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ABSTRACT 
A method for generating a smooth spline surface over an irregular mesh is presented. This method generates a 

smooth spline surface similar to the methods proposed by [Loo94-Pet00, ZZZ+05]. The rules applied to construct 

the control points in order to achieve the continuity conditions are simple and comprehensible.  
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1. INTRODUCTION 

The construction of smooth spline surfaces over 

control meshes has been a popular topic in computer 

graphics, geometrical modeling and CAGD. A 

control mesh consists of a set of vertices, edges and 

faces.  

Irregular meshes differ from regular meshes in the 

following two ways. Either a vertex has other than 

four edges emanating from it or a face is defined by 

other than four edges. To overcome this limitation, 

different methods have been proposed for the 

construction of smooth surfaces of irregular topology.  

These methods can be roughly categorized into two 

groups: subdivision surfaces and spline surfaces.  

The earliest attempts to overcome the topological 

limitations of B-spline surfaces were based on the 

subdivision principle. 

 

 

Some non-polynomial surface patches used to define   

B-spline-like surfaces over irregular meshes include 

the 3 and 5-sided patches defined in [Sab83] and n-

sided S-patches in [Loo90]. Hahmann et al. [HB08] 

presents a piecewise bi-cubic parametric 1
G  spline 

surface interpolating a quad irregular mesh.  

A scheme proposed by peters [Pet93] adjusts 

irregularities by applying one or more refinement 

steps. Another scheme by Loop [Loo94] only uses a 

one refinement step and creates a spline surface. In 

general this is a composition of patches at most of 

degree 4. Peters [Pet00] generated a bi-cubic scheme 

using a Catmull-Clark. Recently, a method has been 

presented by Zheng et al. [ZZZ+05] in which the 

Zheng-Ball patches are used to generate a bi-

quadratic B-spline-like surface. 

In this paper we present a bi-quadratic spline surface, 

which is a generalization of [Loo94]. The method 

presented here can be applied in irregular meshes of 

arbitrary topology. Only one step of subdivision is 

used. The rules used to generate the control points are 

simple and comprehensible. It dose not go through 

the complicated computation process needed in 

[Loo94-Pet00]. That ensures the locality property and 

has a piecewise polynomial form. Straightforward 

conditions have been used to ensure smoothness. 
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notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to 

redistribute to lists, requires prior specific permission 

and/or a fee. 
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Figure 1. Mesh subdivision. Initial mesh (bold 

lines). After the subdivision (thin lines).  

The construction process of this method consists of 

three steps: the first step carries out a single 

refinement procedure over the initial mesh, resulting 

in a new mesh in which the valence of each vertex is 

four. In the second step a quad-net is constructed 

corresponding to each vertex of the new mesh. Then 

each quad-net is split into four sub-quad, and a bi-

quadratic Bezier patch is constructed over each sub-

quad area.  

2. SPLINE SURFACE GENERATION 

Constructing the spline surface begins with a user-

defined control mesh 0M . The details of each phase 

of this method have been presented in the next three 

sections. 

Initial mesh refinement 

The first step is to carry out a refinement procedure 

over initial mesh 0
M . Let F be a face of 0

M  

consisting of vertices { }110 ,....,, −nCCC  and the average 

of this points is: 
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where all subscripts are taken modulo n.  

The faces of 1M are constructed from vertex, face or 

edge of 0
M [GRE01] (Figure 1). 

Note, that all the vertices of 1
M  are 4-valent and 

every non-4-sided face in new mesh 1
M  is 

surrounded by 4-sided faces. Clearly, if in the initial 

closed mesh 0
M  all vertex valences are already of 

degree four, this step is not needed and one can use 

the mesh directly.  

 

 
 

Generating the Quad-Nets 

In the second step, a quad-net is constructed corr-

esponding to each vertex of 1M .  

Consider the vertex V in figure 3, to generate a quad-

net on this vertex we will do as follows: The centriod 

points of four faces surrounding a vertex V are regar-

ded as the corner points of a quad-net  (                  

33,Q ).  

The points on the boundary of each quad-net are 

computed such that all quad-net points surrounding a 

quad-net corner point are coplanar.  

The following theorem is the key to constructing 

quad-net points that satisfy this requirement. 

Theorem 2.1: Let 3

110 ,,, ℜ∈−nppp be a set of 

points in general position. The set of points 

110 ,,, −nqqq found by:       

)2())
)(2

sintan
)(2

(cos1(
1 1

0

∑
−

=

−
+

−
+=

n

j

ji
n

ij

nn

ij
p

n
q

πππ
β  

satisfy:  

)3(
2

1

2

12
cos)

2
cos1( 11 +− +=+− iii qqq

n
O

n

ππ

 

where:  

   
∑

−

=

=
1

0

1 n

i

ip
n

O  

and are therefore coplanar. 

Proof: take: 
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Expand the right hand side of equation (3) as follows: 
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Note that the well known trigonometric equations of 

sum of sinuses and cosines have been utilized in 

combining 
)1()1( +−−− + ijij MM to get 

ijM
n

−

π2
cos2 . 
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Figure 2. Quad-net. 

Figure 3.  Split of a quad-net into four bi-

quadratic Bezier patches. 

From relation (3) we can see that 
1+iq  is a linear 

combination of points 
1,, −ii qqO , and by replacement 

we can find that each )2( ≥iqi
 is a linear 

combination of three points 
10 ,, qqO . Therefore each 

iq  lies in the plane made by these three points. Hence 

the collection of sqi ' obtained from the relation (2) 

are coplanar . 

 

 

In theorem 2.1 it can be observed that factor β  is a 

free parameter which can be set arbitrarily.  

Interpreting the points 
110 ,,, −nppp  as the 

vertices of a face blending to mesh 1
M , the point O  

as 
00Q  and the points 

110 ,,, −nqqq as the quad-net 

points surrounding 
00Q . It is immediately clear that 

all the quad-net points surrounding 
00Q  are coplanar. 

Also constraint (3) is satisfied by set: 
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Where 
^

10Q is a point of an adjacent quad-net and n is 

the number of vertices of that face. Similar 

interpretation are used for the three points 
0330 ,QQ  

and 
33Q . 

All the boundary quad-net points can be produced 

easily by applying theorem 2.1 to each one of the four 

faces surrounding each vertex of 1
M . 

The interior point 
11Q  is computed as follows:   

            )5(00011011 QQQQ −+=  

the other three interior points 
222112 , QandQQ  are 

found by symmetry. 

Patch generation 

Parametric surface patches are constructed in this 

step. They interpolate the information generated by 

quad-nets in the previous step. Each quad-net is 

accomplished by four bi-quadratic Bezier patches 

which are constructed as follows: Suppose a quad-net 

is divided into four bi-quadratic Bezier patches which 

labeled as shown in figure 3. First we set the corner 

points: 
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Formulas for the control points of one of the patches 

are given here, similar formulas for the other three 

patches can be found by symmetry.  

Internal control points of this patch are: 
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the other control points are: 
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and: 
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in which the )2(

23

)1(

32

)2(

13

)1(

31 ,,, aabb  are the points of the 

two adjacent patches.  

It can be observed that these constructions ensure  

that the triples },,,{},,,{,},,{ 322212131211312111 aaababbab  
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Figure 5.  Five quad-nets, common in a corner 

point. Each bi-quadratic Bezier patch has 
1C continuity in its points (orange points) except 

in corner point of the quad-net ( ) which            

has the tangent plane continuity. 

},,{ 232221 aaa  are collinear hence the rectangular 

patches generated inside each quad-net are 1C  

continuous along their internal boundaries. 

Two examples of initial meshes and their result 

surfaces are shown in figure 4. 

 

 

The same procedure is applied to a boundary quad-

net, the only difference is in the control points along 

the boundary edge. 

As it was pointed out in subsection 2.1 if all vertex 

valences in the initial mesh are of degree four we 

don’t need a refinement step and can immediately 

create quad-nets, this leads to fewer patches. An 

example of this special case is presented in figure 

4(a).  

3. SMOOTHNEES 
In this section we establish the smoothness conditions 

for the resulting surface. As can be seen from the 

relations of (6), (7) and (8) except in a control point 

on the corner of the corresponding quad-net each bi-

quadratic patches satisfied the 1C continuity condition 

over all its control points (shown in figure 5 by the 

orange points). We now demonstrate that the corner 

points have tangent plane continuity. 

As it was pointed out in subsection 2.2 all the points 

around the corner of each quad-net found by the 

theorem 2.1 are coplanar and the internal quad-net 

points that are computed by the equation (5) lie on 

the same plane. Finally, the control points of the final 

patch around this corner point (computed by (7)) are 

also on the same plane, which includes corner point. 

This means that, in this corner point we have tangent 

plane continuity because all the points surrounding it 

have identical normal vectors. 

Considering the symmetric procedure we used to 

generate the control points in each adjacent patches. 

It is easily to see that all the patches constructed in 

this method encode identical tangent planes along the 

common boundaries. 

4. CONCLUSIONS 
In this paper, a method is presented to construct a 

smooth surface over an irregular mesh by means of 

bi-quadratic Bezier patches. This method can be  

 

 

 

 

 

implemented over both types of open and closed 

meshes and the result will be a smooth surface. 

Following the steps of this method it can be seen that 

each step has a geometric construction involving 

weight average (affine combinations) of the points. 

Therefore, the spline surface is affine invariant.  

If all internal vertex valences in the initial mesh are of 

degree four it should be possible to avoid the 

subdivision step as an optimization. 
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Figure 4. Two models generated by this method. 
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