
Fiberbundle-Based Visualization of a Stirred-Tank
Flow

Werner Benger

Feng Jijao
Center for Computation &

Technology
at Louisiana State University

239 Johnston Hall
USA, LA 70803, Baton Rouge

werner@cct.lsu.edu
fjiao@cct.lsu.edu

Marcel Ritter
Center for Computation &

Technology at LSU
and

Department of Computer Science
University of Innsbruck
Technikerstrasse 21a

Austria, A-6020 Innsbruck
marcel@cct.lsu.edu

Sumanta Acharya
 Somnath Roy

Louisiana State University
Department of Mechanical

Engineering
USA, LA 70803, Baton Rouge

acharya@me.lsu.edu

sroy13@lsu.edu

ABSTRACT
We describe a novel approach to treat data from a complex numerical simulation in a unified environment using
a generic data model for scientific visualization. The model is constructed out of building blocks in a hierarchical
scheme of seven levels, out of which only three are exposed to the end-user. This generic scheme allows for a
wide variety of input formats, and results in powerful capabilities to connect data. We review the theory of this
data model, implementation aspects in our visualization environment, and its application to computational fluid
dynamic simulation of flow in an impeller-stirred tank. The computational data are given as a velocity vector
field and a scalar pressure field on a mesh consisting of 2088 blocks in curvilinear coordinates.

Keywords
Computational fluid dynamics, data model, stream lines, scientific visualization.

1 INTRODUCTION
Computational fluid dynamics (CFD) has advanced
significantly in the last few years and can now
provide high fidelity temporally and spatially
resolved numerical data. This data is based on
meshes that range from a few million cells to tens of
million cells, and for several hundred thousand time
steps, with data files that are of the order of terabytes.
A key challenge therefore is the ability to easily and
cost-effectively mine this data for key features of the
flow field and to display these spatially evolving
features in the space-time domain of interest. In this
work, we present an integrated interdisciplinary
effort that takes utilizes of a generic approach to
handle scientific data sets leading to new
visualization capabilities in a natural way.
The CFD dataset is obtained from a large eddy
simulation (LES) of flow inside a stirred tank reactor
(STR), such as depicted in Figure 1. The STRs are
widely used as mixing devices in chemical industry.
The STR that we investigated here is a cylindrical

tank with a hemispherical
bottom, vertical baffles
mounted along the
cylindrical walls, and
rotating impellers
consisting rectangular
blades with 45° pitch
angle mounted on a shaft
passing through its
center, see Figure 2.
As the impeller rotates,
its blades pump the fluid
axially downward
towards the bottom of the
tank. The fluid-jet then

hits the hemispherical bottom wall and sets in a
circulating motion of fluid within the tank promoting
mixing between the top and the bottom of the tank.

Figure 1: Stir Tank
(Courtesy Dow Chemicals)

The calculations are
done on a multi-block
curvilinear mesh as
shown in Figure 3.
Calculations are done
on nearly three
million cells using a
multi-block body
fitted finite volume
flow solver. Since the tank contains a set of impeller
blades that are rotating and also contains stationary

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

Figure 2: Impeller
geometry

WSCG 2009 Communication Papers 117 ISBN 978-80-86943-94-7

mailto:werner@cct.lsu.edu
mailto:fjiao@cct.lsu.edu
mailto:marcel@cct.lsu.edu
mailto:acharya@me.lsu.edu
mailto:sroy13@lsu.edu

features such as baffles on the outer walls, special
algorithms (Immersed Boundary Methods) are used
to accommodate moving interfaces. The method
intrinsically uses a fixed curvilinear mesh fixed to the
stationary features of the geometry and tracks or
flags the location of the nodes adjacent to the moving
surfaces or boundaries. At these flagged nodes,
forcing terms/interpolations are performed to satisfy
the boundary conditions at the moving surfaces. This
approach has been extensively tested in an earlier
communication [TRHA07] where computational
solution for a similar stirred tank flow has been
validated with experimental observations.
The visualizations presented here show the axial
pumping as well as the circulation zones suggesting
the mechanisms of fluid mixing inside the tank. As
the impeller blade moves, the fluid jet stream coming
out of the top and side wall of the impeller blade
interact with each other to form a vortical motion
following which fluid elements move in azimuthal
direction [RA07]. These vortex structures are
identified from the existences of pressure minima.
While traditional commercial visualization packages
such as Tecplot (www.tecplot.com) and Ensight
(www.ensight.com) are commonly used for
visualization, they have inherent limitations. It is
therefore important to be able to develop
sophisticated visualization capabilities that allow a
variety of features and controls not commonly
available with the commercial software. The VISH
visualization environment [BRH07] employed here
has been designed to allow a step in this direction.

2 DATA MODEL CONCEPT
“A common denominator for scientific data already
exists, we just have to use them.” was the paradigm
under which Butler & Pendley [BP89] proposed the
mathematics of fiber bundle as a foundation for a
data model that is able to describe all cases needed
for scientific visualization in a common way, since
the mathematics behind all the different
implementation is an universal language of science

already. Yet a common data model has hardly been
used, with the IBM Data Explore one of the few
exceptions. The idea of using a fiber bundle as
inspiration for a common data model has been
revived by Benger [Ben04] to handle the complexity
of data stemming from general relativity. These
concepts have been built upon and further refined by
Heinzl [HEI07] to develop generic software
components. In these approaches, concepts have been
based on the mathematics of topology and
differential geometry to describe data sets.

2.1 Mathematics of Fiber Bundles
A fiber bundle is in the mathematical sense is set of a
total space E and a base space B with a projection
map f such that the union of fibers of a neighborhood
U of each point of B is homeomorphic to U×F with F
the so called fiber space and the projection of U×F is
U again. It is also said that the space F “fibers” over
the base space B. If the total space E can be written
globally as E=B×F, then E is called a “trivial
bundle”. The paradigm is that numerical data sets
that are usually needed for scientific visualization can
be formulated as trivial bundles. In practice it means
that we may distinguish data sets by their properties
in the base space and the fiber space. At each point of
the – discretized – base space we have some data in
the fiber space attached.

Figure 3: Boundaries of the 2088 curvilinear blocks
of the computational mesh

The structure of the base space is described as a CW-
complex, which categorizes the topological structure
of an n-dimensional base space by a sequence of k-
dimensional skeletons, with the dimensionality of the
skeletons ranging from zero to n. These skeletons
carry certain properties of the data set: the 0-skeleton
describing vertices, the 1-skeleton the edges, 2-
skeleton the faces, etc., of a triangulation of some
mesh. For structured grids the topological properties
are given implicitly.
The structure of the fiber space is (usually) not
discrete and given by the properties of the
geometrical object residing there, such as a scalar,
vector, co-vector, tensor. Same as the base space, the
fiber space has a specific dimensionality, though the
dimensionality of the base space and fiber space is
independent. If the fiber space has vector space
properties, then the fiber bundle is called a vector
bundle. The most simple vector bundle is the
tangential bundle of a manifold, which consists of
the manifold as base space and the space of
tangential vectors at each point. With n the
dimensionality of the manifold, the dimension of the
tangential bundle is 2n.
Basically a fiber bundle is a set of points with
neighborhood information attached to each of them.
An n-dimensional array is a very simple case of a
fiber bundle (with neighborhood information given
implicitly).

WSCG 2009 Communication Papers 118 ISBN 978-80-86943-94-7

http://www.tecplot.com/
http://www.ensight.com/

2.2 Benefits of Fiber Bundles
The concept of a fiber bundle leads to a natural
distinction of data describing the base space and data
describing the fiber space. This distinction is not
common use in computer graphics, where topological
properties (base space) are frequently intermixed
with geometrical properties (coordinate
representations). Operations in the fiber space can
however be formulated independently from the base
space, which leads to a more reusable design of
software components. Coordinate information,
formally part of the base space, can as well be
considered as fiber, leading to further generalization.
The data sets describing a fiber are ideally stored as
contiguous arrays in memory or disk, which allows
for optimized array and vector operations. Such a
storage layout turns out to be particularly useful for
communicating data with the GPU using vertex
buffer objects: fibers are basically vertex arrays in
the notation of computer graphics.

2.3 The 7-Level Hierarchy
In the data model implementation of [Ben04] data are
formulated in a graph of maximally seven levels,
each level representing a certain property of the
entire data set. These levels, constituting a “Bundle”,
are:

1. Slice
2. Grid
3. Skeleton
4. Representation
5. Field
6. (Fragment)
7. (Compound Elements)

Actual data arrays are stored only below the “Field”
level. An actual data set is described by which data
sets exist in which level. The actual meaning of each
level is described elsewhere [Ben04], [BRH07],
[Ben08]. Only two of these hierarchy levels are
exposed to the end-user, these are the “Grid” and
“Field” levels.

2.4 Bundles, Grids and Fields
An entire dataset, including all time steps or any
information given on a parameter space in general, is
denoted as a Bundle, following the mathematical
term of a fiber bundle. The objective is to formulate
all data that is used for scientific visualization within
this Bundle. A Grid is subset of data within the
Bundle that refers to a specific geometrical entity, for
instance a mesh carrying data such as a triangular
surface, a data cube, a set of data blocks from a
parallel computation, etc. A Field is the collection of
data sets given as numbers on a specific topological

component of a Grid, for instance floating point
values describing pressure or temperature.
The names of Grids and Fields are arbitrary and
specified by the user. All other levels of the data
model have pre-defined meanings and values which
are used internally to describe the properties of the
Bundle as construction blocks. The usage of these
construction blocks constitutes a certain language to
describe a wide range of data sets. For instance, a
Slice is identified by a single floating point number
representing time (generalization to arbitrary-
dimensional parameter spaces is possible); a Skeleton
is identified by its dimensionality, index depth
(relationship to the vertices of a Grid) and refinement
level; a Representation is identified via some
reference object, which may be some coordinate
system or another Skeleton. The meaning of such
identifiers is only used internally, but transparent to
the user. The lowest levels of Fragments and
Compound describe the internal memory layout of a
Field data set and are optional. They are described in
detail in [Ben08].

2.5 Formulating Data
The existence of data sets in the hierarchy of a
Bundle defines a data set. We will give some
examples here on the data sets that have been
involved in our work with the stir tank computational
fluid dynamics data.

2.5.1 Isosurface
An isosurface is the explicit polygonal representation
of the points where a possibly time-dependent scalar
field given on a volumetric manifold has constant
value. It consists of the following properties:

1. A sequence of Grids, one for each time step
2. Coordinates for each vertex, which is a field

on the Skeleton of index depth 0
(“Vertices”) on each grid, as represented in
Cartesian coordinates.

3. Connectivity information for each triangle,
which is a field on the Skeleton of
dimension 2 and index depth 1 (faces) on
each Grid, as represented in the Vertices.

4. Normal vectors define a vector field
(precisely: a bi-vector or co-vector field)
given on the Vertices Skeleton of the Grid.

5. Optional data fields on the vertices, such as
another 3D field mapped on the surface.

An Isosurface is a sequence of Grid objects with two
Skeletons defined on it, with the Skeleton for the
Vertices carrying two or more fields.

WSCG 2009 Communication Papers 119 ISBN 978-80-86943-94-7

2.5.2 Line Set
A set of lines, such as the result of the computation
of stream lines of a vector field, is given by

1. A sequence of Grids, one for each time step,
for the set of lines valid at each time step

2. Coordinates for each point along the lines, a
field on the Skeleton of index depth 0

3. Connectivity information for the points
building up a line, which is a field on the
Skeleton of dimension 1 and index depth 1
(edges).

4. Tangential vectors define a vector field
given on the Vertices Skeleton of the Grid

5. Optional data fields on the vertices may
exist, as retrieved from a 3D field mapped
on the surface.

A set of lines is very similar to an isosurface in this
data model, though a different Skeleton on the Grid
objects is employed.

2.5.3 Multiblock Data
The numerical data as provided by the computational
fluid simulation are given as a collection of 2088
three-dimensional arrays describing coordinate
location, pressure and fluid velocity for each grid
point. These fields are all fibers on the vertices in the
fiber bundle data model, where we also treat the
coordinates as a field over the vertices. As the
topological structure is regular the edges and faces
are given implicitly. The decomposition of the data
into blocks is represented as the internal memory
layout structure of the fields, thus as field fragments
visible in the 6th level of the data hierarchy. The
topological structure of the blocks is thereby
transparent to the user, but algorithms operate on
collections of arrays instead of contiguous arrays,
which is relatively straightforward extension to
existing algorithms such as the computation of
isosurfaces. To store information that is specific to
each block, we consider each block as a collection of
volume cells. Volume cells are topologically 3-
Skeletons in a triangulation, and of index depth 1 in
the fiber bundle data model. Collections of such
elements are thus of index depth 2. Fibers on this
Skeleton are thus a natural place to store e.g. the
geometrical bounding box information for a block, or
the min/max data range of a scalar field (which
speeds up repeated isosurface computations) The
layout of a multiblock data set thus consists of:

1. A sequence of Grid objects, one for each
time step

2. A coordinate field on the Vertices Skeleton,
which is shared among all time steps if the
geometry remains constant over time

3. A scalar field on the Vertices Skeleton

4. A vector field on the Vertices Skeleton
5. A Skeleton of dimension 3 and index depth

2 describing a collection of volume
elements, which are the respective blocks.

6. Optional scalar fields on the (3,2) Skeleton
with min/max information of a scalar field
per block, or coordinate fields for bounding
box.

2.6 Data Operations
Given the certain components constituting the data
model, we may formulate abstract operations among
such components. These operate on abstract high-
level objects without requirement to know the
internal structure of the objects, though their concrete
implementation will have to deal with them.

2.6.1 Isosurface Computation
The computation of an isosurface is an operation that
takes a Field as input and yields a Grid object, and
will be called for each instance of a time sequence.
The operation is parameterized by some isolevel
value. Certain conditions must be fulfilled by the
input field for this operation to succeed, such as
being a scalar-valued field residing on a regular grid.
However, more advanced implementations rather
than the standard marching cubes may well be
formulated through the same interface, such as direct
computation of magnitude isolevels of vector fields,
or isosurface computation on tetrahedral grid. The
high-level operation

Grid = ComputeIsosurface(Field, float);

remains the same, and no changes in the user
interface are required. For instance, more advanced
operations could be invoked via some runtime plugin
mechanism, transparent to the user, as it is supported
by VISH.

2.6.2 Grid Evaluation
Given Field data on one Grid instance, like a 3D
volume, they may be evaluated on another Grid, like
a surface or a line set. Such is formulated as an
EvalGrid operation which requires specification of a
destination grid and a source field (implicitly given
on another Grid object):

Field = EvalGrid(Grid Dest, Field Source);

Certain constraints may apply to the input Grid, since
the evaluation of a field is not possible on an
arbitrary Grid. For instance, data given on a surface
cannot be uniquely extrapolated into an entire 3D
volume. However, a wide range of operations can be
specified through this common API.

WSCG 2009 Communication Papers 120 ISBN 978-80-86943-94-7

3 STREAMLINE STRATEGIES
Visualizing vector fields is a common need in CFD
for investigating velocity fields. [LaH05] describes
several tools for investigating CFD data. [PWS06]
shows the combination of different geometry based
and texture based techniques in a CFD application.
More applications of texture based vector field
visualization can be found in [LEG].
With more complicated and large data sets it is
increasingly important to have a variety of tools for
feature extraction and data exploration at hand. Thus,
developing a flexible framework seems the right way
to meet the increasing requirements effectively. We
use streamlines in our approach because it is a well
known standard technique and they can be described
well within the context of fiber bundles.
The challenge here was to deal with the multi-block
curvilinear data structure (as shown in Figure 3) and
to verify the applicability of the Fiber Bundle data
model. Using this model, our streamline visualization
implementation modules separate into four groups:
Vector Field Data, Seed Point Data, Streamline
Computation and Line Rendering. The software
modules are connected in a directed graph
communicating data using Grids and Fields. This
allows to exchange modules by other modules (high
reusability) and to combine modules in different
ways (high flexibility).The Streamline Computation
Module takes a vector Field and an arbitrary Grid
defining the seed points as inputs and outputs a Line
Set as Grid.

 This
allows to exchange modules by other modules (high
reusability) and to combine modules in different
ways (high flexibility).The Streamline Computation
Module takes a vector Field and an arbitrary Grid
defining the seed points as inputs and outputs a Line
Set as Grid.

The computation of the streamline involves finding
the location of a given world position in the dataset
by identifying its block, cell and local curvilinear cell
coordinates. These local coordinates are then used for
linear interpolation of the vector field. The
interpolated vector is used to advance to the next
streamline point of the streamline, another world
position.

The computation of the streamline involves finding
the location of a given world position in the dataset
by identifying its block, cell and local curvilinear cell
coordinates. These local coordinates are then used for
linear interpolation of the vector field. The
interpolated vector is used to advance to the next
streamline point of the streamline, another world
position.
Firstly, a kD-Tree is employed to find blocks, which
might contain the world position, secondly a look up
data structure called UniGridMapper that maps a
uniform grid cell to curvilinear cells that might
contain the world position is used and finally a
Taylor approximation and Newton iteration, as
described in [STA98], retrieves the local curvilinear
cell coordinates.

Firstly, a kD-Tree is employed to find blocks, which
might contain the world position, secondly a look up
data structure called UniGridMapper that maps a
uniform grid cell to curvilinear cells that might
contain the world position is used and finally a
Taylor approximation and Newton iteration, as
described in [STA98], retrieves the local curvilinear
cell coordinates.
Besides storing the calculated stream lines as Line
Sets in the output Grid additional Fields are stored
that carry the information necessary for interpolation.
Block IDs and local cell coordinates are stored. This
information can then be used by other independent
modules to evaluate other data Fields on the
streamline Grid, e.g. to evaluate a pressure Field.
The final Line Rendering module employs
illuminated stream lines, similar to those described in
[SZH97]

Besides storing the calculated stream lines as Line
Sets in the output Grid additional Fields are stored
that carry the information necessary for interpolation.
Block IDs and local cell coordinates are stored. This
information can then be used by other independent
modules to evaluate other data Fields on the
streamline Grid, e.g. to evaluate a pressure Field.
The final Line Rendering module employs
illuminated stream lines, similar to those described in
[SZH97]

3.1 Defining Seed Point for Streamlines 3.1 Defining Seed Point for Streamlines
To visualize the characteristics of a certain vector
field by streamlines it is important to find good
starting points (seed points) for the streamline
integration.

To visualize the characteristics of a certain vector
field by streamlines it is important to find good
starting points (seed points) for the streamline
integration.

3.1.1 Grid Convolver 3.1.1 Grid Convolver
An operation called Grid Convolver allows the user
to create sophisticated seed point geometries by
‘convoluting’ vertices of an input Grid with a set of
parameters into an output Grid, similar to the
mathematical convolution operation. Possible Grid
convolution operations are Point, Line, Rectangle,
Circle, Ellipsoid and Uniform Grid.

An operation called Grid Convolver allows the user
to create sophisticated seed point geometries by
‘convoluting’ vertices of an input Grid with a set of
parameters into an output Grid, similar to the
mathematical convolution operation. Possible Grid
convolution operations are Point, Line, Rectangle,
Circle, Ellipsoid and Uniform Grid.
Figure 5 demonstrates a setup for creating seed
points involving three Grid Convolvers. The first
Grid Convolver(a) gets one point as input Grid. It
‘convolutes’ this input on a vertical Line with a
subdivision of three points. This is then outputted
into the second Grid Convolver(b) which
‘convolutes’ the three-point-Line on its horizontal
two-point-Line. This results in the output Grid seen
in (c). A final Grid Convolver(d) now ‘convolutes’
on its Circle geometry resulting in the final seed
points in the output Grid of (d), shown in (e).

Figure 5 demonstrates a setup for creating seed
points involving three Grid Convolvers. The first
Grid Convolver(a) gets one point as input Grid. It
‘convolutes’ this input on a vertical Line with a
subdivision of three points. This is then outputted
into the second Grid Convolver(b) which
‘convolutes’ the three-point-Line on its horizontal
two-point-Line. This results in the output Grid seen
in (c). A final Grid Convolver(d) now ‘convolutes’
on its Circle geometry resulting in the final seed
points in the output Grid of (d), shown in (e).
Since the module can be connected to any other
modules that output Grid objects it is possible to
create many different seed geometries. The module
thus is highly reusable and flexible. Figure 4
illustrates a typical dataflow involving Field and

Since the module can be connected to any other
modules that output Grid objects it is possible to
create many different seed geometries. The module
thus is highly reusable and flexible. Figure 4
illustrates a typical dataflow involving Field and

In: Grid

Out: Grid

In: Bundle

Out: Grid

In: Grid

Out: Field In: Field

Out: Grid

In: Grid

Out: Grid

In: Grid

F5 Data
Bundle

Grid Selector

Vector Field

Grid Convolver

Streamlines
Computation

Input - Grid

In: Grid

Line Renderer

…
Out: Grid

Grid Convolver

Figure 4: Streamline modules and dataflow

WSCG 2009 Communication Papers 121 ISBN 978-80-86943-94-7

Grid objects. Figure 6, 7, and 8 demonstrate how this
module was used to investigate the stir tank velocity
field with different settings of position and rotation
and different number of connected Grid Convolvers.

Figure 6: Streamlines with seed points on a circle.

 Figure 7: Streamlines emitted from seed points
on a circle of circles of lines by using three Grid
Convolvers.

Figure 8: Streamlines emitted on an array of lines.

Figure 9: Space-filling streamlines in the STR

Besides interactively specifying seed points it is also
possible to utilize other seeding methods such as
those found in AMIRA [SWH05], where a threshold
on a scalar field can specify seed points for a vector
field, or similar to Weinkauf’s method of computing
the curvature measures of a vector field to find
critical regions as indicators where streamlines were
most interesting [WTH02]. Even a full coverage of
the entire volume may provide worthwhile
information (Figure 9).

3.1.2 Seed Points by Iso Surfaces
The usage of a Grid input at the Streamline
Computer allows usage of arbitrary compatible Grid
objects for defining seed points. For example, the
Grid of an iso surface (the vertices of the triangular
surface) computed on the pressure scalar field can be
used as input, as shown in Figure 9 and Figure 10.
With such streamline seeding the vector field close to
the surface can be explored, similar to a texture based
technique applied to the surface such as [LSH04].
This is a unique feature of VISH that can potentially
be exploited to better understand the flow physics.

a) b)

c) d)

e)
Figure 5: Example of

constructing seed points
by connecting three

Grid Convolver modules
a), b) and d).

WSCG 2009 Communication Papers 122 ISBN 978-80-86943-94-7

4 PERFORMANCE RESULTS
Computation of 100 streamlines in the given
multiblock dataset of 2088 curvilinear blocks
required about 7 seconds using an Euler integration
scheme for 100 steps on a Intel Xeon CPU, 2.5GHz.
Tecplot required 35 seconds using a comparable
setup. We could not compare with Amira, since this
data type is not supported there. The computation
time of the isosurface crucially depends on the
chosen level, and is below 1/30th second for most
values, but may require up to 2 seconds in particular
cases. Computing streamlines from the isosurface
vertex requires about 5-10 seconds for the setup as
shown in Figure 11, but will linearly depend on the
chosen length. Future improvements will utilize
higher order integration schemes and parallelization,
for which we expect to be able to reduce computation
times under one second. The frame rates for
rendering itself once the streamlines are computed
are under 1/30th of a second in all cases except Figure
9, where we got about 10 frames per second on an
NVidia Quadro FX 5600 graphics board.

5 DISCUSSION

Figure 10: Detail of the emission of streamlines
from the pressure isosurface.
Figure 10 shows velocity vectors adjacent to the
impeller blades. It can be clearly seen that as the
impeller rotates in the clockwise direction, the
pitched blade surfaces force the fluid in its surface-
normal direction imposing both radially outward and
downward velocities on the flow along with an
azimuthal velocity component due to its rotation. The
pressure isosurface depicts the boundary layer
formed over the impeller blade surface and its
evolution downstream. Circular depressions (marked
as P in Figure 11) can be observed in the pressure
isosurface. These depressions point to local pressure
minima suggesting formations of vortical structures
in the direction opposite to the impeller rotation.
These vortices (commonly termed as trailing-edge

vortices) convect fluid in the azimuthal direction and
play a key role in mixing within the tank.

Figure 11: Velocity micro-streamlines and

pressure isosurfaces over the impeller blade
Figure 12 shows the streamlines coming out of an
impeller blade. The downward pumping from the
impeller is clearly observable. Also, the streamlines
are observed to bend near the hemispherical bottom
of the tank and establish a circulating motion. The
colors along the streamlines indicate the residence
time of the fluid particles. The suction of the upper
fluid is identified by the green color, the yellow
colored impeller jet stream has both radial and axial
component as the streamlines show almost a 45°
bend. Later (orange color) these lines hit the bottom
of the tank and bend upwards (red coloration) and the
fluid is again convected to the upper part of the tank.
This circulation is how the fluid mixing operation
takes place in the stirred tank.

Figure 12: Streamlines over the tank volume

WSCG 2009 Communication Papers 123 ISBN 978-80-86943-94-7

6 SUMMARY
We have described and applied the concept of “Grid
objects” as elementary tools within a highly modular
visualization environment to provide powerful
seeding mechanisms for streamline computation to
visualize flow in a stirred tank. Operations such as
“Grid convolution” and seeding by pressure
isosurfaces are natural consequences of utilizing the
described data model. It is argued here that this
approach offers specific capabilities that several
other visualization platforms are unable to provide.

7 ACKNOWLEDGMENTS
This research employed resources of the Center for
Computation & Technology at LSU, which is
supported by funding from the Louisiana legislature's
Information Technology Initiative. Portions of this
work were supported by NSF/EPSCoR Award No.
EPS-0701491 (CyberTools). We thank Georg Ritter
for his industrious work on the VISH infrastructure.

8 REFERENCES
[Ben04] Benger, W. Visualization of General

Relativistic Tensor Fields via a Fiber , PhD -
thesis FU Berlin, 2004

[BRH07] W. Benger, G. Ritter and R. Heinzl, The
Concepts of VISH, Proc. 4th High End
Visualization Workshop Obergurgl, p. 26-39,
2007, Lehmann’s Media

[Ben08] Benger, W. Colliding galaxies, rotating
neutron stars and merging black holes -
visualizing high dimensional data sets on
arbitrary meshes, New J. Phys. 10 (2008)
125004, http://stacks.iop.org/1367-
2630/10/125004.

[BP89] O. Butler, D. M. & Pendley, M. H. (1989). A
visualization model based on the mathematics
of fiber bundles. Comp. in Physics, 3(5), 45-51.

[HEI07] R. Heinzl: "Concepts for Scientific
Computing"; PhD Thesis; Institut für
Mikroelektronik, TU Wien, 2007;

[LaH05] Robert S. Laramee & Helwig Hauser,
Interactive 3D Flow Visualization Based on
Textures and Geometric Primitives, in
NAFEMS World Congress Conference
Proceedings, The International Association for
the Engineering Analysis Community, May 17-
20, 2005, St. Juliens Bay, Malta

[LEG] R. S. Laramee, G. Erlebacher, C. Garth, T.
Schafhitzel, H. Theisel, X. Tricoche, T.
Weinkauf, D. Weiskopf, Applications of
Texture-Based Flow Visualization, Engineering
Applications of Computational Fluid Mechanics,
in publication

[LSH04] R. S. Laramee, J. Schneider & H. Hauser:
Texture-Based Flow Visualization on
Isosurfaces from Computational Fluid
Dynamics, Proceedings of the 6th Joint IEEE
TCVG - EUROGRAPHICS Symposium on
Visualization (VisSym 2004), May 19-21, 2004,
Konstanz, Germany

[MPS05] O. Mallo, R. Peikert, C. Sigg, F. Sadlo,
Illuminated Lines Revisited, Proceedings of
IEEE Vis 2005, pp. 19-26 (Minneapolis, MN,
USA, October 23-28, 2005)

[PWS06] C. Petz, T. Weinkauf, H. Streckwall, F.
Salvatore, B.R. Noack, H.-C. Hege, Vortex
Structures at a Rotating Ship Propeller,
Presented at the 24th Annual Gallery of Fluid
Motion exhibit, held at the 59th Annual Meeting
of the American Physical Society, Division of
Fluid Dynamics, Tampa Bay, November 2006

[RA07] S. Roy, and S. Acharya, “Study on Flow and
Turbulence Inside a Stirred Tank and
Investigation on the Effects of Macroinstability
on Trailing Vortex Structures”, ASME
International Mechanical Engineering Congress
and Exposition, Seattle, November 2007

[STA98] D. Stalling. “Fast texture-based algorithms
for vector field visualization.” Dissertation, FU
Berlin, Preprint SC-98-58, Konrad-Zuse-Zentrum
Berlin (ZIB), December 1998.

[SWH05] D. Stalling and M. Westerhoff and H.-C.
Hege, “Amira - an object oriented system for
visual data analysis”, Visualization Handbook,
Christopher R. Johnson and Charles D. Hansen,
Academic Press, 2005

[SZH97] D.Stalling, M.Zockler, and H.-C. Hege.
Fast display of illuminated field lines.
In IEEE Transactions on Visualization and
Computer Graphics, vol.3, pages 118-128, 1997.

[SZH97] D.Stalling, M.Zockler, and H.-C. Hege.
Fast display of illuminated field lines.
In IEEE Transactions on Visualization and
Computer Graphics, vol. 3, pages 118-128, 1997.

[TRHA07] M. Tyagi, S. Roy, S. Acharya, and A-D
Harvey III, “Simulation of laminar and turbulent
impeller stirred tanks using immersed boundary
method and large eddy simulation technique in
multi-block curvilinear geometries”, Chemical
Engineering Sciences, volume 63, issue 5, pages
1351-1363, 2007

[WTH02] T. Weinkauf, H. Theisel, Curvature
Measures of 3D Vector Fields and their
Applications, Journal of WSCG 10(2), WSCG
2002, Plzen, Czech Republic, February 4 - 8,
2002

WSCG 2009 Communication Papers 124 ISBN 978-80-86943-94-7

http://stacks.iop.org/1367-2630/10/125004
http://stacks.iop.org/1367-2630/10/125004
http://www.iue.tuwien.ac.at/phd/heinzl/
http://www.iue.tuwien.ac.at/phd/heinzl/

	!_WSCG2009_SHORT_final_NUMBERED.pdf
	C61-full
	E89-full
	ABSTRACT
	Keywords
	INTRODUCTION
	2 DATA MODEL CONCEPT
	2.1 Mathematics of Fiber Bundles
	2.2 Benefits of Fiber Bundles
	2.3 The 7-Level Hierarchy
	2.4 Bundles, Grids and Fields
	2.5 Formulating Data
	2.5.1 Isosurface
	2.5.2 Line Set
	2.5.3 Multiblock Data

	2.6 Data Operations
	2.6.1 Isosurface Computation
	2.6.2 Grid Evaluation

	3 STREAMLINE STRATEGIES
	3.1 Defining Seed Point for Streamlines
	3.1.1 Grid Convolver
	3.1.2 Seed Points by Iso Surfaces

	4 PERFORMANCE RESULTS
	5 DISCUSSION
	6 SUMMARY
	7 ACKNOWLEDGMENTS
	8 REFERENCES

