
Shading by Quaternion Interpolation

 Anders Hast
Creative Media Lab

University of Gävle, Sweden

aht@hig.se

ABSTRACT

The purpose of this paper is to show that linear interpolation of quaternions can be used for true Phong shading
and also for related techniques that use frames, like bump mapping and anisotropic shading. Quaternion
interpolation for shading has not been proposed in literature and the reason might be that it turns out to be mostly
of academic interest, and it will here be explained why. Furthermore some pros and cons of interpolation using
quaternions will be discussed. The effect of using this approach is that the square root in the normalization
process disappears. The square root is now implemented in modern graphics hardware in such way that it is very
fast. However for other types of platforms, especially hand held devices, the square root is computationally
expensive and any software algorithm that could produce true Phong shading without the square root might turn
out to be useful. It will be shown that linear interpolation of quaternion could be useful for bump mapping as
well. However, quaternion arithmetic operations are not implemented in modern graphics hardware, and are
therefore not useful until this is done.

Keywords
Phong Shading, Quaternion Interpolation

1. INTRODUCTION
Shading makes faceted objects appear smooth. Two
widely used techniques are known as Gouraud
[Gou71] and Phong Shading [Pho75]. Gouraud
shading suffers from the Mach band effect and
handles specular reflections poorly. This problem is
diminished when Phong shading is used since the
normals are interpolated instead of the intensities.
However, the drawback with this approach is that all
interpolated normals must be normalized. Otherwise,
Phong shading will not be much different from
Gouraud shading [Duf79].

This paper will show that it actually is possible to
avoid the square root in the normalization process
and still obtain normalized normals for Phong
shading. This can be done when quaternions are used
for the interpolation of the normals. If modern

graphics hardware is used, then this is not really a
problem anymore since these operations are as fast as
multiplications and additions nowadays. However,
quaternion arithemtics is not implemented in modern
graphics hardware. If such arithmetics were
implemented then it also could be used for bump
mapping, as explained in this paper.

2. PREVIOUS WORK
Shoemake [Sho85] introduced spherical linear
interpolation (slerp) to the computer grapics society.
Kuijk and Blake [Kuij89] showed how such angular
interpolation could be used for faster Phong shading.
They use spherical trigonometry to derive an equation
for how both the normal and the vector in the
direction to the light source varies over the polygon.
A cosine has to be evaluated for each pixel. However,
they propose a quadratic approximation that will
make the evaluation faster. Abbas et al. [Abb00]
elaborates this idea further for a suitable hardware
implementation. Barrera et al. [Bar04] showed that
equal angle interpolation of normals could be done in
a very efficient way, removing the need for the
division and square root, since this approach yields
normalized normals in the interpolation process.
However, the setup for each scanline involves the
computation of several trigonometric functions.
Hence, the gain in speed will be diminished by the
extra setup, unless tables are used.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG 2005 SHORT papers proceedings, ISBN 80-903100-9-5
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Bump mapping was introduced by Blinn [Bli78] as a
method for making surfaces appear rough or wrinkled
without increasing the number of polygons. Instead,
the normals used in the lighting computations are
perturbed to achieve this effect. Peercy et al. [Pee97]
use an orthonormal frame on the surface to rotate the
vector in the direction to the light source into that
local frame. An overview of other bump map
approaches is given by Ernst et al. [Ern98] and
Kilgard [Kil00].

3. QUATERNIONS
Unit quaternions are related to orthonormal rotation
matrices. The quaternion consists of four elements

),,,(wzyxq = (1)

A more compact form is to describe the three first
elements as a vector since they constitute the
imaginary part of the quaternion. The fourth part is
the real part

),(sq v= (2)

 A quaternion may be used to rotate θ degrees around
a vector n and it can be shown that the quaternion can
be written as

))2/cos(),2/sin((θθn=q (3)

The quaternion rotation [Sva00] of a point in 3D
space is defined as

1−=′ qpqp (4)

 where p is a vector in quaternion form

)0,(r=p (5)

such as r=(xp,yp,yp) and q-1 is the same as the
conjugate of a quaternion for unit quaternions

),(1 sq v−=− (6)

A quaternion can be transformed into a rotation
matrix and vice versa [Wat92]. The rotation matrix
corresponding to q in equation (1) is

















+++
+++
+++

=
)y2(x-1xw)2(yzyw)2(xz

xw)2(yz)z(x 2-1zw)2(xy

yw)2(xzzw)2(xy)2(y-1

22

22

22 z

M (7)

The conversion from a matrix to a quaternion is a bit
messier.

Frames
Even though it is not mentioned in literature,
quaternions could be used for bump mapping and
anisotropic shading [Pou90, Ban94], since they use

frames on the surface, and quaternions are just
another representation of frames. And orthogonal
frames are rotation matrices. This fact is used in
moving frame bump mapping, where the bump
normal is rotated by the frame. However, in order to
use quaternions as frames, there are several obstacles
that must be handled. A quaternion can not be rotated
by a frame. Hence frames, or at least the normal and
the tangent, must be stored per vertex, rotated and
then converted into quaternions. When bump
mapping is used, the interpolated quaternion must
either be converted into a rotation matrix for the
rotation of the bump map normal, or the bump map
normal can be rotated directly by the quaternion.
However, this operation is not directly supported by
modern graphics hardware, as matrix multiplication
is. The advantage by interpolating quaternions, over
interpolating the frame itself is that the qutaernion
will still always define an orthonormal frame as long
as the quaternion is normalized. When a frame is
interpolated, the normal and tangent are interpolated.
Both vectors must be normalized for each pixel. The
binormal can be computed as the cross product of
these two vectors. The resulting frame will usually
not be orthogonal, but close enough.

Elimination of the Square Root
Another advantage by using quaternions is that the
square root disappears. This will not have much
effect for modern graphics hardware since the square
root nowadays is very fast. However, for software
shading it will have a larger impact. Quaternions are
normalized in the same way as vectors are

qq

q
q

⋅
=′ (8)

Nonetheless, equation (7) shows that each element of
the normalized quaternion is multiplied with another
element of the same quaternion, when the elements of
the matrix is computed. For an example we have

qq

qq

qq

q

qq

q
qq yxyx

yx ⋅
=

⋅⋅
=′′ (9)

Hence, the square root disappears, but the division is
still necessary. Moreover, it can be shown that the
square root disappears for quaternion rotation as it is
defined in equation (4). The rotation can be
simplified as [Wat92]

)(2)(2)(1 rvrvvvvr ×+⋅+⋅−=− sssqpq (10)

Clearly, any element of the quaternion q, will be
multiplied with some other element of q and the
square root can be removed. This fact is nothing new,

but it is possible to utilize it for shading as is shown
in the next section.

4. SHADING
Shading can utilize quaternion interpolation, since the
normal can be obtained from the resulting matrix.
Thus, it is not necessary to compute the tangent and
binormal, in order to obtain the normal itself. The
normal is found in the third column of the matrix in
equation (7). Hence, the normal could be computed
as

















+
+
+

=
)y2(x-1

xw)2(yz

yw)2(xz

22

n (11)

Equation (11) can be compared to ordinary vector
interpolation where each element is linearly
interpolated and the dot product can be quadratically
interpolated [Duf79], followed by a division and a
square root. When quaternions are interpolated, there
are four linear interpolations followed by equation (8)
and (11). Even though multiplications and additions
are several times faster than the square root on
ordinary CPU’s, there is not much time saved by this
method. However, we can still do better.

Fast Normal interpolation
Note, that equation (11) would be much simpler if it
would be possible to arrange so that the fourth
element w is always set to zero. The normal becomes

















+
=

)y2(x-1

2yz

2xz

22

n (12)

This would correspond to rotating the frame at the
vertices in such way that the normal is still the same,
but the tangent and binormal is rotated around the
normal. This can be done. Since the quaternion
should be normalized, but w is zero, then

1yxz 222 =++ (13)

Thus

222 z1yx −=+ (14)

Substitute equation (14) into equation (11) for
computing nz

1z2 2 −=zn (15)

Solving for z gives

2

1+= zz
n

 (16)

Now, equation (16) could be used to compute x and y
by substituting the expression for z into equation
(12). Hence

z
y

z
x

y

x

2

2
n

n

=

=
 (17)

Equations (16) and (17) need to be computed per
vertex. Hence, the square root is necessary three
times per polygon instead of one square root per
pixel. The following vertex shader code in the
OpenGL shading language exemplifies the idea

varying vec3 q;

…

q.z=sqrt((normal.z+1.0)*0.5);
float t=1.0/(2.0*q.z);
q.xy=normal.xy*t;

Here, q is the quaternion that is interpolated over the
polygon, normal is the normal at the vertices and t is
temporary variable used to optimize the computation.

The normal at each pixel is computed by equation
(12), where the interpolated quaternion first is
normalized by equation (9). Using equation (15)
instead of computing nz with equation (12) gives the
following fragment shader code in the OpenGL
shading language

float t= 2.0*q.z/dot(q,q);
vec3 N=t*q.xyz;
N.z - =1.0;

Here, q is the quaternion and t is temporary variable
used to optimize the computation.

Figure 1. Left: Phong shading. Right: Fast linear
quaternion interpolation

Figure 1 shows the famous Venus De Milo statue
Phong shaded to the left. It can be compared to the

image to the right, which is shaded using linear
interpolation of quaternions. The figures are
indistinguishable form each other. It can be shown
that the normals produced by this type of
interpolation, does not necessarily lie in the same
plane, as normals obtained by linear interpolation
does. However, it is not a requirement that the
normals along a scanline should lie in the same plane.
If the object is slightly rotated, then the scanline will
be a new cross section of the surface that the polygon
covers, which did not have their normals in the same
plane in the previous frame.

5. DISCUSSION
Even though the square root is replaced by just a few
simple arithmetic operations, the gain in speed when
using this type of interpolation is small. It is not in the
scope of this paper to implement quaternion
interpolation on different platforms, since the
calculation speed of different operations may vary
quite a lot among platforms.

It should be noted that is possible to compute the
inverse square root [Tur95] instead of normalizing a
vector using division and the ordinary square root.
This algorithm is based on the Newton-Raphson
method and involves no divisions, but the proposed
algorithm has one division. On the other hand it is
possible to compute the division using the Newton-
Raphson method more effectively than the inverse
square root is computed. Hence, the proposed method
may turn out to be faster on some platforms.

Quaternion arithmetic operations are not
implemented in modern programmable graphics
hardware. Therefore, bump mapping will not be
faster using quaternion interpolation. However, if
these operations were implemented, the conversion
between quaternions and rotation matrices would be
fast. Moreover, quaternion rotation could be very fast
if it was implemented in hardware. If this is done,
then quaternion interpolation could be standard
procedure in the future, for bump mapping and
anisotropic shading.

6. CONCLUSIONS
It is possible to perform true Phong shading by linear
interpolation of quaternions representing the frame of
the surface. The square root disappears in this
process. A faster version can be obtained of this
scheme, by rotating the frame in such way that the
fourth element is always zero. This scheme may be
useful for some software implementations.

It was also discussed that linear interpolation of
quaternions could be useful for bump mapping and

anisotropic shading if quaternion arithmetics were
implemented in modern graphics hardware in the
future.

7. REFERENCES
[Abb00]A. M. Abbas, L. Szirmay-Kalos, T. Horvath,

Hardware Implementation of Phong Shading
using Spherical Interpolation, Periodica
Polytechnica, Vol. 44, Nos 3-4, 2000.

[Ban94] D. Banks. Illumination in Diverse
Codimensions. In Proceedings SIGGRAPH (July
1994), pp. 327–334.

[Bar04] T. Barrera, A. Hast, E. Bengtsson,
Faster shading by equal angle interpolation of
vectors, IEEE Transactions on Visualization and
Computer Graphics, pp. 217-223, 2004.

[Bli78] J. F. Blinn, Simulation of Wrinkled Surfaces,
Proceedings SIGGRAPH 1978: pp. 286-292.

[Duf79] T. Duff, Smoothly Shaded Renderings of
Polyhedral Objects on Raster Displays, ACM,
Computer Graphics, Vol. 13, pp. 270-275, 1979.

[Ern98] I. Enrst, H. Rüssler, H. Schultz, O. Wittig.
Gouraud Bump mapping. Workshop on Graphics
Hardware, pp. 47-53. 1998.

[Gou71] H. Gouraud, Continuous Shading of Curved
Surfaces, IEEE transactions on computers vol. c-
20, No 6, June 1971.

 [Kil00] M. J. Kilgard A Practical and Robust Bump-
mapping Technique for Today s GPUs Game
Developers Conference, Advanced OpenGL
Game Development. 2000.

 [Kui89] A. A. M. Kuijk, E. H. Blake, Faster Phong
Shading via Angular Interpolation, Computer
Graphics Forum, vol. 8, No 4, pp. 315-324 1989.

[Pee97] Peercy, A. Airey, B. Cabral, Efficient Bump
Mapping. Hardware In proceedings of
SIGGRAPH, pp. 303-306. 1997.

[Pho75] B. T. Phong, Illumination for Computer
Generated Pictures, Communications of the
ACM, Vol. 18, No 6, June 1975.

[Pou90] P. Poulin, A. Fournier, A model for
anisotropic reflection, Proceedings ACM
SIGGRAPH, Vol. 24 No 4, pp 273 - 282 , 1990.

[Sho85] K. Shoemake, Animating rotation with
quaternion curves, Proceedings ACM
SIGGRAPH, Vol. 19 No 3, July 1985.

[Sva00] J. Svarovsky. Quaternions for Game
Programming, Game Programming Gems. Charles
River Media, pp. 195-299. 2000.

[Tur95] K. Turkowski, Computing the Inverse Square
Root. Graphics Gems V, Academic Press, pp. 16-
21. 1995.

[Wat92] A. Watt, M. Watt. Advanced Animation and
Rendering Techniques - Theory and Practice.
Addison Wesley, pp. 363-364.

	IPC_2005.pdf
	IPC_2005.pdf

	!WSCG2005_Short_Final_Stamped.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	!WSCG2005_Short_Final.pdf
	J37-full.pdf
	J37-full.pdf
	INTRODUCTION
	CUBIC BEZIER APPROXIMATION
	Control point search
	Recursive Segment Subdivision

	OUTLINE CAPTURING PROCESS
	Outline Extraction
	Corner Detection
	Outline Approximation

	RESULTS DEMONSTRATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	J61-full.pdf
	INTRODUCTION
	QUADRATIC B-SPLINES (QBS)
	APPROXIMATION TECHNIQUE
	Step 1 – Initial Data Points
	Step 2 – Knot Insertion
	Step 3 – Error Minimization

	RESULTS DEMONSTRATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	E43-full.pdf
	F43-full.pdf
	I23-full.pdf
	I31-full.pdf

