Upper and Lower Bounds on the Quality of the PCA Bounding Boxes

Darko Dimitrov, Christian Knauer, Klaus Kriegel, Günter Rote

Freie Universität Berlin

Known algorithms that solve bounding box problem

$$
\mathbb{R}^{2}
$$

- Minimum-area bounding rectangle [Tousaint '83]

Known algorithms that solve bounding box problem

$$
\mathbb{R}^{2}
$$

- Minimum-area bounding rectangle [Tousaint '83]
- Heuristics

AABB (Axis Aligned Bounding Boxes)
R-tree
Packed R-tree [Rousopoulos, Leifker '85]
R^{+}-tree [Sellis, Rousopoulos, Faloutsos '87]]
R^{*}-tree [Beckmann, Kriegel, Schneider, Seeger '90]

Known algorithms that solve bounding box problem

$$
\mathbb{R}^{3}
$$

- Minimum-volume bounding box[O'Rourke '85] $O\left(n^{3}\right)$

Known algorithms that solve bounding box problem

$$
\mathbb{R}^{3}
$$

- Minimum-volume bounding box[O'Rourke '85] $O\left(n^{3}\right)$
- (1 $+\epsilon$)-approximation [Barequet, Har-Peled '99]

$$
\begin{aligned}
& O\left(n+\frac{1}{\epsilon^{4 \cdot 5}}\right) \\
& O\left(n \log n+\frac{n}{\epsilon^{3}}\right) \\
& O\left(n \log n+\frac{1}{\epsilon^{3}}\right)
\end{aligned}
$$

Known algorithms that solve bounding box problem

\mathbb{R}^{3}

- Minimum-volume bounding box[O'Rourke '85] $O\left(n^{3}\right)$
- (1 $+\epsilon$)-approximation [Barequet, Har-Peled '99]

$$
\begin{aligned}
& O\left(n+\frac{1}{\epsilon^{4 \cdot 5}}\right) \\
& O\left(n \log n+\frac{n}{\epsilon^{3}}\right) \\
& O\left(n \log n+\frac{1}{\epsilon^{3}}\right)
\end{aligned}
$$

- Heuristics

AABB (Axis Aligned Bounding Boxes)
$P C A$-bounding box $O(n), O(n \log n), O\left(n^{\left\lfloor\frac{d}{2}\right\rfloor+1}\right)$
OBB-tree [Gottchalk, Lin, Manocha, '96]
BOXTREE [Barequet, Chazelle, Guibas, Mitchell, Tal '96]

Principal Component Analysis

$$
\begin{gathered}
X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, \quad x_{i} \text { is a } d \text {-dimensional vector } \\
c=\left(c_{1}, c_{2}, \ldots, c_{d}\right) \quad \text { center of gravity of } X .
\end{gathered}
$$

Principal Component Analysis

$$
\begin{gathered}
X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, \quad x_{i} \text { is a } d \text {-dimensional vector } \\
c=\left(c_{1}, c_{2}, \ldots, c_{d}\right) \quad \text { center of gravity of } X . \\
v \in \mathbb{R}^{d}: \quad \operatorname{var}(X, v)=\frac{1}{m} \sum_{i=1}^{m}\left\langle x_{i}-c, v\right\rangle^{2}
\end{gathered}
$$

Principal Component Analysis

$$
\begin{aligned}
& X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, \quad x_{i} \text { is a } d \text {-dimensional vector } \\
& c=\left(c_{1}, c_{2}, \ldots, c_{d}\right) \quad \text { center of gravity of } X . \\
& v \in \mathbb{R}^{d}: \quad \operatorname{var}(X, v)=\frac{1}{m} \sum_{i=1}^{m}\left\langle x_{i}-c, v\right\rangle^{2}
\end{aligned}
$$

most significant directions: $v_{1}, v_{2}, \ldots, v_{d}$

Principal Component Analysis

$$
\begin{aligned}
& X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, \quad x_{i} \text { is a } d \text {-dimensional vector } \\
& c=\left(c_{1}, c_{2}, \ldots, c_{d}\right) \quad \text { center of gravity of } X . \\
& v \in \mathbb{R}^{d}: \quad \operatorname{var}(X, v)=\frac{1}{m} \sum_{i=1}^{m}\left\langle x_{i}-c, v\right\rangle^{2}
\end{aligned}
$$

most significant directions: $v_{1}, v_{2}, \ldots, v_{d}$

$$
\operatorname{var}(X, v)=\langle C v, v\rangle, \quad C_{i j}=\frac{1}{m} \sum_{k=1}^{m}\left(x_{i k}-c_{i}\right)\left(x_{j k}-c_{j}\right) .
$$

PCA

Lemma 1. For $1 \leq j \leq d$, let λ_{j} be the j-th largest eigenvalue of C and let v_{j} denote the unit eigenvector for λ_{j}. Let $B_{j}=$ $\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}, s p\left(B_{j}\right)$ be the linear subspace spanned by B_{j}, and $s p\left(B_{j}\right)^{\perp}$ be the orthogonal complement of $s p\left(B_{j}\right)$. Then $\lambda_{1}=\max \left\{\operatorname{var}(X, v)\right.$: unit vector v in $\left.\mathbb{R}^{d}\right\}$ and for any $2 \leq$ $j \leq d$,
i) $\lambda_{j}=\max \left\{\operatorname{var}(X, v)\right.$: unit vector v in $\left.s p\left(B_{j-1}\right)^{\perp}\right\}$.
ii) $\lambda_{j}=\min \left\{\operatorname{var}(X, v):\right.$ unit vector v in $\left.s p\left(B_{j}\right)\right\}$.
iii) $\operatorname{var}\left(X, B_{j}\right) \geq \operatorname{var}(X, S)$ for any set S of j orthogonal unit vectors.

P

P

$B B_{p c a}(P)$

$B B_{p c a}(P)$

$B B_{\text {opt }}(P)$

$B B_{p c a}(P)$

$B B_{\text {opt }}(P)$

$$
\lambda_{d}(P)=\frac{V o l\left(B B_{p c a}(P)\right)}{\operatorname{Vol}\left(B B_{o p t}(P)\right)}
$$

$B B_{p c a}(P)$

$B B_{\text {opt }}(P)$

$$
\lambda_{d}(P)=\frac{V o l\left(B B_{p c a}(P)\right)}{\operatorname{Vol}\left(B B_{o p t}(P)\right)}
$$

$$
\lambda_{d}=\sup \left\{\lambda_{d}(P) \mid P \subseteq \mathbb{R}^{d}, \operatorname{Vol}(C H(P))>0\right\}
$$

$B B_{p c a}(P)$

$B B_{o p t}(P)$

$$
\lambda_{d, i}(P)=\frac{\operatorname{Vol}\left(B B_{p c a(d, i)}(P)\right)}{\operatorname{Vol}\left(B B_{o p t}(P)\right)}
$$

$$
\lambda_{d, i}=\sup \left\{\lambda_{d, i}(P) \mid P \subseteq \mathbb{R}^{d}, \operatorname{Vol}(C H(P))>0\right\}
$$

Lower bounds

Lower bounds

Proposition 1. $\quad \lambda_{d, 0}=\infty$ for any $d \geq 2$.

Lower bounds

Proposition 1. $\quad \lambda_{d, 0}=\infty \quad$ for any $d \geq 2$.

Lower bounds

Proposition 1. $\quad \lambda_{d, 0}=\infty \quad$ for any $d \geq 2$.

Lower bounds

Proposition 1. $\quad \lambda_{d, 0}=\infty$ for any $d \geq 2$.

Lower bounds

Proposition 1. $\quad \lambda_{d, 0}=\infty$ for any $d \geq 2$.

Lower bounds

Proposition 1. $\quad \lambda_{d, 0}=\infty$ for any $d \geq 2$.

Lower bounds

Proposition 1. $\quad \lambda_{d, 0}=\infty$ for any $d \geq 2$.

Proposition 2. $\quad \lambda_{d, i}=\infty$ for any $d \geq 4$ and any $1 \leq i<d-1$.

Lower bounds

Proposition 1. $\quad \lambda_{d, 0}=\infty$ for any $d \geq 2$.

Proposition 2. $\quad \lambda_{d, i}=\infty$ for any $d \geq 4$ and any $1 \leq i<d-1$.

$$
\lambda_{d, d}, \quad \lambda_{d, d-1}
$$

PCA and reflective symmetry

Theorem 1. Let P be a d-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H .

PCA and reflective symmetry

Theorem 1. Let P be a d-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H .

Proof:
$n=(1,0, \ldots, 0)$
$c=(0,0, \ldots, 0)$

PCA and reflective symmetry

Theorem 1. Let P be a d-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H .

Proof:

$$
C=\left[\begin{array}{cccc}
C_{11} & 0 & \ldots & 0 \\
0 & C_{22} & \ldots & C_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
0 & C_{d 2} & \ldots & C_{d d}
\end{array}\right]
$$

PCA and reflective symmetry

Theorem 1. Let P be a d-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H .

Proof:

$$
\begin{aligned}
& n=(1,0, \ldots, 0) \\
& c=(0,0, \ldots, 0)
\end{aligned} \quad C=\left[\begin{array}{cccc}
C_{11} & 0 & \ldots & 0 \\
0 & C_{22} & \ldots & C_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
0 & C_{d 2} & \ldots & C_{d d}
\end{array}\right]
$$

PCA and reflective symmetry

Theorem 1. Let P be a d-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H .

Proof:

$$
C=\left[\begin{array}{cccc}
C_{11} & 0 & \ldots & 0 \\
0 & C_{22} & \ldots & C_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
0 & C_{d 2} & \ldots & C_{d d}
\end{array}\right]
$$

$$
\operatorname{det}(C-\lambda I)=\left(C_{11}-\lambda\right) f(\lambda) \quad f(\lambda) \text {-polynomial of degree } d-1
$$

PCA and reflective symmetry

Theorem 1. Let P be a d-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H .

Proof:

$$
\begin{gathered}
\begin{array}{l}
n=(1,0, \ldots, 0) \\
c=(0,0, \ldots, 0)
\end{array} \quad C=\left[\begin{array}{cccc}
C_{11} & 0 & \ldots & 0 \\
0 & C_{22} & \ldots & C_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
0 & C_{d 2} & \ldots & C_{d d}
\end{array}\right] \\
\operatorname{det}(C-\lambda I)=\left(C_{11}-\lambda\right) f(\lambda) \quad f(\lambda) \text {-polynomial of degree } d-1 \\
\lambda=C_{11}
\end{gathered}
$$

PCA and reflective symmetry

Theorem 1. Let P be a d-dimensional point set symmetric with respect to a hyperplane H. Then, a principal component of P is orthogonal to H .

Proof:

$$
\begin{gathered}
\begin{array}{l}
n=(1,0, \ldots, 0) \\
c=(0,0, \ldots, 0)
\end{array} \quad C=\left[\begin{array}{cccc}
C_{11} & 0 & \ldots & 0 \\
0 & C_{22} & \ldots & C_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
0 & C_{d 2} & \ldots & C_{d d}
\end{array}\right] \\
\operatorname{det}(C-\lambda I)=\left(C_{11}-\lambda\right) f(\lambda) \quad f(\lambda) \text {-polynomial of degree } d-1 \\
\lambda=C_{11} \quad e=(1,0, \ldots, 0)
\end{gathered}
$$

Lower bounds \mathbb{R}^{2}

Theorem 2. $\lambda_{2,1} \geq 2$ and $\lambda_{2,2} \geq 2$.

Lower bounds \mathbb{R}^{2}

Theorem 2. $\lambda_{2,1} \geq 2$ and $\lambda_{2,2} \geq 2$.

Lower bounds \mathbb{R}^{2}

Theorem 2. $\lambda_{2,1} \geq 2$ and $\lambda_{2,2} \geq 2$.

$$
R_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Lower bounds \mathbb{R}^{3}

Theorem 3. $\lambda_{3,2} \geq 4$ and $\lambda_{3,3} \geq 4$.

Lower bounds \mathbb{R}^{3}

Theorem 3. $\lambda_{3,2} \geq 4$ and $\lambda_{3,3} \geq 4$.

Lower bounds \mathbb{R}^{3}

Theorem 3. $\lambda_{3,2} \geq 4$ and $\lambda_{3,3} \geq 4$.

$$
R_{3}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Lower bounds \mathbb{R}^{d}

Theorem 4. If d is a power of two, then $\lambda_{d, d-1} \geq \sqrt{d}^{d}$ and $\lambda_{d, d} \geq \sqrt{d}^{d}$.

Lower bounds \mathbb{R}^{d}

Theorem 4. If d is a power of two, then $\lambda_{d, d-1} \geq \sqrt{d}^{d}$ and $\lambda_{d, d} \geq \sqrt{d}^{d}$.

$$
\begin{aligned}
& \text { ~ } a_{i i} \\
& a_{i}=\left(0, \ldots, 0, \frac{\sqrt{d}}{2}, 0, \ldots, 0\right), \quad \text { for } i=1 \ldots d \\
& b_{i}=-a_{i}
\end{aligned}
$$

Lower bounds \mathbb{R}^{d}

Theorem 4. If d is a power of two, then $\lambda_{d, d-1} \geq \sqrt{d}^{d}$ and $\lambda_{d, d} \geq \sqrt{d}^{d}$.
$a_{i}=\left(0, \ldots, 0, \frac{\sqrt{d}}{2}, 0, \ldots, 0\right), \quad$ for $i=1 \ldots d$
$b_{i}=-a_{i}$
convex polytop P_{d} with vertices: $V=\left\{a_{i}, b_{i} \mid 1 \leq i \leq d\right\}$

Lower bounds \mathbb{R}^{d}

Theorem 4. If d is a power of two, then $\lambda_{d, d-1} \geq \sqrt{d}^{d}$ and $\lambda_{d, d} \geq \sqrt{d}^{d}$.
$a_{i}=\left(0, \ldots, 0, \frac{\sqrt{d}}{2}, 0, \ldots, 0\right), \quad$ for $i=1 \ldots d$
$b_{i}=-a_{i}$
convex polytop P_{d} with vertices: $V=\left\{a_{i}, b_{i} \mid 1 \leq i \leq d\right\}$ unique PCs: $\quad a_{i i}:=a_{i i}+\epsilon_{i}, \quad i=1 \ldots d, \quad \epsilon_{1}>\cdots>\epsilon_{d}$

Lower bounds \mathbb{R}^{d}

Theorem 4. If d is a power of two, then $\lambda_{d, d-1} \geq \sqrt{d}^{d}$ and $\lambda_{d, d} \geq \sqrt{d}^{d}$.
$\simeq a_{i i}$
$a_{i}=\left(0, \ldots, 0, \frac{\sqrt{d}}{2}, 0, \ldots, 0\right), \quad$ for $i=1 \ldots d$
$b_{i}=-a_{i}$
convex polytop P_{d} with vertices: $V=\left\{a_{i}, b_{i} \mid 1 \leq i \leq d\right\}$ unique PCs: $\quad a_{i i}:=a_{i i}+\epsilon_{i}, \quad i=1 \ldots d, \quad \epsilon_{1}>\cdots>\epsilon_{d}$ $\epsilon_{i} \rightarrow 0, \quad i=1 \ldots d \Longrightarrow \operatorname{vol}\left(B B_{p c a}\left(P_{d}\right)\right) \rightarrow \sqrt{d}^{d}$

Lower bounds \mathbb{R}^{d}

Theorem 4. If d is a power of two, then $\lambda_{d, d-1} \geq \sqrt{d}^{d}$ and $\lambda_{d, d} \geq \sqrt{d}^{d}$.

$$
\begin{aligned}
& \stackrel{a_{i i}}{a_{i}=\left(0, \ldots, 0, \frac{\sqrt{d}}{2}, 0, \ldots, 0\right), \quad \text { for } i=1 \ldots d} \\
& b_{i}=-a_{i}
\end{aligned}
$$

convex polytop P_{d} with vertices: $V=\left\{a_{i}, b_{i} \mid 1 \leq i \leq d\right\}$ unique PCs: $\quad a_{i i}:=a_{i i}+\epsilon_{i}, \quad i=1 \ldots d, \quad \epsilon_{1}>\cdots>\epsilon_{d}$ $\epsilon_{i} \rightarrow 0, \quad i=1 \ldots d \Longrightarrow \quad \operatorname{vol}\left(B B_{p c a}\left(P_{d}\right)\right) \rightarrow \sqrt{d}^{d}$

$$
R_{d}=\frac{1}{\sqrt{2}}\left[\begin{array}{c|c}
R_{\frac{d}{2}} & R_{\frac{d}{2}} \\
\hline R_{\frac{d}{2}} & -R_{\frac{d}{2}}
\end{array}\right]
$$

Lower bounds \mathbb{R}^{d}

Theorem 4. If d is a power of two, then $\lambda_{d, d-1} \geq \sqrt{d}^{d}$ and $\lambda_{d, d} \geq \sqrt{d}^{d}$.

$$
\begin{aligned}
& \stackrel{a_{i i}}{a_{i}=\left(0, \ldots, 0, \frac{\sqrt{d}}{2}, 0, \ldots, 0\right), \quad \text { for } i=1 \ldots d} \\
& b_{i}=-a_{i}
\end{aligned}
$$

convex polytop P_{d} with vertices: $V=\left\{a_{i}, b_{i} \mid 1 \leq i \leq d\right\}$ unique PCs: $\quad a_{i i}:=a_{i i}+\epsilon_{i}, \quad i=1 \ldots d, \quad \epsilon_{1}>\cdots>\epsilon_{d}$

$$
\epsilon_{i} \rightarrow 0, \quad i=1 \ldots d \quad \Longrightarrow \quad \operatorname{vol}\left(B B_{p c a}\left(P_{d}\right)\right) \rightarrow \sqrt{d}^{d}
$$

$$
R_{d}=\frac{1}{\sqrt{2}}\left[\begin{array}{c|c}
R_{\frac{d}{2}} & R_{\frac{d}{2}} \\
\hline R_{\frac{d}{2}} & -R_{\frac{d}{2}}
\end{array}\right]
$$

$$
R_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Lower bounds \mathbb{R}^{d}

Theorem 4. If d is a power of two, then $\lambda_{d, d-1} \geq \sqrt{d}^{d}$ and $\lambda_{d, d} \geq \sqrt{d}^{d}$.

$$
\begin{aligned}
& \stackrel{a_{i i}}{a_{i}=\left(0, \ldots, 0, \frac{\sqrt{d}}{2}, 0, \ldots, 0\right), \quad \text { for } i=1 \ldots d} \\
& b_{i}=-a_{i}
\end{aligned}
$$

convex polytop P_{d} with vertices: $V=\left\{a_{i}, b_{i} \mid 1 \leq i \leq d\right\}$ unique PCs: $\quad a_{i i}:=a_{i i}+\epsilon_{i}, \quad i=1 \ldots d, \quad \epsilon_{1}>\cdots>\epsilon_{d}$ $\epsilon_{i} \rightarrow 0, \quad i=1 \ldots d \Longrightarrow \quad \operatorname{vol}\left(B B_{p c a}\left(P_{d}\right)\right) \rightarrow \sqrt{d}^{d}$

$$
R_{d}=\frac{1}{\sqrt{2}}\left[\begin{array}{c|c}
R_{\frac{d}{2}} & R_{\frac{d}{2}} \\
\hline R_{\frac{d}{2}} & -R_{\frac{d}{2}}
\end{array}\right] \quad R_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

$$
R_{d}\left(P_{d}\right) \quad \text { fits into unit cube }[-0.5,0.5]^{d}
$$

Lower bounds \mathbb{R}^{d}

Lower bounds \mathbb{R}^{d}

$\lambda_{d_{1}}$ is a lower bound in $\mathbb{R}^{d_{1}}$

Lower bounds \mathbb{R}^{d}

$\lambda_{d_{1}}$ is a lower bound in $\mathbb{R}^{d_{1}}$
$\lambda_{d_{2}}$ is a lower bound in $\mathbb{R}^{d_{2}}$

Lower bounds \mathbb{R}^{d}

$\lambda_{d_{1}}$ is a lower bound in $\mathbb{R}^{d_{1}}$

$$
\Longrightarrow \quad \lambda_{d_{1}} \cdot \lambda_{d_{2}} \text { is a lower bound in } \mathbb{R}^{d_{1}+d_{2}}
$$

$\lambda_{d_{2}}$ is a lower bound in $\mathbb{R}^{d_{2}}$

Lower bounds \mathbb{R}^{d}

$\lambda_{d_{1}}$ is a lower bound in $\mathbb{R}^{d_{1}}$ $\Longrightarrow \quad \lambda_{d_{1}} \cdot \lambda_{d_{2}}$ is a lower bound in $\mathbb{R}^{d_{1}+d_{2}}$
$\lambda_{d_{2}}$ is a lower bound in $\mathbb{R}^{d_{2}}$

dimension	\mathbb{R}	\mathbb{R}^{2}	\mathbb{R}^{3}	\mathbb{R}^{4}	\mathbb{R}^{5}	\mathbb{R}^{6}	\mathbb{R}^{7}	\mathbb{R}^{8}	\mathbb{R}^{9}	\mathbb{R}^{10}
lower bound	1	2	4	16	16	32	64	4096	4096	8192

Upper bound $\quad \mathbb{R}^{2}$

Theorem 5. $\lambda_{2,1} \leq 2.737$.

Upper bound \mathbb{R}^{2}

Theorem 5. $\lambda_{2,1} \leq 2.737$.

Upper bound \mathbb{R}^{2}

Theorem 5. $\lambda_{2,1} \leq 2.737$.

$$
a_{p c a}(P) \geq b_{p c a}(P)
$$

$$
a_{o p t}(P) \geq b_{o p t}(P)
$$

Upper bound \mathbb{R}^{2}

Theorem 5. $\lambda_{2,1} \leq 2.737$.

$a_{p c a}(P) \geq b_{p c a}(P)$

$$
\alpha=\alpha(P)=\frac{a_{p c a}(P)}{a_{o p t}(P)}
$$

Upper bound \mathbb{R}^{2}

Theorem 5. $\lambda_{2,1} \leq 2.737$.

Upper bound \mathbb{R}^{2}

Theorem 5. $\lambda_{2,1} \leq 2.737$.

$$
\begin{gathered}
a_{p c a}(P) \geq b_{p c a}(P) \quad a_{o p t}(P) \geq b_{o p t}(P) \\
\alpha=\alpha(P)=\frac{a_{p c a}(P)}{a_{o p t}(P)} \quad \beta=\beta(P)=\frac{b_{p c a}(P)}{b_{o p t}(P)} \\
\lambda_{2,1}(P)=\alpha(P) \cdot \beta(P)
\end{gathered}
$$

Upper bound \mathbb{R}^{2}

Theorem 5. $\lambda_{2,1} \leq 2.737$.

$$
\begin{gathered}
a_{p c a}(P) \geq b_{p c a}(P) \quad a_{o p t}(P) \geq b_{o p t}(P) \\
\alpha=\alpha(P)=\frac{a_{p c a}(P)}{a_{o p t}(P)} \quad \beta=\beta(P)=\frac{b_{p c a}(P)}{b_{o p t}(P)} \\
\lambda_{2,1}(P)=\alpha(P) \cdot \beta(P) \\
\eta(P)=a_{o p t}(P) / b_{o p t}(P)
\end{gathered}
$$

Upper bound \mathbb{R}^{2}

Theorem 5. $\quad \lambda_{2,1} \leq 2.737$.

Upper bound \mathbb{R}^{2}

Theorem 5. $\quad \lambda_{2,1} \leq 2.737$.

Lemma 2. $\lambda_{2,1}(P) \leq \eta+\frac{1}{\eta} \quad$ and $\quad \lambda_{2,2}(P) \leq \eta+\frac{1}{\eta}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

Upper bound \mathbb{R}^{2}

Theorem 5. $\quad \lambda_{2,1} \leq 2.737$.

Lemma 2. $\lambda_{2,1}(P) \leq \eta+\frac{1}{\eta} \quad$ and $\quad \lambda_{2,2}(P) \leq \eta+\frac{1}{\eta}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

Lemma 3. $\lambda_{2,1}(P) \leq \sqrt{\frac{6 \eta+2}{\eta} \sqrt{1+\frac{1}{\eta^{2}}}}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

Upper bound \mathbb{R}^{2}

Theorem 5. $\quad \lambda_{2,1} \leq 2.737$.

Lemma 2. $\lambda_{2,1}(P) \leq \eta+\frac{1}{\eta} \quad$ and $\quad \lambda_{2,2}(P) \leq \eta+\frac{1}{\eta}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

Lemma 3. $\lambda_{2,1}(P) \leq \sqrt{\frac{6 \eta+2}{\eta} \sqrt{1+\frac{1}{\eta^{2}}}}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

$$
\lambda_{2,1} \leq \sup _{\eta \geq 1}\left\{\min \left(\eta+\frac{1}{\eta}, \sqrt{\frac{6 \eta+2}{\eta} \sqrt{1+\frac{1}{\eta^{2}}}}\right)\right\}
$$

Upper bound \mathbb{R}^{2}

Lemma 2. $\quad \lambda_{2,1}(P) \leq \eta+\frac{1}{\eta} \quad$ and $\quad \lambda_{2,2}(P) \leq \eta+\frac{1}{\eta}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

Upper bound \mathbb{R}^{2}

Lemma 2. $\quad \lambda_{2,1}(P) \leq \eta+\frac{1}{\eta} \quad$ and $\quad \lambda_{2,2}(P) \leq \eta+\frac{1}{\eta}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

$$
b_{p c a} \leq a_{p c a} \leq \operatorname{diam}(P)
$$

Upper bound \mathbb{R}^{2}

Lemma 2. $\quad \lambda_{2,1}(P) \leq \eta+\frac{1}{\eta} \quad$ and $\quad \lambda_{2,2}(P) \leq \eta+\frac{1}{\eta}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

$$
b_{p c a} \leq a_{p c a} \leq \operatorname{diam}(P) \leq \sqrt{a_{o p t}^{2}+b_{o p t}^{2}}=a_{o p t} \sqrt{1+\frac{1}{\eta^{2}}}
$$

Upper bound \mathbb{R}^{2}

Lemma 2. $\quad \lambda_{2,1}(P) \leq \eta+\frac{1}{\eta} \quad$ and $\quad \lambda_{2,2}(P) \leq \eta+\frac{1}{\eta}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

$$
\begin{gathered}
b_{p c a} \leq a_{p c a} \leq \operatorname{diam}(P) \leq \sqrt{a_{o p t}^{2}+b_{o p t}^{2}}=a_{o p t} \sqrt{1+\frac{1}{\eta^{2}}} \\
a_{o p t}=\eta \cdot b_{o p t}
\end{gathered}
$$

Upper bound \mathbb{R}^{2}

Lemma 2. $\quad \lambda_{2,1}(P) \leq \eta+\frac{1}{\eta} \quad$ and $\quad \lambda_{2,2}(P) \leq \eta+\frac{1}{\eta}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

$$
\begin{gathered}
b_{p c a} \leq a_{p c a} \leq \operatorname{diam}(P) \leq \sqrt{a_{o p t}^{2}+b_{o p t}^{2}}=a_{o p t} \sqrt{1+\frac{1}{\eta^{2}}} \\
a_{o p t}=\eta \cdot b_{o p t} \\
\alpha \beta \leq \eta\left(\sqrt{1+\frac{1}{\eta^{2}}}\right)^{2}=\eta+\frac{1}{\eta}
\end{gathered}
$$

Upper bound \mathbb{R}^{2}

Lemma 3. $\quad \lambda_{2,1}(P) \leq \sqrt{\frac{6 \eta+2}{\eta} \sqrt{1+\frac{1}{\eta^{2}}}}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

Upper bound \mathbb{R}^{2}

Lemma 3. $\quad \lambda_{2,1}(P) \leq \sqrt{\frac{6 \eta+2}{\eta} \sqrt{1+\frac{1}{\eta^{2}}}}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

$$
d^{2}\left(\mathcal{P}, l_{\frac{1}{2}}\right) \geq d^{2}\left(\mathcal{P}, l_{p c a}\right)
$$

Upper bound \mathbb{R}^{2}

Lemma 3. $\quad \lambda_{2,1}(P) \leq \sqrt{\frac{6 \eta+2}{\eta} \sqrt{1+\frac{1}{\eta^{2}}}}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

$$
\begin{gathered}
d^{2}\left(\mathcal{P}, l_{\frac{1}{2}}\right) \geq d^{2}\left(\mathcal{P}, l_{\text {pca }}\right) \\
d^{2}(\mathcal{P}, l)=\int_{x \in \mathcal{P}} d^{2}(x, l) d s
\end{gathered}
$$

Upper bound \mathbb{R}^{2}

Lemma 3. $\quad \lambda_{2,1}(P) \leq \sqrt{\frac{6 \eta+2}{\eta} \sqrt{1+\frac{1}{\eta^{2}}}}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

$$
\frac{1}{2} a_{o p t} b_{o p t}^{2}+\frac{1}{6} b_{o p t}^{3} \quad \geq d^{2}\left(\mathcal{P}, l_{\frac{1}{2}}\right) \geq d^{2}\left(\mathcal{P}, l_{p c a}\right)
$$

$$
d^{2}(\mathcal{P}, l)=\int_{x \in \mathcal{P}} d^{2}(x, l) d s
$$

Upper bound \mathbb{R}^{2}

Lemma 3. $\quad \lambda_{2,1}(P) \leq \sqrt{\frac{6 \eta+2}{\eta} \sqrt{1+\frac{1}{\eta^{2}}}}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

$$
\begin{gathered}
\frac{1}{2} a_{o p t} b_{o p t}^{2}+\frac{1}{6} b_{o p t}^{3} \geq d^{2}\left(\mathcal{P}, l_{\frac{1}{2}}\right) \geq d^{2}\left(\mathcal{P}, l_{p c a}\right) \geq \frac{b_{p c a}^{2}}{12} \sqrt{a_{p c a}^{2}+4 b_{p c a}^{2}} \\
d^{2}(\mathcal{P}, l)=\int_{x \in \mathcal{P}} d^{2}(x, l) d s
\end{gathered}
$$

Upper bound \mathbb{R}^{2}

Lemma 3. $\quad \lambda_{2,1}(P) \leq \sqrt{\frac{6 \eta+2}{\eta} \sqrt{1+\frac{1}{\eta^{2}}}}$ for any point set P with fixed aspect ratio $\eta(P)=\eta$.

$$
\begin{gathered}
\frac{1}{2} a_{o p t} b_{o p t}^{2}+\frac{1}{6} b_{o p t}^{3} \geq d^{2}\left(\mathcal{P}, l_{\frac{1}{2}}\right) \geq d^{2}\left(\mathcal{P}, l_{p c a}\right) \geq \frac{b_{p c a}^{2}}{12} \sqrt{a_{p c a}^{2}+4 b_{p c a}^{2}} \\
d^{2}(\mathcal{P}, l)=\int_{x \in \mathcal{P}} d^{2}(x, l) d s
\end{gathered}
$$

$$
\frac{1}{2} a_{o p t} b_{o p t}^{2}+\frac{1}{6} b_{o p t}^{3} \geq \frac{b_{p c a}^{2}}{12} \sqrt{a_{p c a}^{2}+4 b_{p c a}^{2}}
$$

Upper bound \mathbb{R}^{2}

Lemma 4. $d^{2}\left(\mathcal{P}, l_{\frac{1}{2}}\right) \leq d^{2}\left(\mathcal{B} \mathcal{B O P T}_{\text {OT }}, l_{\frac{1}{2}}\right) \quad\left(=\frac{b_{\text {opt }}{ }^{2} a_{\text {opt }}}{2}+\frac{b_{\text {opt }}{ }^{3}}{6}\right)$

Upper bound \mathbb{R}^{2}

Lemma 4. $d^{2}\left(\mathcal{P}, l_{\frac{1}{2}}\right) \leq d^{2}\left(\mathcal{B} \mathcal{B}_{\mathcal{O P T}}, l_{\frac{1}{2}}\right) \quad\left(=\frac{b_{\text {opt }}{ }^{2} a_{\text {opt }}}{2}+\frac{b_{\text {opt }}{ }^{3}}{6}\right)$

Upper bound \mathbb{R}^{2}

Upper bound \mathbb{R}^{2}

$$
\text { Lemma 5. } \quad \begin{aligned}
d^{2}\left(\mathcal{P}, l_{p c a}\right) & \geq d^{2}\left(\mathcal{T}_{u p p}, l_{p c a}\right)+d^{2}\left(\mathcal{T}_{l o w}, l_{p c a}\right) \\
& \left.\geq \frac{b_{p c a}^{2}}{12} \sqrt{a_{p c a}^{2}+4 b_{p c a}^{2}}\right) .
\end{aligned}
$$

Future work and open problems

- Improving the upper bound in \mathbb{R}^{2}
- Upper bound in \mathbb{R}^{3}
- Upper bounds for an approximation factor in arbitrary dimension

Future work and open problems

- Improving the upper bound in \mathbb{R}^{2}
- Upper bound in \mathbb{R}^{3}
- Upper bounds for an approximation factor in arbitrary dimension

