{for } i = 1 \dots d$$
$$b_i = -a_i$$

convex polytop P_d with vertices: $V = \{a_i, b_i | 1 \le i \le d\}$

unique PCs: $a_{ii} := a_{ii} + \epsilon_i, \quad i = 1 \dots d, \quad \epsilon_1 > \dots > \epsilon_d$

$$\epsilon_i \to 0, \quad i = 1 \dots d \implies vol(BB_{pca}(P_d)) \to \sqrt{d}^d$$

$$R_{d} = \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{R_{\frac{d}{2}} & R_{\frac{d}{2}}}{\frac{R_{\frac{d}{2}}}{2} & -R_{\frac{d}{2}}} \end{bmatrix} \qquad R_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

 $R_d(P_d)$ fits into unit cube $[-0.5, 0.5]^d$

 λ_{d_1} is a lower bound in \mathbb{R}^{d_1}

- λ_{d_1} is a lower bound in \mathbb{R}^{d_1}
- λ_{d_2} is a lower bound in \mathbb{R}^{d_2}

 λ_{d_1} is a lower bound in \mathbb{R}^{d_1} $\implies \lambda_{d_1} \cdot \lambda_{d_2}$ is a lower bound in $\mathbb{R}^{d_1+d_2}$ λ_{d_2} is a lower bound in \mathbb{R}^{d_2}

 λ_{d_1} is a lower bound in \mathbb{R}^{d_1} $\implies \lambda_{d_1} \cdot \lambda_{d_2}$ is a lower bound in $\mathbb{R}^{d_1+d_2}$ λ_{d_2} is a lower bound in \mathbb{R}^{d_2}

dimension	\mathbb{R}	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	\mathbb{R}^5	\mathbb{R}^{6}	\mathbb{R}^7	\mathbb{R}^{8}	\mathbb{R}^9	\mathbb{R}^{10}
lower bound	1	2	4	16	16	32	64	4096	4096	8192

Theorem 5. $\lambda_{2,1} \leq 2.737$.

Theorem 5. $\lambda_{2,1} \leq 2.737$.

Theorem 5. $\lambda_{2,1} \leq 2.737$.

 $a_{pca}(P) \ge b_{pca}(P)$

Theorem 5. $\lambda_{2,1} \leq 2.737$.

$$a_{pca}(P) \ge b_{pca}(P)$$

$$\alpha = \alpha(P) = \frac{a_{pca}(P)}{a_{opt}(P)}$$

Theorem 5. $\lambda_{2,1} \leq 2.737$.

$$a_{pca}(P) \ge b_{pca}(P)$$

$$\alpha = \alpha(P) = \frac{a_{pca}(P)}{a_{opt}(P)} \qquad \qquad \beta = \beta(P) = \frac{b_{pca}(P)}{b_{opt}(P)}$$

Theorem 5. $\lambda_{2,1} \leq 2.737$.

$$a_{pca}(P) \ge b_{pca}(P)$$

$$\alpha = \alpha(P) = \frac{a_{pca}(P)}{a_{opt}(P)} \qquad \beta = \beta(P) = \frac{b_{pca}(P)}{b_{opt}(P)}$$
$$\lambda_{2,1}(P) = \alpha(P) \cdot \beta(P)$$

Theorem 5. $\lambda_{2,1} \leq 2.737$.

$$a_{pca}(P) \ge b_{pca}(P)$$

 $a_{opt}(P) \ge b_{opt}(P)$

 $\alpha = \alpha(P) = \frac{a_{pca}(P)}{a_{opt}(P)} \qquad \beta = \beta(P) = \frac{b_{pca}(P)}{b_{opt}(P)}$ $\lambda_{2,1}(P) = \alpha(P) \cdot \beta(P)$

 $\eta(P) = a_{opt}(P)/b_{opt}(P)$

Theorem 5. $\lambda_{2,1} \le 2.737.$

Theorem 5. $\lambda_{2,1} \leq 2.737.$

Theorem 5. $\lambda_{2,1} \leq 2.737.$

Lemma 2. $\lambda_{2,1}(P) \leq \eta + \frac{1}{\eta}$ and $\lambda_{2,2}(P) \leq \eta + \frac{1}{\eta}$ for any point set P with fixed aspect ratio $\eta(P) = \eta$.

Theorem 5. $\lambda_{2,1} \leq 2.737.$

Lemma 2. $\lambda_{2,1}(P) \leq \eta + \frac{1}{\eta}$ and $\lambda_{2,2}(P) \leq \eta + \frac{1}{\eta}$ for any point set P with fixed aspect ratio $\eta(P) = \eta$.

$$\lambda_{2,1} \le \sup_{\eta \ge 1} \left\{ \min\left(\eta + \frac{1}{\eta}, \sqrt{\frac{6\eta + 2}{\eta}}\sqrt{1 + \frac{1}{\eta^2}}\right) \right\}$$

$$b_{pca} \le a_{pca} \le diam(P)$$

$$b_{pca} \le a_{pca} \le diam(P) \le \sqrt{a_{opt}^2 + b_{opt}^2} = a_{opt}\sqrt{1 + \frac{1}{\eta^2}}$$

Lemma 2. $\lambda_{2,1}(P) \leq \eta + \frac{1}{\eta}$ and $\lambda_{2,2}(P) \leq \eta + \frac{1}{\eta}$ for any point set P with fixed aspect ratio $\eta(P) = \eta$.

$$b_{pca} \le a_{pca} \le diam(P) \le \sqrt{a_{opt}^2 + b_{opt}^2} = a_{opt}\sqrt{1 + \frac{1}{\eta^2}}$$

 $a_{opt} = \eta \cdot b_{opt}$

$$b_{pca} \le a_{pca} \le diam(P) \le \sqrt{a_{opt}^2 + b_{opt}^2} = a_{opt}\sqrt{1 + \frac{1}{\eta^2}}$$

$$a_{opt} = \eta \cdot b_{opt}$$

$$\alpha\beta \le \eta \left(\sqrt{1+\frac{1}{\eta^2}}\right)^2 = \eta + \frac{1}{\eta}$$

$$d^2(\mathcal{P}, l_{\frac{1}{2}}) \ge d^2(\mathcal{P}, l_{pca})$$

$$d^2(\mathcal{P}, l_{\frac{1}{2}}) \ge d^2(\mathcal{P}, l_{pca})$$

$$d^2(\mathcal{P}, l) = \int_{x \in \mathcal{P}} d^2(x, l) ds$$
Lemma 3. $\lambda_{2,1}(P) \leq \sqrt{\frac{6\eta+2}{\eta}}\sqrt{1+\frac{1}{\eta^2}}$ for any point set P with fixed aspect ratio $\eta(P) = \eta$.

$$\frac{1}{2}a_{opt}b_{opt}^{2} + \frac{1}{6}b_{opt}^{3} \ge d^{2}(\mathcal{P}, l_{\frac{1}{2}}) \ge d^{2}(\mathcal{P}, l_{pca})$$

$$d^2(\mathcal{P}, l) = \int_{x \in \mathcal{P}} d^2(x, l) ds$$

Lemma 3. $\lambda_{2,1}(P) \leq \sqrt{\frac{6\eta+2}{\eta}}\sqrt{1+\frac{1}{\eta^2}}$ for any point set P with fixed aspect ratio $\eta(P) = \eta$.

$$\frac{1}{2}a_{opt}b_{opt}^{2} + \frac{1}{6}b_{opt}^{3} \ge d^{2}(\mathcal{P}, l_{\frac{1}{2}}) \ge d^{2}(\mathcal{P}, l_{pca}) \ge \frac{b_{pca}^{2}}{12}\sqrt{a_{pca}^{2} + 4b_{pca}^{2}}$$

$$d^2(\mathcal{P}, l) = \int_{x \in \mathcal{P}} d^2(x, l) ds$$

Lemma 3. $\lambda_{2,1}(P) \leq \sqrt{\frac{6\eta+2}{\eta}}\sqrt{1+\frac{1}{\eta^2}}$ for any point set P with fixed aspect ratio $\eta(P) = \eta$.

$$\frac{1}{2}a_{opt}b_{opt}^{2} + \frac{1}{6}b_{opt}^{3} \ge d^{2}(\mathcal{P}, l_{\frac{1}{2}}) \ge d^{2}(\mathcal{P}, l_{pca}) \ge \frac{b_{pca}^{2}}{12}\sqrt{a_{pca}^{2} + 4b_{pca}^{2}}$$

$$d^2(\mathcal{P}, l) = \int_{x \in \mathcal{P}} d^2(x, l) ds$$

$$\frac{1}{2}a_{opt}b_{opt}^2 + \frac{1}{6}b_{opt}^3 \ge \frac{b_{pca}^2}{12}\sqrt{a_{pca}^2 + 4b_{pca}^2}$$

Lemma 4.
$$d^2(\mathcal{P}, l_{\frac{1}{2}}) \le d^2(\mathcal{BB}_{\mathcal{OPT}}, l_{\frac{1}{2}}) \quad (= \frac{b_{opt}^2 a_{opt}}{2} + \frac{b_{opt}^3}{6})$$

Lemma 4. $d^{2}(\mathcal{P}, l_{\frac{1}{2}}) \leq d^{2}(\mathcal{BB}_{\mathcal{OPT}}, l_{\frac{1}{2}}) \quad (= \frac{b_{opt}^{2} a_{opt}}{2} + \frac{b_{opt}^{3}}{6})$

Lemma 5.
$$d^{2}(\mathcal{P}, l_{pca}) \geq d^{2}(\mathcal{T}_{upp}, l_{pca}) + d^{2}(\mathcal{T}_{low}, l_{pca}) \\ \geq \frac{b_{pca}^{2}}{12}\sqrt{a_{pca}^{2} + 4b_{pca}^{2}}.$$

Future work and open problems

- Improving the upper bound in \mathbb{R}^2
- Upper bound in \mathbb{R}^3
- Upper bounds for an approximation factor in arbitrary dimension

Future work and open problems

- Improving the upper bound in \mathbb{R}^2
- Upper bound in \mathbb{R}^3
- Upper bounds for an approximation factor in arbitrary dimension