
An Analysis of Cache Awareness for Interactive Selective

Rendering

Piotr Dubla
Warwick Digital Laboratory,

University of Warwick, England

P.B.Dubla@warwick.ac.uk

Alan Chalmers
Warwick Digital Laboratory,

University of Warwick, England

A.G.Chalmers@warwick.ac.uk

Kurt Debattista
Warwick Digital Laboratory,

University of Warwick, England

K.Debattista@warwick.ac.uk

Abstract

Interactive high-fidelity rendering is one of the major goals of computer graphics. Algorithms based on ray tracing are usually

used to drive high-fidelity renderers. While ray tracing is often thought to be impractical for real time performance, recent

algorithmic advances in the field have led to the development of interactive ray tracers which leverage the performance of

modern parallel systems and cache awareness to obtain real-time rates for moderately complex scenes using Whitted-style ray

tracing. Another method used for accelerating ray tracing is the use of selective rendering where only the pixels that need to be

computed are traced and the remainder are computed by other means such as interpolation. The choice of which pixels to render

may depend on a number of factors, from simple ones that just compare the radiance values of the rays within a certain area and

shoot further rays recursively if the difference in radiance is above a certain threshold, to more complex ones based on visual

attention. Selective rendering algorithms may not be perfectly compatible with current interactive ray tracing techniques since

selective rendering methods tend to be naturally incoherent, and the computation of rays at a stride may result in expensive

cache misses. In this paper we analyse the effect of selective rendering on interactive ray tracing and hint at possible solutions

that would allow selective rendering to be compatible with interactive rendering methods to further improve rendering speeds.
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1 INTRODUCTION

In recent years the demand for interactive high-fidelity

graphics has grown tremendously in the fields of ren-

dering and visualisation. This increase in demand cou-

pled with increase in multi-core architectures for CPUs

as well as the generalisation of GPUs has once again

revitalised ray tracing and brought it to the forefront of

high-fidelity rendering and complex visualisation. With

today’s top-end monitors running natively in HD reso-

lutions such as 1920× 1080 it is more important than

ever to utilise the increased processing power wisely

and direct the usage of computational power on com-

ponents of the image that require it most.

Current state-of-the-art interactive ray tracing (IRT)

implementations are now running on consumer

desktop PCs and attention has now shifted to

more complex effects such as advanced materials,

highly complex scenes and global illumination.

Recent advances make maximal use of spatial

and cache coherency [RSH05, SSK07, Wal07]
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along with optimised acceleration structures

[WH06, LYTM06, WBS07, WK06]. It is due to

the clever exploitation of spatial and cache coherency

that current ray tracers have finally been able to achieve

interactive frame rates on commodity hardware.

Selective rendering (SR) which encompasses

progressive [CCWG88], adaptive [Deb06], time-

constrained and perceptually-driven techniques

[CCW03, SCCD04] is an approach that concentrates

work on pixels in the image that most benefit from

the added computational power. This is done by

not computing all the pixels in an image, but only

those that are deemed necessary. In the case of

perceptually-driven methods the pixels in the image

that are classified as salient and perceptually important

to an observer are where computational resources are

focused. The rest of the pixels that are not rendered

are generally interpolated in some way. This means

that, unlike the cache-coherent IRT methods, selective

rendering is naturally incoherent as the rendered pixels

are typically distributed all across the image.

While a large body of work exists on selective ren-

dering very little research has been performed on how it

functions in an interactive setting and if computing less

pixels translates into less overall computational time.

The goal of this paper is to simulate different levels of

selective rendering in a state-of-the-art interactive ray

tracing framework and see how current techniques and

selective rendering function together. We will try to

determine if the speed-up offered by selective rendering

is not offset by the decrease in cache and spatial co-
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herency that naturally occurs when only specific pixels

in the image are being rendered. This is of great im-

portance as current packet-based ray tracing techniques

are heavily reliant on very coherent packets of rays to

achieve the levels of performance that offer interactivity

on consumer desktop PCs. We conduct a series of

experiments which identify future courses of action.

This paper is divided into the following sections:

Section 2 presents related work in the fields of selective

rendering and interactive ray tracing. Section 3 details

our experimental framework used to achieve our results

and Section 4 and 5 provide both the results as well as

an in depth discussion of their implications.

2 RELATED WORK

In this section we will discuss related work on interac-

tive ray tracing as well as selective rendering.

2.1 Selective Rendering

Selective rendering is defined by Debattista [Deb06] as

"those techniques which require a number of rendering

quality decisions to be taken and acted upon prior to, or

even dynamically during the actual computation of any

image or frame of an animation". This covers a large

number of approaches and algorithms including adap-

tive, progressive ones but we will be focusing mainly

on perceptually assisted rendering and it use to accel-

erating ray tracing. Other areas that deal with selective

rendering such as refining level of detail (LOD) were

initially done by [Cla76]. A thorough summary of more

recent real-time techniques is provided in [LWC+02].

Progressive radiosity as implemented by [CCWG88]

can also be viewed as a selective rendering algorithm

along with more advanced implementation such as the

adaptive progressive refinement ray tracer by Painter

and Sloan [PS89]

With regard to perceptually assisted selective

rendering, approaches such as adaptive sampling, that

apply perceptual considerations, were examined by

Mitchell as early as 1987 [Mit87]. Perceptually-driven

radiosity and ray tracing have been implemented in a

number of different ways. A good overview of early

of radiosity-based methods can be found in [Pri01].

[BM98] and [FSPG97] produced frequency-based

ray tracers that used very complete models of the

human visual system and incorporated aspects such

as spatial processing and visual masking. Visual

difference predictors have also been used to direct

samples in stochastic ray tracing as well as determine

stopping conditions [Mys98, BM98]. These visual

difference predictors were costly to compute though

as they had to be re-calculated many times each frame

until [RPG99] decoupled their spatially-dependant

saliency component from the luminance dependant

component. This led to many selective rendering

implementations that used saliency models such as

[YPG01] where a saliency model they term the Aleph

Map was used to influence the search radius for

samples when performing the indirect-diffuse lighting

calculations from an irradiance cache. [HMYS01]

utilised saliency maps and task objects to identify

the most salient objects on which the glossy and

specular components where rendered in higher detail.

In [CCW03, SCCD04] saliency maps and task maps

where used to vary the number of samples calculated in

a global illumination framework based on the Radiance

renderer by Ward [War94]. Sparse sampling methods

such as [WDP99] and its refinement in [WDG02]

also use adaptive techniques to focus computation in

areas of importance and re-use computations to to

provide approximations of lighting in less important

areas. Newer adaptive algorithms such as [WFA+05]

and its extension [WABG06] provide a framework for

rendering a large number of complex lighting effects

by adaptively gathering or refining clusters of lights

and approximating their overall contributions cheaply.

2.2 Interactive Ray Tracing

While ray tracing has been a favoured research topic

since the early 80’s [Whi80, CPC84] only recently have

methods been presented that have allowed ray tracing

to to become interactive on desktop PCs. The first

real-time implementations were by Muus [Muu95] and

Parker et al. [PMS+99]. They parallelised the tradi-

tional ray tracing pipeline to run on shared memory ma-

chines, but the computer used at the time were classified

as super computers running as many as 96 processors.

While both implementation used ray tracing they had

different goals. For Muus these were to render CSG

directly while Parker et al. implemented a more con-

ventional system that was designed to render complex

scenes with millions of triangles. An increase in com-

putational power was needed though before standard

desktop systems could support interactive frame rates.

This is due to the fact that ray tracing is computation-

ally expensive and as yet has not benefited from com-

mercial purpose-built hardware, although attempts are

being made [SWS05]. This increase in computational

desktop power only occurred recently when multi-core

CPUs entered the market. Initial implementations after

Muus and Parket et al. were limited to simple shading

effects [RSH05] or to very low resolution images that

were rendered not on a single PC but using a distributed

environment [WSBW01].

Recent work has attempted to make use of the in-

crease in computational power via two avenues: ex-

ploitation of cache coherency and optimisation of ac-

celeration structures.

Previously ray/object intersections were a bottleneck

in the ray tracing pipeline. In addition, the actual traver-

sal of the acceleration data structures was also one of

the major challenges. With the resurgence of shared-
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memory machines containing multiple processors and

the progress made with SIMD instruction sets such as

Intel’s SSE, the exploitation of spatial and cache co-

herency was paramount in allowing ray tracers to reach

interactive rates. The primary method that exploited

both spatial and cache coherency was the grouping of

rays that have a common origin in bundles or packets,

first done by [WSBW01]. These packets also helped in

optimising acceleration structure traversal and allowed

for early culling of large number of rays. Furthermore

Wald et al. [WSBW01] demonstrated that organising

data structures carefully to improve the chances they

would remain in CPU cache along with the packetisa-

tion in ray tracing was the final push that was needed to

allow real-time ray tracing on desktop PCs. Due to the

constantly increasing bandwidth and decreasing latency

to on-die CPU cache (L1, L2 and L3 cache) retrieving

data from it was orders of magnitude faster than doing

so from main memory.

While exploitation of cache coherency is vital, the

research that has gone into construction of efficient data

structures that minimise the cost of ray/object inter-

sections cannot be overlooked. These structures, com-

monly known as acceleration data structures, generally

subdivide space in some uniform or adaptive manner

and attempt to make traversal as cache coherent as pos-

sible. Much research has gone into these structures and

while it is impractical to cover them all here the cur-

rent favourites are kd-trees [WH06], BVHs [LYTM06,

WBS07] and a new hybrid approach known as bound-

ing interval hierarchies (BIH) [WK06].

Recent publications such as the one by Wald et al.

[WMG+07] provides an in-depth overview of this

growing field of research.

3 EXPERIMENTAL FRAMEWORK

To properly test how selective rendering interacts with

interactive ray tracing we modify a state-of-the-art in-

teractive ray tracer. Manta [SBB+06] from the Univer-

sity of Utah was chosen for its up to date algorithms,

optimised acceleration structures [Wal07], the packe-

tised nature of its rendering pipeline and its extensibil-

ity due to the fact it is an open source project.

A detailed breakdown of the Manta pipeline is be-

yond the scope of this paper but a detailed overview is

given in Stephens et al. [SBB+06]. For our experiment

we modified the pipeline at the stage where it would

have minimal impact on the performance of the rest of

the pipeline. At this stage the pixels that need to be

traced are specified and then converted into ray packets.

We then provided a stride parameter which enabled

us to simulate selective rendering by subsampling the

image in a pre-defined way.

Stride in the context of this experiment is a parameter

that defines how the selective rendering is performed.

While simply rendering a lower resolution image would

produce the same amount of pixels as utilising a stride

this would not truly simulate selective rendering. This

is because while selective rendering only renders a sub-

set of the pixels in the image, the image is still created at

full resolution. This has implications at many stages of

the rendering pipeline and in order to produce a superior

simulation it was decided to render the image at full

resolution with a stride instead of just rendering the

image at progressively lower resolutions. The stride

itself simply defines how many steps one must take

away from the current pixel before a new one is marked

for processing. A stride of one simply means move over

to the next pixel and mark it for processing, while a

stride of two is move over twice, skipping one pixel and

marking every second one for processing. Therefore a

stride of X would render a 1/X2 of the total pixels in

the image simulating the incoherent nature of selective

rendering but allowing precise control over the amount

of subsampling that took place. A ray is then generated

per pixel and grouped into packets that are then traced

through the scene. Figure 1 provides a graphical exam-

ple.

Figure 1: Changes in stride

Once the selective pixel sampler was added to Manta

four test scenes were selected (these are detailed in

Section 4) and the experiment was setup in such a way

to minimise unintentional cache coherence. This could

occur through the re-use of the same scene while testing

multiple strides where it was possible that some data

may have remained in cache from the previous run and

therefore would skew results. All four test scenes were

run after each other for each of the strides to ensure that

the cache contained data from a previous scene and not

data from the same scene that could be reused.

A resolution of 4096× 4096 to simulate a scene of

1024× 1024 with 16 rays per pixel, was selected and

each scene was run with thirteen different strides, from

1 to 4096, doubling the stride each time. This produced

a range of images where every pixel in the image was

being rendered to only one pixel being rendered.

For the experiment the standard Manta default of 64

rays per packet was used. Therefore for any results

where less than 64 rays are processed the ray packet in

Manta is not going to be be filled. This will lead to an

increased cost per ray as the shading and other functions

performed on the ray packet are no longer amortised

over all 64 rays.
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Figure 2: Primary rays only
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Figure 3: Primary and secondary rays
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Figure 4: Secondary rays only
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Figure 5: Normalised speed-up compared to 4096×4096
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4 RESULTS

We present our results for two cases using a single-core

and an 8 core machine. All single-threaded tests

were performed on an an single-core 2.8Ghz Intel

Prescott CPU with two gigabytes of DDR memory

running Linux with the 2.6.20-16 low-latency kernel.

A modified version of Manta (detailed in Section 3)

was compiled on the machine and run using one thread.

The multi-threaded tests were run on an dual quad-core

Intel 3.0 GHz XEON Apple Pro with four gigabytes of

667MHz DDR2 fully buffered ECC RAM. Manta was

compiled under OSX 10.4 using the Apple GCC 4.0

(based on GNU GCC 4.0.1) and run with 8 threads.

(a) Default (b) Sphere Grid

(c) Complex 1 (d) Complex 2

Figure 6: The four scenes used

Objects Materials Lights

Default 2 2 3

Sphere Grid 65 2 1

Complex 1 698,274 5 3

Complex 2 586,466 5 2

Table 1: Scene details

The results are summarised in 4 figures. Figures 2, 3

and 4 each display timings for specific components of

each pixel. Figure 5 displays normalised speed-up for

each stride.

Figure 2 and 3 show results for primary rays only and

primary and secondary rays respectively. The data dis-

played on the Y axis is the average time taken to render

a pixel using a logarithmic scale versus the total number

of pixels rendered on the X axis using an exponential

scale. Figure 4 contains data for secondary rays only,

where the Y axis is the average time taken to render a

pixel using a linear scale versus the total number of pix-

els rendered on the X axis using an exponential scale.

Figure 5 shows the normalised speed-up for different

strides when rendering both primary and secondary rays

where the Y axis is the normalised speed-up using a

linear scale versus the total number of pixels rendered

on the X axis using an exponential scale.

One can see in Figures 2a and 3a that for the single-

threaded results there is an overall increase in the av-

erage time taken to render a pixel as the total number

of pixels rendered decreases, although it is not strictly

a logarithmic increase and for certain scenes such as

SPHERE GRID and DEFAULT is linear in certain ar-

eas. Examining the multi-threaded results one can see

much less disparity between the different scenes and an

almost perfectly logarithmic increase in average time

taken to render a pixel as total number of pixels ren-

dered decreases. This can most likely be attributed

to the increased amount of cache, 16MB of L2 cache

on the dual Quad-core vs. 2MB on the single-core

Prescott, and as cache coherency decreases we see a

higher overall cost per pixel, than was noted with the

single-threaded results, for each ray.

The results in Figure 5 indicate, for a given stride,

how close the results are to an ideal speed-up with

the results being normalised to make comparison eas-

ier. An ideal speed-up being where the amount of time

taken to render the given pixels is T1/(S2
n) where T1

is the time taken to render the image at a stride of 1

and Sn is the stride. For all scenes one can observe

a decrease in speed-up as the stride is increased, and

for all scenes other than SPHERE GRID the speed-

up is only 20% of the ideal when the stride reaches

thirty two. SPHERE GRID shows a much slower de-

crease in speed-up mostly due to its regular nature and

higher coherence when calling shading and intersec-

tion routines. For both DEFAULT and SPHERE GRID

we see that the decrease in speed-up is much faster in

the multi-threaded results (Figure 5b) and while not

as pronounced both COMPLEX 1 and COMPLEX 2

also show a decrease in speed-up when comparing the

single-threaded and multi-threaded results. This, like

the other results, shows that an increase in the amount

of cache available adversely effects the performance of

selective rendering.

What is also important to note is that due to the packet

size being 64 rays, as described in Section 3, results

where less than 64 pixels were processed showed an

increase in average time taken per pixel, as ray packets

where not completely filled when ray tracing occurred.

5 DISCUSSION

The implications of the results as pertaining to the inter-

action of selective rendering and interactive ray tracing

are very interesting. As can be seen from Figure 2, 3

and 4 for the majority of scenes as the total number

of pixels computed decreases the average time taken

to compute a pixel increases logarithmically. One can
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see an order of magnitude increase in the average time

taken to compute a pixel as one goes from a stride of

one to a stride of thirty two, the majority of this increase

can be attributed to a decrease in cache coherency as the

width of the packet increases with the growing stride.

Further evidence that this occurs as a result of cache

misses and poor spatial coherency can be seen in the

results of Figures 2 and 4. In Figure 2 the highly co-

herent primary rays are timed separately and show a

constant and logarithmic increase in the average time

taken to compute a pixel as the total number of pixels

rendered decreases due to the stride increase. Only

specular secondary rays are timed in Figure 4 and show

that as the total number of pixels rendered decreases

due to increased stride. There is very little measur-

able change in the average time taken to compute a

pixel until only 256 samples are being calculated out

of a possible 16,777,216. At this level any variance

can be attributed to coincidental coherence or just not

traversing complex parts of the scene. This shows that

secondary rays are playing a very insignificant part in

the overall deterioration of speed and that it is the very

spatially coherent primary rays that are responsible for

this speed loss. The loss in spatial coherence between

the primary rays as stride increases is being directly

translated into a loss of cache coherency and therefore

an overall increase in average time taken to render a

pixel. This is most apparent in multi-threaded results

(Figure 2b) as the amount of L2 cache available to the

CPUs increase.

As all the current interactive ray tracing techniques

[SBB+06, RSH05] and optimised accelerating struc-

tures [SSK07, Wal07] rely on spatially coherent rays

to amortise the cost of tracing large packets and when

this spatial coherency is no longer present, as is the

case with selective ray tracing, many of the speedups

gained from these techniques are lost. On the other

hand, secondary rays are naturally incoherent and due

to this fact selective rendering has very little negative

impact on the component of the ray tracing calculation

as can be seen in Figure 4.

The discussion above along with results from Figure

5, which contain less than ideal speed-up that drops

off sharply as stride increases for even the simplest

scene, shows that selective rendering is useful but not

as useful as it should be given the overall increase in

average time taken to render a pixel. From this one

can potentially draw two conclusions. One can either

selectively render primary rays coherently using some

form of adaptive or progressive approach or just not

utilise selective rendering for primary rays and apply

it just to secondary rays.

6 CONCLUSIONS AND FUTURE

WORK

In this paper we have provided an analysis of the effects

that selective rendering has on interactive ray tracing.

We have modified an existing state of the art inter-

active ray tracer (Manta from the University of Utah

[SBB+06]) to allow us to simulate different levels of

selective rendering. Our results show that the average

time taken to render a pixel increases as we increase the

stride we render at and that this is mainly due to poor

spatial coherence and its effects on primary rays. Pri-

mary rays rely on packets of spatially coherent rays for

the traversal of acceleration structures and intersection

of objects without this spatial performance deteriorates.

This is problematic as cache coherence is heavily relied

on by a large number of modern algorithms to pro-

vide the speed-up necessary for interactivity. We also

see that secondary rays, when rendered with a stride,

contribute almost nothing to the increase in average

rendering time for a pixel, as opposed to primary rays.

This is because secondary rays are naturally incoherent

and aren’t effected by poor spatial coherence and a lack

of cache coherence.

From our results we conclude that while selective

rendering in an interactive ray tracer can be useful the

penalties incurred must be carefully managed. For fu-

ture work we will look into designing selective render-

ing algorithms that carefully manage primary rays by

making use of adaptive or progress methods that main-

tain spatial coherency. Furthermore, we will review

selective rendering algorithms that perform selective

calculations solely on the secondary rays.
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