Investigations of Tensor Voting Modeling

Joanna Beltowskati
jo643@drexel.edu

tComputer Science Department
Drexel University
Philadelphia, PA USA

Ken Musethi
museth@acm.org david@cs.drexel.edu

David Breenf

tScience and Technology Department
Linkdping University
Norrkdping, Sweden

ABSTRACT

Tensor voting (TV) is a method for inferring geometric structures from sparse, irregular and possibly noisy input. It
was initially proposed by Guy and Medioni [Guy96] and has been applied to several computer vision applications. TV
generates a dense output field in a domain by dispersing information associated with sparse input tokens. In 3-D this
implies that a surface can be generated from a set of input data, giving tensor voting a potential application in surface
modeling. We study the tensor voting methodology in a modeling context by implementing a simple 3-D modeling
tool. The user creates a surface from a set of points and normals. The user may interact with these tokens in order to
modify the surface. We describe the results of our investigation.

Keywords

implicit surface modeling, surface reconstruction, tensor voting

1. INTRODUCTION

As the use of implicit 3D representations gains popular-
ity, the need for modeling software that provides implicit
model editing capabilities increases. New surface edit-
ing approaches are continually being explored and much
research is being conducted to find ways to interactively
modify implicit models. Towards these ends we inves-
tigated tensor voting as a possible technology that could
provide a new and interesting approach for editing im-
plicit models.

Tensor voting is a method for grouping geometric
features [Med00]. It can be used to generate surfaces
from a sparse set of possibly noisy and irregular input
data, and therefore may provide novel editing capabilities
within a 3-D modeling context. The goal of our work was
to investigate TV as a technique for interactive surface
modeling. We were interested in determining if TV can
be used to model simple objects, edit them interactively
and control their shape via "input tokens.” To achieve
this, we developed a TV modeling system (TVMS) based
on an already existing TV framework and conducted

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page.
or to redistribute to lists, requires prior specific permission and/or a
fee. Copyright UNION Agency - Science Press, Plzen, Czech Republic.

To copy otherwise, or republish, to post on servers

WSCG2008 Communication papers 55

experiments to evaluate TV as a 3-D modeling tool.
Spheres were used to examine the parameters of TVMS.
Two models were sculpted in order to evaluate the
potential capabilities and limitations of the TV modeling
process.

Related Work

We looked to other novel modeling systems for ideas and
inspiration. In general, these are systems that model 3-D
objects with geometry other than polygonal meshes. The
Vector Field Based Shape Deformations of von Funck
et al. [vF06, vF07] is an interactive method for shape
modeling with volume preservation. Guo et al. [Guo04]
use scalar—fields to drive a point-set surface editing pro-
cess. The point-sample-based shape modeling presented
by Pauly, Keiser, Kobbelt and Gross [Pau02] is a hybrid
system which couples the benefits of implicit and para-
metric surface representations, using the implicit surface
definition of moving least squares projection along with
point-based visualization. Blinn [Bli82] presents a point-
based modeling method where points emit a radial Gaus-
sian field. An iso-surface away from the input points is
then extracted from the cumulative field. Pointshop 3D
is a framework developed by Zwicker et al. [Zwi(02] that
transfers the functionality of 2D image editing operations
to 3D. Dewaele and Cani [Dew04] present a virtual clay
modeling approach, which implements interactive shape
modeling capabilities which may be based on haptic feed-
back. Museth et al. [Mus02, Mus05] developed interac-

ISBN 978-80-86943-16-9

tive editing operators for a relatively new type of implicit
surface, level set models.

In our approach, as in many of the approaches de-
scribed above, the object is represented using control
points, which can be modified by the user in order to edit
the surface. By using the TV methodology in a novel
context, we have employed the ideas of local editing op-
erators, point-based surface representation and a physical
analogy for modeling surfaces.

2. TENSOR VOTING

This section provides an introduction to the Tensor Voting
methodology. More details about the methodology can be
found in [Guy97, Tan98, Med00, Tan01, Ton04].

TV has its background in early computer vision prob-
lems where the available data often is sparse and noisy,
making it difficult to extract relevant information and
structures. TV identifies local feature descriptions by
spreading the information associated with shape-related
input within a neighborhood while enforcing a smooth-
ness constraint. This process refines the information and
accentuates local features. By doing so, coherent, locally
smooth, geometric features are defined and noise is dis-
carded. Each data point communicates its information in
a neighborhood through a voting process. The more in-
formation that is received at each data point, the stronger
is the likelihood of a geometric feature being present at
a certain location. This likelihood is expressed through a
confidence measure, saliency, which is used in the feature
extraction process.

TV is based on two elements; a data representation,
which is obtained by means of tensor calculus, and com-
munication of data through linear voting, a process sim-
ilar to linear convolution. The input elements, referred
to as input tokens, are encoded into tensor form and com-
municate their information to their neighboring tokens via
pre-calculated tensor voting fields. After this initial vot-
ing step, each token has its confidence and surface ori-
entation encoded into a generic second order symmetric
tensor. The tokens vote a second time to propagate their
information throughout a neighborhood. The result is a
dense tensor field which assigns a measure of confidence
and saliency to each point in the domain. This dense map
is decomposed into three dense maps, each representing
a geometric feature (junctions, curves or surfaces), which
are analyzed during feature extraction. TV can be gener-
alized to N-D [Tan01]. The 3-D case, specifically surface
voting, is sufficient for our needs and will therefore be the
focus of this paper.

WSCG2008 Communication papers 56

Tensor Representation

Diagonalizing a second order symmetric tensor, which
can be represented by a 3 x 3 matrix, produces the associ-
ated characteristic equation. Solving this equation leads
to a representation based on the eigenvalues A;,4;,13
(in decreasing order) and the associated eigenvectors
€1,6,,¢3 of the tensor. A second order symmetric tensor
may be graphically represented as an ellipse in 2-D or
an ellipsoid in 3-D. The eigenvalues describe the general
size and shape of the ellipsoid and the eigenvectors de-
scribe its principal directions. Because of the properties
of second order symmetric tensors, the eigenvalues are
real and positive, or zero, and the eigenvectors form an
orthonormal basis. A tensor can be decomposed into
three components defined by

T=M—-h)éé! + (1

(QLQ — lg)(é\] él T + ézeAzT) +

lj; (é] 3] r + eAzeAzT + €A3€A3T).
The first term corresponds to a 3-D stick tensor, which
implies a surface patch with normal €7. The second term
corresponds to a 3-D plate tensor and implies a curve or
surface intersection with tangent €3 that is perpendicular
to the plane defined by €] and é;. The last term corre-

sponds to a 3-D ball tensor and implies a structure with
no orientation preference.

Tensor Communication
The voting process is similar to convolution with the dif-
ference that convolution produces scalar values and ten-
sor voting produces tensors. Voting kernels which encode
certain constraints such as smoothness and proximity are
used. These voting kernels are continuous tensor fields
that assign a value to every point within the domain. Any
voting kernel, regardless of dimension, can be derived
from the 2-D stick tensor, which is therefore referred to
as the fundamental 2-D stick voting field (VF) and is pre-
sented in Figure 1 (left). For its derivation, see [Med00]
and [Tan01]. Given an input point and normal N at O,
the most likely normal at P to a curve passing through
O and P is defined by the osculating circle connecting O
and P, because it keeps curvature constant. The 3-D VF
is produced by rotating the 2-D VF around N.

The magnitude of the field is described by a decay func-
tion, which is expressed in spherical coordinates and is
presented in Figure 1 (right),

(1/2 +z:(p2)

DF(y,¢.0)=¢ o @

7 is the arc length of the curve OP, ¢ the curvature, ¢
the curvature scale factor and ¢ the scale of analysis. ¢

ISBN 978-80-86943-16-9

p / Y

most likely normal
.'7}\ ,:_- N

. g |

most likely ~

continuation

"o

intensity-coded strength (saliency)

Figure 1: (left) The design of fundamental 2D stick voting field. (right) Magnitude (saliency) of the fundamental 2D

stick voting field. From [TanO1].

provides additional control on the influence of curvature.
o determines the size of the voting neighborhood and is
the only free parameter adjusted by a user. In practice the
range of influence of a particular VF is demarcated once
its magnitude drops below some value, e.g. 1%. There-
fore the value of ¢ determines the extent of the voting
field.

The field has an analogy with particle physics, motivat-
ing the choice of a Gaussian function for the energy decay
function. The voting kernel shows the same behavior as
an anisotropic energy field, where an emitting particle P;
radiates energy in all directions and a receiving particle P,
receives energy from all directions, but with a preference
for a straight path. Therefore received energy is inversely
proportional to distance traveled and curvature, producing
a loss of energy along curved paths.

After voting, the saliency tensor T(i, j, k) at each loca-
tion (i, j,k) is the tensor sum of the contributions from
each voting token within range,

=) v(s(

m,n,o

(m,n,0)))
3)

where S is the tensor associated with the voting token
at (m,n,0), N(i, j,k) returns the neighboring locations of
(i,J,k) and V is a function that returns a tensor field corre-
sponding to the ball, stick and surface voting kernel com-
ponents of S using the vector (i, j, k) —
expressed in the (é},¢€3,€3) coordinate system of S.

l.]7 mno ((la.hk)_

(m,n,0) € N(i, j,k),

(m,n,0), which is

Feature Extraction

After the voting process, each point in the domain has
been assigned a second order symmetric tensor that esti-
mates the structure of the feature type(s) and the associ-
ated saliency. Thus, information is collected at each loca-
tion in the domain, building a saliency map for each fea-
ture type. Salient features can be located by finding local
extrema in this dense tensor map, which in 3-D is decom-
posed into three dense vector maps, expressing the occur-
rence of junctions, curves and surfaces in the domain. For

WSCG2008 Communication papers 57

each feature type, the dense tensor map can be broken into
a scalar field, expressing the saliency (strength) of the ten-
sor field at any given point, and a vector field, expressing
the direction of the feature corresponding to the saliency
value. Thus, at any given location there is a scalar and
a unit vector < s,7 > present. These dense saliency and
vector maps are then used for vote interpretation.

Since we are only interested in the surface features pro-
duced by tensor voting, we only examine the Surface Map
< s, > extracted from the tensor field [TanO1]. For this
case,

s=A —A) n=éj,

“

where s is the surface saliency and 7 is the normal to the
most likely surface at each point in space.

The most likely surface produced by a set of input to-
kens (points and normals) is an extremal surface embed-
ded in the Surface Map. A point is on the extremal surface
when the saliency s is extremal in the normal direction 7
at that point, i.e. ds/di = 0. Reformulating this equation,
the surface may be found by identifying zeros of the the
scalar field 71 - Vs, defined as the g field. For practical rea-
sons the Surface Map is calculated on a regular grid and
the zero crossings of the extremal surface are identified
along grid lines.

3. TENSOR VOTING

MODELING SYSTEM
The tensor voting modeling system (TVMS) is based on

the TV3D framework for tensor voting developed by the
USC Computer Vision Group', and uses QSplat> [Rus00]
for point-based visualization. It has been developed on a
MacBook Pro with a 2.2 GHz Intel Core 2 Duo proces-
sor. Functionality has been added to both frameworks and
only surface voting is used from the TV3D framework.
Since our goal is to extract a surface from a given input,
we have omitted the point and curve voting functionality
of TV3D.

U http://www.cs.ust.hk/~cstws/research/Tensor Voting3D
2 http://graphics.stanford.edu/software/qsplat

ISBN 978-80-86943-16-9

TV3D uses an input of oriented or unoriented points,
curvels and surfels. In TVMS, the input is restricted to
points with associated normals. While a surface may be
constructed from unoriented points only, we have chosen
to include direction information in the input dataset. The
reason for this is that it gives more accurate results, al-
lows us to omit the first voting step, which estimates and
assigns a direction to all unoriented input tokens, and fi-
nally, it provides the user with an additional tool for ma-
nipulating the resulting surface.

These points can be interactively translated and their
corresponding normals rotated, as well as added to and
removed from the scene. Translation is done by first rotat-
ing the normal of a selected point and then translating the
point along the normal. This is a simple yet intuitive in-
teraction that meets our needs. The user can either create
an entirely new model on his or her own, or read an exist-
ing model from a file. A new token is inserted by clicking
between two existing tokens. The new token is inserted
at the position halfway between the two tokens closest to
the user’s mouse click, with the new normal calculated as
the average of the normals of the two neighboring tokens.
The user can update the surface of the model that (s)he is
working on at anytime. Each input token has a position,
a normal, a weight and a local ¢, which can be modified
by the user.

Once the user is satisfied with the initial configuration
of input tokens, (s)he selects an initial global sigma value
and runs the tensor voting process to extract a surface.
The surface is quickly rendered as points by default, but
given more time, the user can also render the surface as a
mesh.

Modeling Parameters

The original TV framework has only one free parameter,
namely o, which is a coefficient in the saliency decay
function (Eq. 2), and establishes the voting field scale
of analysis. o is a positive scalar which determines the
size of the voting fields used in the voting process and is
set with an initial global value. Having a single global
o value will create a model with one level of detail. In
TVMS, we name this parameter 0g, and it is used to ini-
tially give all input tokens the same scale of analysis. We
introduce a second ¢, namely oz, which is used to set
the scale of analysis locally. The user may assign o val-
ues to the individual tokens. Both 6 and o7, are used in
Equation 2 in the same way. The only difference between
them is that o7 may be used to modify the voting field of a
token, while o defines a global, default voting field. Ini-
tially oy, is set to -1 for each token, so that the system can
distinguish modified tokens from unmodified ones. o

WSCG2008 Communication papers 58

is set to 10 by default and used for all tokens whose o,
value has not been changed from the initial value of -1.
Instead of a single global voting field, up to n, where n is
the number of input tokens, individual voting fields can
be used to vote for a surface. This allows for the level of
detail of the surface to be varied by using a smaller o7, in
those regions where the user desires finer details.

A weight has been added as a third modeling parameter.
The weight is a scaler value associated with each input
token. The token’s normal is multiplied by the weight be-
fore voting and surface extraction. Increasing the weight
value strengthens the influence of the plane defined by the
token; thus flattening the resulting surface near the token.
The default weight value is set to 1.0.

4. RESULTS

In order to investigate the geometric modeling potential of
tensor voting we conducted a number of experiments. Our
experiments were performed in two parts. In the first part,
we looked at the local influence of the individual model-
ing parameters on a simple shape. In the second part, we
examined the overall effectiveness of the TV modeling
process when attempting to model two specific shapes.

Influence of Modeling

Parameters

The scale of analysis parameter ¢ affects the overall com-
putational extent of the model and the cost of calculat-
ing a surface. Because we wish to extract the surfaces as
quickly as possible, the size of the voting fields, and thus
the size of the models, have to be kept small. We found
that the radius of our models, in units of voxels, should
be approximately the same as . Having a value of ¢ be-
tween 8 and 10 produced results in a reasonable amount
of time, which implied a model radius of slightly more
than 10 units. Using larger o values would require big-
ger models, thus a higher resolution computational grid,
and would require significantly more time in the surface
extraction step. Also, o should not be set too large,
since this causes votes to cancel each other out [Med00]
and produces surface holes, further motivating the use of
small ¢ values.

The model used in our parameter influence experiments
is a sphere with a radius of 12.5 units, that was defined
by 18 input tokens. See Figure 3 (left). TV3D performs
tensor voting and interpretation on a 25 x 25 x 25 grid, and
usually requires 3 to 5 cpu-seconds to produce a result.

To demonstrate the effect of translating input tokens,
we translate one single token on the sphere, namely the
right-most one, one unit at a time. The results are pre-
sented in Figure 2, which consists of spheres of radius

ISBN 978-80-86943-16-9

Figure 2: Translating the right-most token one unit at a time. Left: o = 7. Right: o = 10. The token locations are x =

12.5,13.5, 14.5,15.5, 16.5, 17.5.

Figure 3: Left: The 18 input tokens needed to define a sphere. The top and bottom tokens have been highlighted and
the extent of their voting fields (o = 10) have been displayed. (center) The resulting sphere, produced by the 18 input
tokens. (right) The extent of the voting fields for the top and bottom tokens, after token translation. The two fields no

longer overlap and a disjoint surface has been formed.

12.5 produced with 6 =7 and ¢ = 10. The token is trans-
lated by 1.0 additional unit for each example. It can be
seen that the surface does begin to bulge out to fit to the
surface patch implied by the translated token. But if the
token is translated too far the surface breaks up.

Insight into this unwanted artifact is provided in Fig-
ure 3. Here, the extents of the voting fields for two of
the sphere’s 18 tokens are displayed. As the top token is
translated away from the others the two displayed extents
no longer overlap. In this situation two disjoint surfaces
are produced. The TV process interprets the translated to-
ken as an isolated point and tries to infer a separate plane
from it. This clearly shows that in order to produce a
closed mesh, one needs to ensure that there is significant
overlap between the voting fields of neighboring tokens.

Figure 2 also highlights the effect of o on the surface.
On the left, with o = 7, the resulting surface has flatter,
somewhat sharper, features. When o is increased to 10,
more voting fields overlap because of their increased size.

WSCG2008 Communication papers 59

The increased number of contributing VF’s at any loca-
tion creates a smoothing effect on the surface. This is
most evident in the top-right and bottom-left surfaces in
each of the examples. As the right-most token is trans-
lated, the resulting bump has a smoother transition to the
sphere when © is greater.

To demonstrate the effect of rotating normals, Figure 4
presents the changes to the sphere produced by rotating
the normal of the right-most token. It can be seen that
applying small rotations (angles less than 45°) to a token
can be easily accommodated by the tensor modeling sys-
tem. The surface smoothly blends in the disoriented sur-
face patch implied by the rotated token. As the rotation
angles increases past 45° the surface breaks up. Using a
higher o gives slightly better results, but this still cannot
resolve the conflicting input information that implies that
a piece of surface is directed into the sphere.

The weight parameter provides another way to modify
the influence of a token. The weight parameter may either

ISBN 978-80-86943-16-9

Figure 4: Rotating the normal of the right-most token. Starting at the top left, the normal is rotated 0°, 15°, 30°, 45°,
60° and 75°. (left) Voting with g = 7. (right) Voting with og = 10.

Figure 5: (left) Modeling the bottle. Three rings of tokens were added to define the body. The top was modeled
separately and connected to the rest of the model by adding three smaller circles of tokens to create the neck. (right)
The weight parameter was used to change the shape of the bottle’s top. Weight values, from left to right are 1.3, 2.0
and 2.8. All the tokens on the circle below the topmost token have a weight value of 1.2.

elongate or shorten the length of the normal 7 associated
with a token after the voting process. Given a large weight
the plane associated with the token’s normal has greater
influence on the surface; thus locally attracting the overall
surface to the plane, as seen in Figure 5 (right). Initially
the bottle’s top token is overwhelmed by the information
from the side tokens. As the top token’s weight is in-
creased, the most likely curved surface emanating from it
improvingly blends with the rest of the bottle surface.

Creating Complete Models

To explore the overall tensor voting modeling process,
two complete models were created, a bottle and a car.
Both are fairly simple objects, but have geometric prop-
erties, such as varying curvature and level of detail, that
potentially could reveal any weaknesses or problems with
our TV modeling system. Both models were created by
initially defining the tokens needed to produce the basic
shape. The tokens were then modified to add details or
fix problems. To change the curvature of the surfaces, a

WSCG2008 Communication papers 60

number of normals were rotated. To flatten regions of the
surfaces, weights of nearby tokens were increased. To fill
holes, new tokens were added or oy of the neighboring
tokens were increased.

For the car, the body was first created. The four
The bottle
model, defined with 56 tokens, is presented in Figures
5 and 6. As seen in Figure 5, the bottom of the bottle
was created using two circles of tokens and one bottom
token. Then a third circle of tokens was added to extend
the body. Finally, the top was modeled separately and
connected to the rest of the model by adding three
smaller circles of tokens, thus creating the neck. The
weight of the top token was increased until the desired
blending and curvature was achieved. The TV3D system
evaluated the bottle’s Surface Map on a 14 x 38 x 14
grid in 11.5 cpu-seconds. The resulting surface may be
displayed with points. These are the zero-crossings of
the computational grid used to calculate the associated g
field. The Marching Cubes algorithm [Lor87] may also

wheels were then added as details later.

ISBN 978-80-86943-16-9

Figure 6: The bottle model created from 56 tokens. (left) Input tokens. (center) Resulting TV surface displayed as

points. (right) TV surface displayed as a mesh.

Figure 7: The car model created from 151 tokens. (left) Input tokens. (center) Resulting TV surface displayed as
points. (right) TV surface displayed as a mesh.

be applied to the g field grid to produce a mesh. The car
model, defined with 151 tokens, is presented in Figure 7.
The TV3D system evaluated its Surface Map on a 36 x
22 x 18 grid in 11 cpu-seconds. The resulting surface is
displayed as points and a mesh.

5. DISCUSSION

During the modeling process, a significant problem
quickly emerged. Small, densely sampled areas may
produce asymmetric results, which we believe is due
to the TV3D surface extraction implementation. The
algorithm begins at the most salient input token and
grows a surface from it until the saliency of the neigh-
borhood drops below a certain threshold. It then goes to
the second most salient input token and so on. For the
bottle, the asymmetry can be seen on the neck, which
is not perfectly symmetric. When modeling the car, the
asymmetry problem imposed serious problems shaping
the more finely detailed areas. After creating the body,
one wheel at a time was added. When the second wheel
was added, its tokens influenced the tokens of the first
wheel, changing its shape. We changed our strategy and
modeled a full half of the car in one go, which was then

WSCG2008 Communication papers 61

duplicated, mirrored and merged with the first half. The
resulting mesh was not closed and after repairing one
hole, new holes emerged on other parts of the model. The
surface extraction of TV3D appears to propagate the in-
fluence of the tokens forward as they are processed; thus
the order in which tokens are processed affects the final
extracted surface. The current TV3D implementation is
elegant, but may not be the correct computational engine
for an interactive modeling application.

The local influence of an individual input token on the
final surface is not as strong nor with the type of proper-
ties as had been desired. Changing the parameters of a
particular input token will in most cases render a change
in the extracted surface, but only if the parameter values
remain within a certain range. For instance, if a token is
translated far away from the other tokens, it will lose its
influence on its neighbors and will produce a surface sep-
arated from the rest of the model. Also, the influence of
a single token decreases exponentially with its distance.
As a token is moved away from the remaining tokens, its
influence on the overall surface diminishes and its neigh-
bors’ influence increases. The neighbors then smooth out
the contribution of the moved token. Determining these

ISBN 978-80-86943-16-9

acceptable parameter ranges and including them as con-
straints will be a necessary part of a future TVMS.

Surface extraction and voting is costly. Each time
the model is modified and the surface must be updated,
TVMS recalculates the entire surface instead of just the
part that will be affected by the change. If the system
could re-vote only the modified input tokens and update
just the affected areas of the surface, surface regeneration
could possibly be done in real-time. This will require a
redesign of the surface extraction algorithm.

6. CONCLUSION

This work has investigated the tensor voting method, a
technique for geometric feature grouping, in a 3D model-
ing context. The new system, which employs the TV3D
framework for tensor voting and the point-rendering func-
tionality of QSplat for visualization, extracts surfaces
from sparse input data, consisting of points and normals.
These points and normals can be interactively edited by
the user to change the resulting surface. The initial goal
of modeling simple objects using TV has been achieved
and two new modeling parameters, a local o, or, and a
weight w, have been introduced and implemented.

Though the approach is promising, several limitations
have been found in our current system. There is an asym-
metry in the extracted surfaces, probably due to the sur-
face extraction implementation in TV3D. Modeling pa-
rameter values may be easily set to produce unstable and
unwanted results. Voting and surface extraction is slow
for large models and large scales of analysis. The curve
and junction capabilities of tensor voting should be ex-
plored for modeling sharp features and fine details. Each
of these limitations should be addressed in future versions
of a TV-based modeling system.

Acknowledgements We would like to thank Wai-Shun
Tong who provided us with the tensor voting library and
much technical assistance, and Christoffer Westberg for
programming our initial point rendering software.

REFERENCES

[BIi82] Blinn, J. A generalization of algebraic surface drawing. In

ACM Transactions on Graphics, 1, No. 3, pp. 235-246, 1982

WSCG2008 Communication papers 62

[Dew04]

[Guo04]

[Guy96]

[Guy97]

[Lor87]

[Med00]

[Mus02]

[Mus05]

[Pau02]

[Rus00]

[Tan98]

[TanO1]

[Ton04]

[VF06]

[VFO7]

[Zwi02]

Dewaele, G. and Cani, M.P. Interactive global and local de-
formations for virtual clay. In Graphical Models, 66, No. 6,
pp- 352-369, 2004

Guo, X., Hua, J., and Qin, H. Scalar-function-driven editing
on point set surfaces. In IEEE Comput. Graph. Appl., 24,
No. 4, pp. 43-52, 2004

Guy, G. and Medioni, G. Inferring global perceptual contours
from local features. In Int. J. Comput. Vision, 20, No. 1-2,
pp- 113-133, 1996

Guy, G. and Medioni, G. Inference of surfaces, 3D curves,
and junctions from sparse, noisy 3D data. In IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 19,
No. 11, pp. 1265-1277, 1997

Lorensen, W. and Cline, H. Marching Cubes: A high resolu-
tion 3D surface construction algorithm. In Proc. SIGGRAPH
’87, pp. 163-169. 1987

Medioni, G., Lee, M.S., and Tang, C.K. Computational
Framework for Segmentation and Grouping. Elsevier Science
Inc., New York, NY, USA, 2000

Museth, K., Breen, D.E., Whitaker, R.T., and Barr, A.H.
Level set surface editing operators. In Proc. SIGGRAPH °02,
pp. 330-338. 2002

Museth, K., Breen, D., Whitaker, R., Mauch, S., and Johnson,
D. Algorithms for interactive editing of level set models. In
Computer Graphics Forum, 24, No. 4, pp. 821-841, 2005

Pauly, M., Keiser, R., Kobbelt, L., and Gross, M. Shape mod-
eling with point-sampled geometry. In Proc. SIGGRAPH ’02,
pp. 322-329, 2002

Rusinkiewicz, S. and Levoy, M. QSplat: a multiresolu-
tion point rendering system for large meshes. In Proc. SIG-
GRAPH 00, pp. 343-352. 2000

Tang, C.K. and Medioni, G. Inference of integrated surface,
curve, and junction descriptions from sparse 3D data. In IEEE
Transactions on Pattern Analysis and Machine Intelligence,
20, No. 11, pp. 1206-1223, 1998

Tang, C.K., Medioni, G., and S.Lee, M. N-dimensional ten-
sor voting and application to epipolar geometry estimation. In
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23, No. 8, pp. 829-844, 2001

Tong, W.S., Tang, C.K., Mordohai, P., and Medioni, G. First
order augmentation to tensor voting for boundary inference
and multiscale analysis in 3D. In IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 26, No. 5, pp. 594—
611, 2004

von Funck, W., Theisel, H., and Seidel, H.P. Vector field
based shape deformations. In ACM Transactions on Graphics
(Proc. SIGGRAPH), 25, No. 3, pp. 1118-1125, 2006

von Funck, W., Theisel, H., and Seidel, H.P. Explicit con-
trol of vector field based shape deformations. In Proc. Pacific
Graphics, pp. 291-300. 2007

Zwicker, M., Pauly, M., Knoll, O., and Gross, M. Pointshop
3D: an interactive system for point-based surface editing. In
Proc. SIGGRAPH ’02, pp. 322-329. 2002

ISBN 978-80-86943-16-9

	wscg2008_SHORT_Numbered_.pdf
	A59-full.pdf
	A59-full.pdf

	A67-full.pdf
	B47-full.pdf
	E02-full.pdf
	E07-full.pdf
	F19-full.pdf
	F37-full.pdf

