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ABSTRACT 

The purpose of this paper is to show that linear interpolation of quaternions can be used for true Phong shading 
and also for related techniques that use frames, like bump mapping and anisotropic shading. Quaternion 
interpolation for shading has not been proposed in literature and the reason might be that it turns out to be mostly 
of academic interest, and it will here be explained why. Furthermore some pros and cons of interpolation using 
quaternions will be discussed. The effect of using this approach is that the square root in the normalization 
process disappears. The square root is now implemented in modern graphics hardware in such way that it is very 
fast. However for other types of platforms, especially hand held devices, the square root is computationally 
expensive and any software algorithm that could produce true Phong shading without the square root might turn 
out to be useful. It will be shown that linear interpolation of quaternion could be useful for bump mapping as 
well. However, quaternion arithmetic operations are not implemented in modern graphics hardware, and are 
therefore not useful until this is done. 
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1. INTRODUCTION 
Shading makes faceted objects appear smooth. Two 
widely used techniques are known as Gouraud 
[Gou71] and Phong Shading [Pho75]. Gouraud 
shading suffers from the Mach band effect and 
handles specular reflections poorly. This problem is 
diminished when Phong shading is used since the 
normals are interpolated instead of the intensities. 
However, the drawback with this approach is that all 
interpolated normals must be normalized. Otherwise, 
Phong shading will not be much different from 
Gouraud shading [Duf79].  

This paper will show that it actually is possible to 
avoid the square root in the normalization process 
and still obtain normalized normals for Phong 
shading. This can be done when quaternions are used 
for the interpolation of the normals. If modern 

graphics hardware is used, then this is not really a 
problem anymore since these operations are as fast as 
multiplications and additions nowadays. However, 
quaternion arithemtics is not implemented in modern 
graphics hardware. If such arithmetics were 
implemented then it also could be used for bump 
mapping, as explained in this paper. 

2. PREVIOUS WORK 
Shoemake [Sho85] introduced spherical linear 
interpolation (slerp) to the computer grapics society. 
Kuijk and Blake [Kuij89] showed how such angular 
interpolation could be used for faster Phong shading. 
They use spherical trigonometry to derive an equation 
for how both the normal and the vector in the 
direction to the light source varies over the polygon. 
A cosine has to be evaluated for each pixel. However, 
they propose a quadratic approximation that will 
make the evaluation faster.  Abbas et al. [Abb00] 
elaborates this idea further for a suitable hardware 
implementation. Barrera et al. [Bar04] showed that 
equal angle interpolation of normals could be done in 
a very efficient way, removing the need for the 
division and square root, since this approach yields 
normalized normals in the interpolation process. 
However, the setup for each scanline involves the 
computation of several trigonometric functions. 
Hence, the gain in speed will be diminished by the 
extra setup, unless tables are used.  
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Bump mapping was introduced by Blinn [Bli78] as a 
method for making surfaces appear rough or wrinkled 
without increasing the number of polygons. Instead, 
the normals used in the lighting computations are 
perturbed to achieve this effect. Peercy et al. [Pee97] 
use an orthonormal frame on the surface to rotate the 
vector in the direction to the light source into that 
local frame. An overview of other bump map 
approaches is given by Ernst et al. [Ern98] and 
Kilgard [Kil00]. 

3. QUATERNIONS 
Unit quaternions are related to orthonormal rotation 
matrices. The quaternion consists of four elements 
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A more compact form is to describe the three first 
elements as a vector since they constitute the 
imaginary part of the quaternion. The fourth part is 
the real part 
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 A quaternion may be used to rotate θ degrees around 
a vector n and it can be shown that the quaternion can 
be written as 
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The quaternion rotation [Sva00] of a point in 3D 
space is defined as  
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 where p is a vector in quaternion form 
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such as r=(xp,yp,yp) and q-1 is the same as the 
conjugate of a quaternion for unit quaternions 
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A quaternion can be transformed into a rotation 
matrix and vice versa [Wat92]. The rotation matrix 
corresponding to q in equation (1) is 
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The conversion from a matrix to a quaternion is a bit 
messier. 

Frames 
Even though it is not mentioned in literature, 
quaternions could be used for bump mapping and 
anisotropic shading [Pou90, Ban94], since they use 

frames on the surface, and quaternions are just 
another representation of frames. And orthogonal 
frames are rotation matrices. This fact is used in 
moving frame bump mapping, where the bump 
normal is rotated by the frame. However, in order to 
use quaternions as frames, there are several obstacles 
that must be handled. A quaternion can not be rotated 
by a frame. Hence frames, or at least the normal and 
the tangent, must be stored per vertex, rotated and 
then converted into quaternions. When bump 
mapping is used, the interpolated quaternion must 
either be converted into a rotation matrix for the 
rotation of the bump map normal, or the bump map 
normal can be rotated directly by the quaternion. 
However, this operation is not directly supported by 
modern graphics hardware, as matrix multiplication 
is. The advantage by interpolating quaternions, over 
interpolating the frame itself is that the qutaernion 
will still always define an orthonormal frame as long 
as the quaternion is normalized.  When a frame is 
interpolated, the normal and tangent are interpolated. 
Both vectors must be normalized for each pixel. The 
binormal can be computed as the cross product of 
these two vectors. The resulting frame will usually 
not be orthogonal, but close enough. 

Elimination of the Square Root 
Another advantage by using quaternions is that the 
square root disappears. This will not have much 
effect for modern graphics hardware since the square 
root nowadays is very fast. However, for software 
shading it will have a larger impact. Quaternions are 
normalized in the same way as vectors are 
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Nonetheless, equation (7) shows that each element of  
the normalized quaternion is multiplied with another 
element of the same quaternion, when the elements of 
the matrix is computed. For an example we have 
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Hence, the square root disappears, but the division is 
still necessary. Moreover, it can be shown that the 
square root disappears for quaternion rotation as it is 
defined in equation (4). The rotation can be 
simplified as [Wat92] 
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Clearly, any element of the quaternion q, will be 
multiplied with some other element of q and the 
square root can be removed. This fact is nothing new, 



but it is possible to utilize it for shading as is shown 
in the next section. 

4. SHADING 
Shading can utilize quaternion interpolation, since the 
normal can be obtained from the resulting matrix. 
Thus, it is not necessary to compute the tangent and 
binormal, in order to obtain the normal itself. The 
normal is found in the third column of the matrix in 
equation (7). Hence, the normal could be computed 
as 
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Equation (11) can be compared to ordinary vector 
interpolation where each element is linearly 
interpolated and the dot product can be quadratically  
interpolated [Duf79], followed by a division and a 
square root. When quaternions are interpolated, there 
are four linear interpolations followed by equation (8) 
and (11). Even though multiplications and additions 
are several times faster than the square root on 
ordinary CPU’s, there is not much time saved by this 
method. However, we can still do better. 

Fast Normal interpolation 
Note, that equation (11) would be much simpler if it 
would be possible to arrange so that the fourth 
element w is always set to zero. The normal becomes 
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This would correspond to rotating the frame at the 
vertices in such way that the normal is still the same, 
but the tangent and binormal is rotated around the 
normal. This can be done.  Since the quaternion 
should be normalized, but w is zero, then 
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Thus 
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Substitute equation (14) into equation (11) for 
computing nz 
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Solving for z gives 
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Now, equation (16) could be used to compute x and y 
by substituting the expression for z into equation 
(12). Hence 
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Equations (16) and (17) need to be computed per 
vertex. Hence, the square root is necessary three 
times per polygon instead of one square root per 
pixel. The following vertex shader code in the 
OpenGL shading language exemplifies the idea 

varying vec3 q; 

… 

q.z=sqrt((normal.z+1.0)*0.5); 
float t=1.0/(2.0*q.z); 
q.xy=normal.xy*t; 

Here, q is the quaternion that is interpolated over the 
polygon, normal is the normal at the vertices and t is 
temporary variable used to optimize the computation. 

The normal at each pixel is computed by equation 
(12), where the interpolated quaternion first is 
normalized by equation (9). Using equation (15) 
instead of computing nz with equation (12) gives the 
following fragment shader code in the OpenGL 
shading language 

float t= 2.0*q.z/dot(q,q); 
vec3 N=t*q.xyz; 
N.z - =1.0;   

Here, q is the quaternion and t is temporary variable 
used to optimize the computation. 

 
Figure 1. Left: Phong shading. Right: Fast linear 
quaternion interpolation  
 
Figure 1 shows the famous Venus De Milo statue 
Phong shaded to the left. It can be compared to the 



image to the right, which is shaded using linear 
interpolation of quaternions. The figures are 
indistinguishable form each other. It can be shown 
that the normals produced by this type of 
interpolation, does not necessarily lie in the same 
plane, as normals obtained by linear interpolation 
does. However, it is not a requirement that the 
normals along a scanline should lie in the same plane. 
If the object is slightly rotated, then the scanline will 
be a new cross section of the surface that the polygon 
covers, which did not have their normals in the same 
plane in the previous frame. 

5. DISCUSSION 
Even though the square root is replaced by just a few 
simple arithmetic operations, the gain in speed when 
using this type of interpolation is small. It is not in the 
scope of this paper to implement quaternion 
interpolation on different platforms, since the 
calculation speed of different operations may vary 
quite a lot among platforms. 

It should be noted that is possible to compute the 
inverse square root [Tur95] instead of normalizing a 
vector using division and the ordinary square root. 
This algorithm is based on the Newton-Raphson 
method and involves no divisions, but the proposed 
algorithm has one division. On the other hand it is 
possible to compute the division using the Newton-
Raphson method more effectively than the inverse 
square root is computed. Hence, the proposed method 
may turn out to be faster on some platforms. 

Quaternion arithmetic operations are not 
implemented in modern programmable graphics 
hardware. Therefore, bump mapping will not be 
faster using quaternion interpolation. However, if 
these operations were implemented, the conversion 
between quaternions and rotation matrices would be 
fast. Moreover, quaternion rotation could be very fast 
if it was implemented in hardware. If this is done, 
then quaternion interpolation could be standard 
procedure in the future, for bump mapping and 
anisotropic shading. 

6. CONCLUSIONS 
It is possible to perform true Phong shading by linear 
interpolation of quaternions representing the frame of 
the surface. The square root disappears in this 
process. A faster version can be obtained of this 
scheme, by rotating the frame in such way that the 
fourth element is always zero. This scheme may be 
useful for some software implementations.  

It was also discussed that linear interpolation of 
quaternions could be useful for bump mapping and 

anisotropic shading if quaternion arithmetics were 
implemented in modern graphics hardware in the 
future. 

7. REFERENCES 
[Abb00]A. M. Abbas, L. Szirmay-Kalos, T. Horvath, 

Hardware Implementation of Phong Shading 
using Spherical Interpolation, Periodica 
Polytechnica, Vol. 44, Nos 3-4, 2000. 

[Ban94] D. Banks. Illumination in Diverse 
Codimensions. In Proceedings SIGGRAPH (July 
1994), pp. 327–334. 

[Bar04] T. Barrera, A. Hast, E. Bengtsson,  
Faster shading by equal angle interpolation of 
vectors, IEEE Transactions on Visualization and 
Computer Graphics, pp. 217-223, 2004. 

[Bli78] J. F. Blinn, Simulation of Wrinkled Surfaces, 
Proceedings SIGGRAPH  1978: pp. 286-292. 

[Duf79] T. Duff, Smoothly Shaded Renderings of 
Polyhedral Objects on Raster Displays, ACM, 
Computer Graphics, Vol. 13, pp. 270-275, 1979. 

[Ern98] I. Enrst, H. Rüssler, H. Schultz, O. Wittig. 
Gouraud Bump mapping. Workshop on Graphics 
Hardware, pp. 47-53. 1998. 

[Gou71] H. Gouraud, Continuous Shading of Curved 
Surfaces, IEEE transactions on computers vol. c-
20, No 6, June 1971. 

 [Kil00] M. J. Kilgard A Practical and Robust Bump-
mapping Technique for Today s GPUs Game 
Developers Conference, Advanced OpenGL 
Game Development. 2000. 

 [Kui89] A. A. M. Kuijk, E. H. Blake, Faster Phong 
Shading via Angular Interpolation, Computer 
Graphics Forum, vol. 8, No 4, pp. 315-324 1989. 

[Pee97] Peercy, A. Airey, B. Cabral, Efficient Bump 
Mapping. Hardware In proceedings of 
SIGGRAPH, pp. 303-306. 1997. 

[Pho75] B. T. Phong, Illumination for Computer 
Generated Pictures, Communications of the 
ACM, Vol. 18, No 6, June 1975. 

[Pou90] P. Poulin, A. Fournier, A model for 
anisotropic reflection, Proceedings ACM 
SIGGRAPH,  Vol. 24 No 4, pp 273 - 282 , 1990. 

[Sho85] K. Shoemake, Animating rotation with 
quaternion curves, Proceedings ACM 
SIGGRAPH, Vol. 19 No 3,  July 1985.  

[Sva00] J. Svarovsky. Quaternions for Game 
Programming, Game Programming Gems. Charles 
River Media, pp. 195-299. 2000. 

[Tur95] K. Turkowski, Computing the Inverse Square 
Root. Graphics Gems V, Academic Press, pp. 16-
21. 1995. 

[Wat92] A. Watt, M. Watt. Advanced Animation and 
Rendering Techniques - Theory and Practice. 
Addison Wesley, pp. 363-364. 

 


	IPC_2005.pdf
	IPC_2005.pdf

	!WSCG2005_Short_Final_Stamped.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	!WSCG2005_Short_Final.pdf
	J37-full.pdf
	J37-full.pdf
	INTRODUCTION
	CUBIC BEZIER APPROXIMATION
	Control point search
	Recursive Segment Subdivision

	OUTLINE CAPTURING PROCESS
	Outline Extraction
	Corner Detection
	Outline Approximation

	RESULTS DEMONSTRATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES


	J61-full.pdf
	INTRODUCTION
	QUADRATIC B-SPLINES (QBS)
	APPROXIMATION TECHNIQUE
	Step 1 – Initial Data Points
	Step 2 – Knot Insertion
	Step 3 – Error Minimization

	RESULTS DEMONSTRATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	E43-full.pdf
	F43-full.pdf
	I23-full.pdf
	I31-full.pdf



