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ABSTRACT

This paper examines the process of tone mapping and blooming, and then discusses its real-time implementation on current
graphics hardware (GPU). The main contribution of this paper is a fast Gaussian filtering algorithm that significantly reduces the
number of texture fetches and thus runs at interactive frame rates on the GPU. The reduction of the number of texture fetches is
made possible by the rewriting of the filtering integral according to the concept of importance sampling. The proposed method
can be used not only in tone mapping but also in other screen space camera effects as well, like bloom, glow or depth of field.
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1 INTRODUCTION
Full screen framebuffer effects are integral parts of the
rendering process if we want to create high quality im-
ages. It is important to make these effects as fast as
possible, because they are applied to the whole frame-
buffer. These effects are computed by rendering a full
screen quadrilateral to get the pixel shader to process
every pixel.

Full screen frame buffer effects include many impor-
tant particular methods, such as tone mapping, glow
generation, or depth of field. These methods require
weighted averages of pixel values at different neighbor-
hoods, which can be obtained by convolving the im-
age with the particular filter kernel. Thus the efficient
implementation of filtering is a key to the fast realiza-
tion of such effects. In this paper we consider the ef-
ficient realization of the 2D Gaussian filter. However,
we should emphasize that the basic ideas can be used
for other filters as well. Having proposed a fast filter-
ing scheme, we present different applications, including
bloom and temporal tone mapping.

2 FILTERING METHOD
Gaussian filtering is the most time critical part of the
GPU implementation of many screen space methods. If
we do it naively, the fragment shader needs to access
the texture memory many times to fetch values in the
neighborhood.
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The general form of the Gaussian filter is

L′(X ,Y ) =

∞∫
y=−∞

∞∫
x=−∞

L(X − x,Y − y)
1

2πσ2 e

(
− x2+y2

2σ2

)
dxdy.

Taking advantage of the fact that the exponential
function diminishes quickly, the infinite integrals can
be approximated by finite integrals:

L′(X ,Y ) ≈
S∫

y=−S
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L(X − x,Y − y)
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)
dxdy.

This double integral is replaced by double summations
for discrete images. If the domain of [−S,S]× [−S,S]
contains N ×N discrete samples, then the discrete inte-
gral approximation requires the evaluation of N2 kernel
values, multiplications, and additions, which is rather
costly when repeated for every pixel of the screen.

2.1 Separation of dimensions
One common way of reducing the computation burden
of 2D filtering is to exploit the separability of the filter
kernel. It is based on the recognition that the two di-
mensional convolution can be replaced by a vertical and
a horizontal one-dimensional convolutions. The double
integral is computed in two passes. The first pass results
in the following 2D function:

F(X ,Y ) =

S∫
−S

L(X − x,Y )
1√

2πσ
e(− x2

2σ2 )dx.

Then the final result can be obtained by filtering F again
with a similar one dimensional filter:

L′(X ,Y ) ≈
S∫

−S

F(X ,Y − y)
1√

2πσ
e(− y2

2σ2 )dy.
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In this way the computation complexity can be reduced
from N2 evaluations to 2N evaluations.

2.2 Importance sampling
In this paper, we propose another trick to further reduce
the required computations. This approach is based on
the concept of importance sampling. Let us consider
the

∫
T Y (x− t) · g(t) dt convolution where Y is the im-

age value (e.g. luminance) and g is the filter kernel,
i.e. the Gaussian in our case, and find a function τ(t)
together with its inverse t(τ) so that the following con-
ditions hold

dτ

dt
= g(t) → τ(t) =

t∫
g(t ′)dt ′.

If g is known, then τ can be computed and inverted off
line. Substituting the precomputed t(τ) function into
the integral we obtain

∫
T

Y (x− t) ·g(t) dt =
∫

τ(T)

Y (x− t(τ)) dτ

Approximating the transformed integral taking uni-
formly distributed samples corresponds to a quadrature
of the original integral taking N′ non-uniform samples:

∫

τ(T )

Y (x− t(τ)) dτ ≈ |τ(T )|
N′ ·

N′

∑
i=1

Y (x− t(τi))

where |τ(T )| is the size of the integration domain.

This way we take samples densely where the filter
kernel is large and fetch samples less often farther
away, but do not apply weighting. Note that this allows
us to use a smaller number of samples (N′ < N) and
not to access every pixel in the neighborhood since far
from the center of the filter kernel, the weighting would
eliminate the contribution anyway, so taking dense
samples far from the center would be a waste of time.

The implementation of this approach is quite
straightforward. The required t(τ) function is
computed by integrating the standard Gaussian
function and inverting the integral. The samples
of the resulting t(τ) are hardwired into the shader
(−3.8697,−1.7229,0,1.7229,3.8697). These con-
stants determine where the texture should be fetched.

The convolution is executed separately for the two
directions (this is possible because of the separability
of the Gaussian filter). The horizontal and the vertical
passes are implemented by the following fragment
shaders:

texture LumTex;
half4 DownScaleH(float2 tex0:TEXCOORD0):COLOR
{

float2 du1 = float2(1.7229/Width, 0));
float2 du2 = float2(3.8697/Width, 0));
half4 texLookUp;
texLookUp = tex2D(LumTex, tex0 - du2).r +

tex2D(LumTex, tex0 - du1).r +
tex2D(LumTex, tex0).r +
tex2D(LumTex, tex0 + du1).r +
tex2D(LumTex, tex0 + du2).r;

return half4(texLookUp / 5, 0, 0, 1);
}

half4 DownScaleV(float2 tex0:TEXCOORD0):COLOR
{

float2 dv1 = float2(0, 1.7229/Height));
float2 dv2 = float2(0, 3.8697/Height));
half4 texLookUp;
texLookUp = tex2D(LumTex, tex0 - dv2).r +

tex2D(LumTex, tex0 - dv1).r +
tex2D(LumTex, tex0).r +
tex2D(LumTex, tex0 + dv1).r +
tex2D(LumTex, tex0 + dv2).r;

return half4(texLookUp / 5, 0, 0, 1);
}

In the following sections we apply this filtering
scheme for bloom and tone mapping effects.

3 BLOOM EFFECT
Due to the scattering of light in the optical system of
the eye, sources of relatively strong light cause the de-
crease of contrast in their vicinity. This phenomenon
is called the bloom. Such an effect cannot be naturally
evoked while perceiving an image on a display due to
different viewing conditions and limited maximum lu-
minance of such devices. Thus we should account for
it during rendering.

The attenuation due to blooming at frequency ρ of
the visible spectrum under a given pupil aperture d is
modeled by an Ocular Transfer Function (OTF) [1]:

OTF(ρ ,d) = e−
ρ

20.9−2.1·d 1.3−0.07·d

where

d(Ỹ ) = 4.9−3tanh(0.4log10 Ỹ + 1),

and Ỹ is the logarithmic average of the luminance in the
scene. If we want to simulate this effect in a physically
correct way, then we have implement the computation
of the OTF. However in most of the computer graphics
applications, like computer games, the spectacular but
fast result is more important than the physical correct-
ness. Thus we should rather use fast approximations.

An approximative approach differentiates strongly
and weakly radiating parts of the image. Then the
strongly radiating parts are blurred and are added to the
darker regions.

The implementation of this method requires blurring,
which is a Gaussian filtering computed by the method
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Figure 1: Bloom effect

of the previous section. First the scene is rendered into
a floating point buffer. In this buffer the pixels with high
intensities represents the glowing parts of the scene.
We use a low pass filter to separate these parts to an-
other image buffer. The second step is to blur this im-
age using convolution with Gaussian kernel. After the
blurring pass the original image is combined with the
generated glow image pixel by pixel. To get good re-
sults, we need to use high dynamic range source image,
otherwise we may catch too much or too less “glowing
emitter” part of the image.

We may also add an interesting motion blur like trail-
ing effect to the glow easily. If we store the blurred
glow image we can modulate the next frame’s glow im-
age with it. The length of the trail can be controlled
during the composition with a dimming parameter.

4 TONE MAPPING
Off the shelf monitors can control the intensity just in a
limited, low dynamic range (LDR). Therefore the val-
ues written into the frame buffer are unsigned bytes
in the range of [0, 255], representing values in [0,1],
where 1 corresponds to the maximum intensity of the
monitor. However, global illumination computations
result in high dynamic range (HDR) luminance values
that are not restricted to the range of the monitors. The
conversion of HDR image values to displayable LDR
values is called tone mapping [5]. The conversion is
based on the luminance the human eye is adapted to.
Assuming that our view spans over the image, the adap-
tation luminance will be the average luminance of the
whole image.

Having the adaptation luminance, source luminance
values Y are first mapped to relative luminance Yr:

Yr =
α ·Y

Ỹ
,

where α is a constant of the mapping, which is called
the key value.

The relative luminance values are then mapped to the
displayable [0,1] pixel intensities L using the following
function:

L =
Yr

1 +Yr
. (1)

This formula maps all luminance values to the [0,1]
range in such way that relative luminance Yr = 1 is

mapped to pixel intensity L = 0.5. This property is
used to map a desired luminance level of the scene to
the middle intensity on the display. Mapping a higher
luminance level to middle gray results in a subjectively
dark image whereas mapping lower luminance to mid-
dle gray will give a bright result. Images which we
perceive at low light condition are relatively dark com-
pared to what we see during a day. We can simulate this
impression by modulating the key value with respect to
the adapting luminance in the screen.

Key value α controls whether the tone mapped im-
age appears relatively bright or relatively dark. Its exact
value can be left as user choice, or it can be estimated
automatically based on the relations between minimum,
maximum, and average luminance in the scene [4]. Un-
fortunately, the critical changes in the absolute lumi-
nance values may not always affect the relation between
these three values. For example, this may lead to dark
night scenes appearing as too bright.

Krawczyk [3] proposed an empirical method to cal-
culate the key value. His method is based on the ab-
solute luminance. Since the key value was introduced
in photography, there is no scientifically based experi-
mental data which would provide an appropriate rela-
tion between the key value and the luminance. The low
key is 0.05, the typical choice for moderate illumination
is 0.18, and 0.8 is the high key. Krawczyk empirically
specified key values for several illumination conditions
and interpolated the rest using the following formula:

α(Ỹ ) = 1.03− 2
2 + log10(Ỹ + 1)

.

This basic tone mapping process can be extended in
several ways. In the following subsections, we discuss
a local version, the incorporation of the bloom effect
into the tone mapping process, the extension to tempo-
rally varying image sequence, and to cope with scotopic
vision.

4.1 Local tone mapping
The tone mapping function of equation 1 may lead to
the loss of details in the scene due to extensive contrast
compression. Reinhard et al. [4] proposed a solution to
preserve local details by employing a spatially variant
local adaptation value V in equation 1:
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Figure 2: The adaptation process

L(x,y) =
Yr(x,y)

1 +V(x,y)
,

where x,y are the pixel coordinates.
The local adaptation V equals to the average lumi-

nance in a neighborhood of the pixel. The problem lies
however in the estimation of how large the surround of
the pixel should be. The goal is to have as wide sur-
round as possible, however too large area may lead to
well known inverse gradient artifacts called halos. The
solution is to successively increase the size of a sur-
round on each scale of the pyramid, checking each time
if no artifacts are introduced.

For this purpose a Gaussian pyramid is constructed
with successively increasing kernel size. The Gaussian
for the first scale is one pixel wide, setting kernel size
to s = (2

√
2)−1, on each subsequent scale s is 1.6 times

larger.
Having the current and the previous scales, we

update the perceptual data on a per pixel basis in
a separate rendering pass. The local adaptation is
computed using the measure of the difference between
the previous and the current scale as described in [4].

4.2 Bloom integration into tone mapping
To take account the additional light scattering during
the tone mapping process, we have to create a bloom
map based on the absolute luminance of the picture.

For the bloom map, we first estimate the proper scale
for the luminance of the current pixel. It depends on
the adapting luminance and it is uniform for the whole
frame so we supply it as a parameter to the fragment
program. Before descending to the next scale of the
Gaussian pyramid, the texture containing the current
scale becomes the previous scale, and the texture with
the current set of the perceptual data becomes the pre-
vious set.

After descending to the lowest scale of the Gaussian
pyramid, the perceptual data texture is complete. In the
final rendering step, we tone map the HDR frame and
apply the perceptual effects with the equation

L(x,y) =
Yr +Ybloom

1 +V(x,y)
,

where L is the final pixel intensity value, Yr the rela-
tive luminance, Ybloom is the amount of additional light
scattering in the eye, and V is the local adaptation map.

4.3 Temporal Luminance adaptation
While tone mapping the sequence of HDR frames, it
is important to note that the luminance conditions can
change drastically from frame to frame. The human vi-
sion reacts to such changes through the temporal adap-
tation processes. The time course of adaptation dif-
fers depending on whether we adapt to light or to dark-
ness, and whether we perceive mainly using rods (dur-
ing night) or cones (during a day).

To take into account the adaptation process, a filtered
Ỹa value can be used instead of the actual adapting lu-
minance Ỹ . The filtered value changes according to the
adaptation processes in human vision, eventually reach-
ing the actual value if the adapting luminance is stable
for some time. The process of adaptation can be mod-
eled using an exponential decay function:

Ỹ new
a = Ỹa +(Ỹ − Ỹa) · (1− e−

T
τ )

where T is the discrete time step between the display
of two frames, and τ is the time constant describing the
speed of the adaptation process. These time constants
are different for rods and cones:

τrods ≈ 0.4s, τcones ≈ 0.1s

Therefore, the speed of the adaptation depends on the
level of the illumination in the scene. The time required
to reach the fully adapted state depends also on whether
the observer is adapting to light or dark conditions. The
above numbers describe the adaptation to light. The full
adaptation to dark takes up to tens of minutes, so it’s not
simulated.

4.4 Scotopic vision
On low light conditions only the rods are active, so
color discrimination is not possible. The image be-
comes less colorful. The cones start to loose sensitivity
at 3.4 cd

m2 and become completely insensitive at 0.03 cd
m2

where the rods are dominant. We can model the sensi-
tivity of rods with the following equation:

σ(Y ) =
0.04

0.04 +Y
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Figure 3: The illumination levels during the filtering: original, local, global

where Y denotes the luminance. The value σ = 1 de-
scribes the monochromatic vision and σ = 0 the full
color discrimination.

4.5 Implementation
The global tone mapping operators require the compu-
tation of the global average of the luminance. In the first
step we calculate the luminance value of every pixel us-
ing the standard CIE XYZ transform (D65 white point):

⎡
⎣ X

Y
Z

⎤
⎦ =

⎡
⎣ 0.4124 0.3576 0.1805

0.2126 0.7132 0.0722
0.0193 0.1192 0.9505

⎤
⎦ ·

⎡
⎣ R

G
B

⎤
⎦

The Y component of the XYZ vector is the luminance,
so we can compute it with the following equation:

Y = 0.2126 ·R + 0.7132 ·G+0.0722 ·B.

When we have the luminance image we can calculate
the global average with Gaussian filtering [2]. This can
be a multi step process, as we scale down the luminance
image to one pixel in several passes. We can reduce the
size of the luminance image in every step to reduce the
computation.

We account for the last perceptual effect, the scotopic
vision, while applying the final pixel intensity value to
the RGB channels in the original HDR frame. Using
the following formula, we calculate the tone mapped
RGB values as a combination of the color information
and the monochromatic intensity proportionally to the
scotopic sensitivity:
⎡
⎣ RL

GL
BL

⎤
⎦ =

⎡
⎣ R

G
B

⎤
⎦ L · (1−σ(Y))

Y
+

⎡
⎣ 1.05

0.97
1.27

⎤
⎦Lσ(Y ),

where [RL,GL,BL] denotes the tone mapped intensi-
ties, [R,G,B] are the original HDR values, Y is the
luminance, L is the tone mapped luminance, and
σ is the scotopic sensitivity. The constant coeffi-
cients in the monochromatic part account for the blue
shift of the subjective hue of colors for the night scenes.

During the tone mapping process, in every pass we
render a full screen quadrilateral and let the fragment
shader visit each texel. The pixel shader computing the
luminance for each pixel is:

texture SourceTex; // source HDR image
float Luminance(in float2 Tex : TEXCOORD0)
: COLOR
{

float3 col = tex2D(SourceTex, Tex).rgb;
return dot(col, float3(0.21, 0.71, 0.08));

}

In order to downscale the luminance image, Gaussian
filter is used, which is implemented according to the
proposed importance sampling method. The final pass
takes the average luminance value of the neighborhood
and scales the color accordingly:

texture AvgLumTex;

float4 FinalPS(float2 Tex : TEXCOORD0):COLOR
{

float key = 1.03 - 2/
(2+log10(tex2D(AvgLumTex,Tex).r+1));

float relLum=key*tex2D(LumTex, Tex).r /
tex2D(AvgLumTex, Tex).r;

float Lum = relLum / (1+relLum);
float4 col = tex2D(SourceTex, Tex) * Lum;
float gamma = float3(1.05,0.97,1.27)
return pow(col * gamma, 1/2.2);

}

5 CONCLUSION

The proposed filtering method can be effectively im-
plemented on current GPUs. With this variation of the
Gaussian filter we can achieve interactive framerates
during the tone mapping process. The sample shaders
has been implemented in HLSL and integrated into a
game engine. Our test application runs on NV7800
GPU. Without tone mapping the average frame rate is
around 380 fps, with the suggested filtering method we
added postprocessing effects to the application. With
tone mapping the average frame rate is around 300 fps.

The reviewed tone mapping algorithm eliminates the
typical problems of global methods and preserves the
details of the images. The local adaptation part is mod-
ified to take account the large variation of the luminance
values of the pictures. This removes the disturbing halo
artifacts at the luminance jumps. With the simulation of
the temporal adaptation of human eyes, it can be used
to tone map image streams.
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Figure 4: Original image without tone mapping

Figure 5: Tone mapping with normal light conditions

Figure 6: Tone mapping with bright light conditions

Figure 7: Tone mapping with low light conditions
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