
Planning with Smart Objects

Tolga Abaci Jan Ciger
Virtual Reality Laboratory

EPF Lausanne
CH-1015 Lausanne, Switzerland

Daniel Thalmann

{tolga.abaci | jan.ciger | daniel.thalmann}@epfl.ch

ABSTRACT
This paper presents a novel method of employing "smart objects" for problem solving in virtual environments.
Smart objects were primarily used for behavioral animation in the past. The paper demonstrates how to use them
for AI and planning purposes as well. We formally define which operations can be performed on a smart object
in terms of their requirements and their effects. A planner uses this information to determine the correct
sequence of actions needed to achieve a goal. This approach enables intelligent agents to solve problems
requiring a collaboration of several agents and complex interactions with objects.

Keywords
Smart objects, artificial intelligence, virtual reality, animation, planning.

1. INTRODUCTION
A significant number of virtual reality applications
require that the virtual characters are able to
manipulate the objects in their environment. Such
interactions can be arbitrarily complex and their
precision requirements vary as well (i.e. ranging
from simple, single-shot motions to sequences of
numerous motions that require high accuracy). Many
existing applications try to tackle this problem in ad-
hoc ways; the usual solution is to combine pre-
designed or motion-captured key frame animations
with simple object animations. Another, more
general, approach is to use a concept of smart objects
where the responsibility for the animation is shared
between the virtual character and the object itself
[Kal01].

The smart objects paradigm has been introduced for
interactions of virtual humans with virtual objects
[Kal01]. It considers objects as agents where for each
object interaction features and plans are defined.
Even though smart objects are more flexible than
other approaches when it comes to animation and

behaviors, the fact that interaction plans are fixed
imposes a severe limitation from the artificial
intelligence point of view, reducing the capability to
adapt to new situations and to solve more complex,
dynamic problems. This could be addressed by the
use of planning techniques.

One of the first published works about AI planning is
the STRIPS planner from 1971 [Fik71]. It introduced
the concept of operators, with preconditions and
effects. The state of the world is expressed using
predicate calculus. This method of describing the
planning problem is still popular and was used in
many planners – e.g. UCPOP [Pen92], Prodigy
[Vel95]. One of the most popular planners using the
STRIPS representation is Graphplan [Blm97] and its
many derivatives, such as Blackbox, Sensory
Graphplan [Wel98], Temporal Graphplan [Smi99]
and many others.

Our implementation employs a modified version of
Sensory Graphplan (SGP). It extends the standard
Graphplan and adds sensing actions and conditional
effects. It builds contingency plans – plans where the
initial truth value of some predicate may be uncertain
and the planner plans for both eventualities
indicating which actions have to be taken in each
case (planning worlds). As such, it is more suitable
for virtual reality simulations because the input
language is much more expressive compared to the
standard STRIPS-like planners.

In this paper, we present a method how to extend the
smart object concept for use with SGP. Embedding
the high-level information together with animation

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

data in the smart object allows for more efficient
planning, because only relevant operations and data
are considered. Another advantage is that the
embedding allows integrating the creation of the
logic data into the design pipeline. This ensures that
the smart object animations and the corresponding
high-level information are created at the same time
and in a consistent way.

2. EXTENDING SMART OBJECTS
Smart objects provide not only the geometric
information necessary for displaying them on the
screen, but also semantic information useful for
animation purposes. We store this information in the
form of sets of attributes attached to the scene graph
nodes of the object.

The attributes convey various kinds of information –
e.g. important places on or around the object (e.g.
where and how to position the hands of the virtual
character in order to grasp it), animation sequences
(e.g. a door opening) and general, non-geometric
information associated with the object (e.g. weight or
material properties) The semantic information in the
smart object is used by the virtual characters to
perform actions on/with the object, e.g. grasping,
moving it, operating it (e.g. a machine or an
elevator).

However, simple uses of semantic information are
not sufficient if more complex behavior is desired.
For example, moving of the crate (a smart object) is
easily animated using a script and few attributes of
the object. Moving the same crate by a virtual
character through a closed door requires a higher
level planning (i.e. “open the door first, if not open
already and then push the crate through”) and
moving a heavier crate may require two virtual
characters and careful planning to do it. All such
simulation requirements put high demands on the
script driving the virtual characters because it has to
know about all possible situations which may occur.
This is impractical and inefficient. Planning has the
potential to solve this problem; however, with many
possible actions it can become very cumbersome
because the complexity of the search space explodes
and certain cases may be simply intractable.

There is another way to address this problem. Just as
we move the object-specific “animation intelligence”
from the virtual characters to the smart objects, we
can add also the planning and AI-related data there.
The virtual character does not have to know how to
interact with every kind of object; he can acquire the
necessary capabilities on the fly from the object.

Smart objects [Kal01] already contain “interaction
plans”, which are essentially scripts containing the
animation of the action itself. These scripts

coordinate the human and object animations to create
the intended result, which could be a virtual human
pushing a crate, opening a door, etc. Our proposal for
the extension of smart objects consists of the
following items to be associated with each action:

• Preconditions for the action. These conditions
have to be satisfied in order to be able to
perform the action.

• Effects of the action. These predicates will be
added/removed from the representation of the
world state when the action is performed.

The action script is usually written in some high level
scripting language (in our case Python), the
preconditions and effects are expressed in PDDL
format used by the STRIPS planners (i.e. Lisp-like).

query

actions, preconditions,
effects

start

search for
planning data

prepare
planning

PLAN

execute
plan

action animation
script

end
Figure 1 Algorithm outline

The general flow of events when interacting with
extended smart objects is shown in Figure 1. The
algorithm is as follows:

1. The virtual character collects the relevant
information about the current state of the
surrounding world. This is taken from the
agent's own beliefs about the world and from the
smart objects involved in the interaction.

2. Prepare planning step builds the problem
representation.

3. Planning is performed. The result is a plan and
the set of alternative planning worlds in case that
there were some predicates with uncertain value
in the initial state. There is always at least one
planning world – in this case it corresponds to
the initial state directly.

4. The virtual character executes the plan. The
actions are taken from the plan, mapped to the
corresponding low-level functions and executed.

Sensing actions scheduled by the planner are
used to determine the status of the originally
uncertain predicates from the initial state. The
result determines which planning world the
agent is in and therefore decides which branch
of the plan has to be executed.

This general algorithm does not guarantee that the
agent will be able to solve every solvable problem. It
is best-effort heuristics only, because the knowledge
of the agent about his surroundings is limited. The
agent may not be aware of critical information
needed to solve the problem. Another possibility for
planning failure comes from the fact that it is very
hard to select the relevant objects from which to
retrieve the planning information. In fact, this is as
hard as the planning problem itself, because the agent
will know whether the object is or is not relevant to
the task only after the plan is built.

3. RESULTS
The described system was implemented as an
extension of our existing virtual reality platform
VHD++ [Pon03] and our agent framework described
in [Aba04]. The agents driving the virtual characters
are implemented as Python scripts; the planner is
running as compiled LISP code.

We constructed a simple scenario for evaluation of
the proposed approach. In our case, we have a virtual
art gallery which received two crates (one large one,
one smaller one) with new art. The goal of the two
virtual humans is to move the crates inside the lobby
of the gallery. Both agents have basic facilities for
teamwork (forming a team, disbanding a team),
communication and some rudimentary capabilities,
like navigation in the virtual environment. However,
they do not have any a-priori knowledge about how
the crates can be moved.

Our crates are modeled using the extended smart
object approach. They contain reference to the file
with the geometry of the object (mesh, textures, etc.),
position and orientation data for the hands of the
agents during the animation, proper position where
the agent has to be before the animation script is
started and finally the planning data.
The difference between the small and the large crates
is that we have defined the large crate as a heavy
object and therefore it needs two people to move it.

Planning data have associated animation scripts, in
our case a simple animation moving the virtual
human and the crate on the screen, using inverse
kinematics to keep the hands in position.

Figure 2 Plans for pushing the small crate (a) and

the big crate (b)

We are asking the agent Gino to form a plan to get
the big box to the lobby and afterwards to execute it
(see Figure 2b). The plan tells the agent to get
somebody to help. “SELF” is the agent which
submitted the planning request and “TEAMMATE1”
is a collaborating agent asked to help. During the
execution of the plan the originating agent (team
leader) will negotiate the team formation and when
successful, it will substitute the real name of a team
member for “TEAMMATE1”. The next step consists
of moving the teammate from his current position to
the front yard, where the crates are. “Anywhere”
denotes a special place, from which it is possible to
go everywhere. The team leader does not care where
the teammate is at the moment, but it needs to
establish him into a known state (and move him to
the necessary place). The operation “DECLARE-
DOOR-PASSABLE” is a helper operation which
declares the two places on the sides of the door as
connected in case that the door is open. The
remaining two steps are self-explanatory. The
resulting action after executing the associated
animation script from the smart object is depicted in
Figure 3.

Figure 3 Two agents pushing the large crate

a.

((((TRANSPORT GINO SMALL_BOX FRONTYARD
 LOBBY))))

b.

((((RECRUIT-HELP SELF TEAMMATE1)))
 (((MOVE TEAMMATE1 ANYWHERE FRONTYARD))
 (((DECLARE-DOOR-PASSABLE SELF DOOR)))
 (((PREPARE-PUSH SELF BIG_BOX))
 ((PREPARE-PUSH TEAMMATE1 BIG_BOX)))
 (((TEAM-PUSH SELF TEAMMATE1 BIG_BOX

FRONTYARD LOBBY))))

For the small crate, the resulting plan is simpler since
the agent can immediately perform the needed action
– Figure 2a. The animation performed by the
associated animation script is shown in Figure 4.

Figure 4 Gino pushing the small crate

4. CONCLUSIONS
Our scenario shows the possibility of the virtual
characters (agents) to “learn” how to interact with
previously not encountered objects by exploiting the
information stored in them. Furthermore, such
information encapsulation allows us to let the agent
work with only the information relevant to his task,
simplifying the planning process.
From the design point of view, keeping the animation
data and formal representation of the interaction in
one place is beneficial for ensuring that all required
elements will be created. It is feasible to create an
authoring tool for extended smart objects which will
help generate the formal representation and
animation script template from the specified
description.
The process of agent development is simplified as
well, because the developer does not have to design
an agent capable of performing many specialized
actions. It is sufficient to create a simple agent with
few basic capabilities (such as navigating the virtual
environment) and leave the rest to a generic
procedure created on the fly based on the
declarations and code defined in the extended smart
object. It could be considered as filling in an action
template based on the data in the smart object.
We demonstrated how the smart object approach can
be extended to handle the formal representation of
the interaction. The smart objects can handle not only

the animation alone but also the formal description of
it. This tight coupling between animation and its
formal description enables the virtual characters to
perform sophisticated actions which are either very
complex to achieve otherwise or just impossible
outright. It allows us to apply the known artificial
intelligence techniques to improve the realism of the
simulation and to provide richer experience to the
user.

5. ACKNOWLEDGEMENTS
The project was sponsored by the Federal Office for
Science and Education in the Framework of the EU
Network of Excellence AIM@SHAPE.

6. REFERENCES
[Kal01] Kallmann, M. Object interaction in real-time

virtual environments. Phd Thesis, EPFL, 2001.
[Blm97] Blum, L. A. and Furst, L. M. Fast planning

through planning graph analysis. Journal of
Artificial Intelligence, Vol.90, pp.281-300, 1997.

 [Fik71] Fikes R. and Nilsson, J. N. STRIPS: A new
approach to the application of theorem proving to
problem solving. Journal of Artificial
Intelligence, Vol.2, pp.189-208, 1971.

[Pen92] Penberthy J. S. and Weld D. S. UCPOP: A
sound, complete, partial-order planner for ADL.
Third International Conference on Knowledge
Representation and Reasoning, Cambridge, MA,
October 1992.

[Vel95] Veloso M., Carbonell J., Perez A., Borrajo
D., Fink, E. and Blythe J. Integrating planning
and learning: The PRODIGY Architecture.
Journal of Experimental and Theoretical
Artificial Intelligence, Vol.7, 1995.

[Wel98] Weld D. S., Anderson C. R. and Smith D. E.
Extending Graphplan to handle uncertainty &
sensing actions. In proceedings of AAAI 98,
1998.

[Smi99] Smith D. E. and Weld D. S. Temporal
planning with mutual exclusion reasoning. In
proceedings of IJCAI, pp.326-337, 1999.

[Pon03] Ponder, M., Papagiannakis, G., Molet T.,
Magnenat-Thalmann N., Thalmann D., VHD++
development framework: Towards extendible,
component based VR/AR simulation engine
featuring advanced virtual character technologies,
Computer Graphics International (CGI), pp. 96-
104, 2003.

[Aba04] Abaci, T., Ciger J. and Thalmann D.
Speculative Planning With Delegation. In
proceedings of CYBERWORLDS 2004, to
appear.

	IPC_2005.pdf
	IPC_2005.pdf

	!WSCG2005_Short_Final_Stamped.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	!WSCG2005_Short_Final.pdf
	J37-full.pdf
	J37-full.pdf
	INTRODUCTION
	CUBIC BEZIER APPROXIMATION
	Control point search
	Recursive Segment Subdivision

	OUTLINE CAPTURING PROCESS
	Outline Extraction
	Corner Detection
	Outline Approximation

	RESULTS DEMONSTRATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	J61-full.pdf
	INTRODUCTION
	QUADRATIC B-SPLINES (QBS)
	APPROXIMATION TECHNIQUE
	Step 1 – Initial Data Points
	Step 2 – Knot Insertion
	Step 3 – Error Minimization

	RESULTS DEMONSTRATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	E43-full.pdf
	F43-full.pdf
	I23-full.pdf
	I31-full.pdf

