Automatic Creation of Object Hierarchies for Ray Tracing of Dynamic Scenes

- WSCG '07 -

Martin Eisemann, Thorsten Grosch, Marcus Magnor, Stefan Müller

eisemann@cg.tu-bs.de

Computer Graphics Lab, TU Braunschweig, Germany

Institute for Computational Visualistics, University of Koblenz-Landau, Germany

Motivation

Ray Tracing

- Interactive or real-time frame rates possible
 - [Parker et al. 99], [Wald 04], [Reshetov et al. 05]
- Strongly dependent on acceleration data structures
- Optimized for static scenes

Ray Tracing of Dynamic Scenes

Related Work:

[Glassner 88], [Reinhard et al. 00], [Lext et al. 01], [Günther et al. 06], [Lauterbach et al. 06], [Wächter et al. 06], [Wald et al. 06]

- 2 Methods for dynamic scenes:
- Dynamic Goldsmith and Salmon

, see also [Goldsmith and Salmon 87]

Loose Bounding Volume Hierarchy

, see also [Ulrich 00]

- Goals:
 - Exploitation of localities
 - Prevention of thinning
- Initial build:
 - Minimize amount of expected intersection tests

$$C = 1 + \sum_{i=0}^{n} \frac{S(N_i) \# Children(N_i)}{S(Root)}$$

- Use SAH, Median-Cut, G. & S., ...

Thinning

- Number of objects in a node decreases
- Surface area stays constant
- Needs quality criterion

$$Q(N) = \frac{S(N)}{\#Objects(N)}$$

Initial calculation of Q(N) for every node

Thinning

- If threshold is exceeded during animation:
 - 1. Delete node
 - 2. Reinsert child nodes

- Reconstruction in O(n)
- Hybrid between spatial acceleration data structure and BVH
 - Spatial median-cut with alternating axes
 - User-defined depth of 3N

- Lowest level of BVH is a pseudo-uniform grid
- Resolution $2^{N} \times 2^{N} \times 2^{N}$

Wide Object Isolation

Skip Indices

Refitting by backward iteration

- Adjusts BVs
- Sets skip indices
- Marks empty nodes

Test Results

Test scenes:

between 5 and 149.058 animated objects

Test Results

Dynamic G. & S.

Loose BVH

Update-Phase	RT-Phase		Update-Phase	RT-Phase
6x – 103x	1.0x – 1.9x	speed-up	11.2x – 18.5x	0.5x – 7.0x
17ms – 907ms	6.0s – 11.4s	avg. timings	125ms – 404ms	3.2s – 11.7s

- Local movement
- up to a few hundred objects
- Good overall performance

- Fast and constant updates
- Several thousand objects
- Teapot in the stadium problem

http://graphics.tu-bs.de/people/eisemann

