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ABSTRACT

Over the past years, Structure-from-Motion calibratiqgoathms have become widely popular for many applicationsom-

puter graphics. From an unordered set of photographs, thepge to robustly estimate intrinsic and extrinsic camararme-

ters for each image. One major drawback is the quadratic atatipn time of existing algorithms. This paper presenffeint

strategies to overcome this problem by only working on stshskimages and merging the results. A quantitative corspari
of these strategies reveals the trade-off between accaratgomputation time.

Keywords: Camera Calibration, Sparse Bundle Adjustment, Strudnam-Motion.

1 INTRODUCTION this tool, however, has serious issues regarding the
computation time.
Many of today’s vision and graphics applications |n this paper we examine the reasons for these is-
are based on well-calibrated cameras. The camesges and propose new methods to significantly reduce
calibration process has been widely explored in the pagite computation time whilst keeping the reprojection
years and many methods have been proposed - rangi@gor minimal. The paper is outlined as follows. We
from classical checkerboard recordings to calibratiogive a brief overview to recent advances in calibration
without a priori known patterns [PG\04, SSS08]. methods in Section 2, also focussing on Bundler’s run-
These recent methods require the recorded imagg@fe issues. Afterwards, we introduce two strategies
only to obtain a multitude of feature points (e.g.to tackle these problems in Section 3. We justify our
SIFT-features) for a propeslf-calibration. Especially methods with a quantitative analysis in Section 4 and
image-based modeling and rendering applicationsonclude in Section 5.
benefit from the development: The camera setup can be
freely chosen and a calibration recording session hgs RELATED WORK
become obselete. Furthermore, the camera steup does o
not need to be fixed during the recording anymore/Vhile our work mainly improves Bundler by Snavely
Scenes recorded with multiple handheld cameras c&b &l- [SSS08], a renowned tool for 3D object recon-
nowadays be reconstructed by employing the selgtruction from ungallprated multicamera footage used
calibration methods. The method most widely use§y Many other scientists [WMC04, Sna08, JB09], we
in the research community is the Sparse Bundle Aoalsolrelate to the_ foII(_)wing previous work in the field of
justment, orBundler for short, introduced by Snavely Multicamera calibration.
et al. [SSS08]. The recorded images are searched forA 9ood overview of calibration algorithms can
feature points, e.g. SIFT-features. Feature points, thBg found in the paper by Triggs et al. [TMHF99].
are shared between any two images are consideréfe commercial tooBoujou [vic09] reconstructs 3D
as correspondence points. After an initial estimate dpodels from moving uncalibrated cameras. Hasler
camera parameters, these points are triangulated afgal-[HRT 09, THWSO08] calibrate multiple moving
reprojected to the images. The reprojection error, i.¢insynchronized cameras by first finding each camera’s
the euclidean distance between the original featufajectory (using KLT-tracking and RANSAC-fitting).
locations and their reprojections on the image plan8n approach based on geometric dissimilarity mea-
is minimized during the so-called bundle adjustmengurementis described by Denzler et al. [BBDO09]. They

Being considered as a milestone in the community€ly on a less restrictive matching method compared to
[5S508].

However, most calibration approaches, including the
Sparse Bundle Adjustment [SSS08], suffer from long
computation times. Schwartz et al. [SK09] investigate

Permission to make digital or hard copies of all or part oBihi the preconditions of multicamera calibration and sug-
work for personal or classroom use is granted without fe@igeal L.
that copies are not made or distributed for profit or comnaéfci 9€St to merge connected components for an initial es-
advantage and that copies bear this notice and the fullcsitah the|  timate to achieve computation speedup. Byrod et al.
first page. To copy otherwise, or republish, to post on sereeto suggest an iterative adjusting approach by solving the

redistribute to lists, requires prior specific permissiod/ar a fee. h g -
problem with a conjugate gradient method. They pre-
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condition the matrix with a multiscale Gauss-Seidel ap
proach. He et al. [HQHO8] try to improve the com-
putation time by propagating matches between came
pairs. SImage @[
Our approaches, instead, address the computatic ~*T"*"®

time problem by applying Bundler to a limited selec-

tion of images, and incorporating the other images at [ 15t calibration subset N,
later stage.

2.1 Bundler: Sparse Bundle Adjustment

As our work is based on the work of Snavely etFigure 1: Merge Images Approach fior= 2 andk = 9.

al. [SSS08], we will give a brief introduction into Two subsets are created and separate_d independently
the Bundler Calibration pipeline. Bundler accepts afblué and red boxes). All subsets contain a set of com-
unordered set of photographs as input, along with affon Images (yellow boxes)._ Both subsets are merged
initial estimate of the focal lengths of the cameras thafia & Procrustes transformation.

took these images. A calibration of the images is the

output of the algorithm which provides the relativefirst, then+1st, the 2+ 1st, etc.. image are put in
rotationsR and translations of all cameras along with SubsefN;. The seconda+2nd, 7+ 2nd, etc.. image

the intrinsic parameters (focal length and radial lende placed in subsét, and so forth, see Fig. 1. After-
distortion). The first part of the Pipeline is an imagevards, we make sure that the image subsets also contain
feature extraction. Snavely et al. proposed to use SIF§eme common images. We select e&tthimage from
features [Low04] for this task. This step runs in lineathe original image set and add it to each subset if it is
time. A pairwise feature matching phase matches theot already present in that set. Each subset is calibrated
key features of all images pairs. This step runs ifvith Bundler independently. We are now faced with

quadratic time. The two most promising images ar&e problem that we obtainertalibrations of the same
chosen for an initial calibration. After calibration, anScene. We arbitrarily pick the first subset to be our refer-

initial set of 3D points is obtained via triangulation of €Nce set and merge the other calibration results into this

the corresponding points. The bundle adjustment stdférence system. The subset's reference systems differ
refines the calibration by minimizing the reprojectionn their locationz,, their rotationR, and their scalén,.
errors of the obtained points. The remaining camera20, a Procrustes transformatidrhas to be obtained for
are added one by one: If at least six CorrespondenC§§Ch subset to align it with the reference set. When this
to the already reconstructed 3D points are knowrffansformation is know, new rotation matrid@g., and

an initial estimate of its parameters is calculated vidanslation vectorty,, are obtained. We recall that the
Direct Linear Transformation. A bundle adjustmentPositionp of a camera can be derived from its rotation
step refines the initial parameters of the camera, nelatrixRand its translation vectar

reconstructed 3D points may be added and a global o7

bundle adjustment step is performed. This final phase p=-Rt. @)
runs in quadratic time. We can see that both the key

feature maiching and the bundle adjustment run "Bt images when we compute the camera positions for

quadratic time with respect to th? amoumiof input the common images in each set. For each image sub-
gna%(las._ t':']he fov:)rarlrl]zcomputatlonal complexity Ofset, we obtain the transformatigrthat maps the set of
undler is therefor&(n). common camera locations to the one of the reference
3 SPEEDUP STRATEGIES calibration. We make use _of the matlab |mplementat|pn
o _ of the Procrustes Analysis. The same transformation
Data sets containing just a few hundred images mayan be used to obtain the camera locatipag,, the
lead to run-times of several days on a single CPU. Inptation matricesiney and the translation vectotgsy:
stead of focussing on algorithmic techniques to tacklghe new camera locations and rotation matrices can de-

this problem, our approaches reduce the number of imiyed by directly applyingp. The translation vectors are
ages used as an input to the sparse bundle adjustmes¥mputed as follows:

We developed two different strategies that let Bundler
only run on subsets of images, thus decreasing the over- thaw = 7RTT1€W*1 Praw )
all run-time.

. 2nd calibration subset N,

Dcommon images contained in all subsets

We can obtain a set of common points for all subsets

The speedup caused by this strategy can be formal-
3.1 Mergelmages Approach ized by a reduction of the complexity fro@(n?),

We partition the set of images intosubsets of equal wheremis the total number of images, @(n- (m/n+
size. Given an (arbitrarily chosen) order of images, then/k)?). As we will show in Section 4, an adequate se-
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Figure 4: Runtimes for Bundler using both speedup
strategies with different parametenrsandk. We ob-
tained results fon=1,2,4,8,16,32 andk = 20, 30, 50.
Please note thait= 1 is identic to a calibration without
speedup. Compared to the original Bundler calibration
(n = 1), a significant speedup can be achieved in all
cases.

Figure 3: A representative frame of the test sequencewith different parameters quantitatively determine the
tradeoff between computation time and accuracy.

lection ofk andm can cause a dramatic speedup, while As an error measure, we use the reprojection er-

preserving a high accuracy, i.e. a low reprojection erroror of the reconstructed 3D points. In order to make
all speedup scenarios comparable, we have to make a

3.2 Add Images Approach slight alteration to the Add Image approach. When us-

ing this approach, the reconstructed point sets tend to

The original implementation of bundler provides thebe much smaller with increasing Because not all im-

rtuni im n alr libr )
opportunity to add images to an already calibrated S%ltges are used for Bundle Adjustment, less reconstructed

of images. We exploit this feature and determine Doints are added. It is also quite likely that only these

subset of images that is calibrated instead of the com-_. : ) .
plete set of images. We add evemn image into the points will be incorporated into that set that have a low

subset, calibrate the subset and add all remaining irTr](_aprOJectmn error: Bundler either optimizes or discards

ages via Bundlersdd Images feature, Fig 2. When points. Therefore, we store a list of reconstructed 3D

adding images to the calibrated set of images, no nebpints and their image locations when running Bundler

bundle adjustment iteration is performed. l.e., only thgwthout a speedup strategy. When evaluating the repro-

. ) : . ejection error with the Add Images method, we recon-
optimal rotation matrix and translation vector for th . . .
struct the full set of 3D points by triangulation of the

new image is determined, no new 3D points are in-_ " : .

S reviously stored image locations. We then measure the
serted and no optimization of the camera parameters~ - )
is performed. Therefore. adding images runs in IinearreprOJectlon error of the full set of 3D points. For both

P : ! 9 9 speedup methods, we calibrate with= 2,4,8,16,32.

time. Instead of the original computationl complexity S
of O(?), the Add Images Approach has a complexityln the case of the Merge Images method, we did indi-

of O((m/n)2 + (m— m/n)), which is even faster than vidual test runs for each differentwith k = 20, 30,50.
the Merge Image Approac,:h. The computation times, Fig. 4, reveal that the Add

Images Approach outperforms the Merge Images Ap-

proach in terms of speed. For= 32 it takes just 6 in-
4 RESULTS stead of 120 minutes to perform the calibration. This is
Our speedup strategies are tested on the graffiti inmot surprising, as the Merge Images method doesirun
age sequence, Fig. 3. This test sequence contains teparate calibrations instead of only a single one. With
recordings of 5 non-stationary camcorders, all pointedomputation times as low as 22 minutes, the Merge Im-
towards a juggler in front of a highly textured wall. ages method still achieves a remarkable result. When
Each camera recorded 40 video frames, resulting in @oosingk > n, the runtimes start to increase again, as
total size of 200 images. The image size is 480px a lot of redundant frames are incorporated into the cal-
270px. We calibrate the set of 200 images with the origibrations. All calibration runs are performed on a 2.66
inal bundler algorithm, the Merge Images ApproaclGhz Intel CPU using a single core. In defense of the
and the Add Images Approach. Several calibration runiglerge Images method one must admit that the Merge
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Figure 5: Average reprojection error for both the Addrigure 6: Standard deviation of the reprojection error
Images and the Merge Images approach. Please ndte both speedup strategies.
thatn = 1 is identic to a calibration without speedup.
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