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ABSTRACT 
The goal of this work is to create several functions for processing of two input images of one object to uncover a 
geometry of the scene. There are well-known techniques how to compute a fundamental matrix and reconstruct 
3D coordinates. Several techniques were tested to find the method that is fast and rather precise. The functions 
are implemented in the environment of Borland C++ Builder. Calibrated cameras and start in a situation when 
several points are marked correctly in both pictures are assumed.   
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1. INTRODUCTION 
Computer graphics aims to model virtual reality    
with high realism. Several problems arise when real 
world objects are modeled. A model of the real 
object should meet some metric constraints, which 
are sometimes difficult or too complex to learn 
exactly. It is more suitable for most of situations to 
estimate the approximation of values. If two images 
of the object are available, the reconstruction of 
selected object points is possible, with precision up 
to scale, by computing some geometry around. The 
theory behind is called a multiple-view geometry, 
specifically two-view geometry. 

2. BACKGROUND 
The basis of theory of two-views can be dated back 
to year 1855. In this year french mathematician 
Chasles formed the problem of recovering the 
epipolar geometry from a seven-point 
correspondence. Eight years later task was solved by 
Hesse and in the year 1981 the original eight-point 

algorithm for the computation of essential matrix was 
introduced by Longuet-Higgins. The problem of 
fundamental matrix estimation is studied quite 
extensively from that time. A nonlinear minimization 
approach to estimate the essential matrix [Weng] and 
a distance minimization approach to compute the 
fundamental matrix [Luong] were described. In 
practice, the geometric (nonlinear) minimization 
approach is more reliable but computationally more 
expensive. Current methods improve the linear 
methods or accelerate the geometric minimization 
approach. 

3. EPIPOLAR GEOMETRY 
Epipolar geometry is a natural projective geometry 
between two views of the scene. It is usually a 
picture from a camera. The type and the properties of 
projection are given by construction and adjustment 
of the camera. The epipolar geometry does not 
depend on a structure of the scene. It is derived from 
intrinsic parameters of cameras and their mutual 
position. Taking pictures of the scene by the camera 
is an arbitrary projective transformation of a 3D 
scene in world coordinates to a 2D image.  The 3*4 
matrix of projection P represents it. 
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Most of usually used cameras can be approximated 
by a pinhole camera model. Let us define the co-
ordinate system by a position and orientation of the 
first camera. The matrix P can be simplified in this 
coordinate system as P = K [I3x3 | 0] where K is a 
3*3 calibration matrix of the camera. Using general 
world coordinate system the general matrix of 



projection P has form P = K R [ I  |t]. The difference 
is just the orientation and translation of camera 
towards the world coordinate system origin. R is a 
matrix of rotation and t is a vector of translation, 
called together extrinsic parameters of camera. 

4. FUNDAMENTAL MATRIX 
The epipolar geometry arises from two images. Our 
goal is to find an equation, which describes the 
relationship between the pictures. Let us find the 
relation which binds an image point from the first 
image x= (x, y) with an image point from the second 
image x’ = (x’, y’) holding a constraint that they both 
are projections of some point X from the scene. Such 
a matrix is called the fundamental matrix F. It is the 
algebraic representation of the epipolar geometry. 
For any pair of valid points x, x’ exists a 3x3 
fundamental matrix F for which x’T F x = 0. F is of 
rank 2. To make the work with matrices easier, let us 
set the coordinate system defined by the first camera 
as the world coordinate system. The first camera 
projection matrix is then P = K [I3x3 |0] and  the 
second camera matrix is P’ = K’ [R | t], where R and 
t describe a rotation and translation of the second 
camera towards the first one and K and K’ are the 
calibration matrices of  cameras. 

Fundamental matrix and projections 
The fundamental matrix depends only on the mutual 
position of the two cameras and their calibration. For 
the pair of canonic camera matrices P = [I | 0], 
P’ = [R | t] corresponding to a fundamental matrix F 
equations as follows are valid: 

P = [I  | 0],   P’ = [[e’]x F + e‘v T | de’], 
where e is an epipole (a projection of the first camera 
centre in the second image), [e]x is a cross product, a 
skew-symmetric matrix, v is any 3-vector and d is a 
non-zero scalar. This result can be used only in cases 
when calibration matrices of both cameras are equal 
to identity. This can be achieved by normalization. 
The fundamental matrix corresponding to the 
normalized cameras is called essential matrix E with 
the form E =[t]x R. It is singular and two of its 
singular values are equal. There are only two 
possible factorizations of  E (ignoring signs) to a 
skew-symmetric matrix and  a rotation  matrix. 
Taking into consideration direction of the translation 
from the first to second camera, there are four 
possible choices for the second camera matrix P’. 
The reconstructed point X is in front of both cameras 
only in one of these four solutions. 
Another way how to separate the projection matrices 
is given by [Faugeras, Luong]. 

5. FUNDAMENTAL MATRIX 
ESTIMATION 
The problem of searching for projection matrices has 
changed to seeking for the fundamental matrix. 
There exist several methods how to find it. The 
robust ones search for the number of corresponding 
features in two images and start from this statistically 
huge set. Our input comprises several corresponding 
points from two images and a calibration matrix of 
both cameras (usually the same). Methods used in 
these situations can be divided into several groups: 
linear algorithm, algebraic minimization algorithm, 
distance minimization. Until now two of them were 
tested.  

The basic linear 8-point algorithm  
The best approximation of fundamental matrix is 
searched. The equation which defines the 
fundamental matrix F is x’T F x = 0 where x and x’ is 
a pair of the matching points in the first and the 
second image. Their projective coordinates are 
x=(x,  y, 1) T, x’=(x’, y’, 1) T. Each point match results 
in one linear equation in the unknown entries of F. 
For more points matches xi ↔ x’i (i = 1… n) linear 
equations can be stacked up into a matrix.                
The solution can be found by the least-square 
algorithm using singular value decomposition of A. 
The normalization (simple translation and scaling) of 
input data is very useful to make the algorithm stable. 
An important property of fundamental matrix is the 
singularity. This method, in general, does not 
produce matrix F of rank 2. 

The algebraic minimization algorithm 
The remaining problem is how to guarantee 
singularity of the constructed fundamental matrix. 
One possible solution is to construct the singular 
matrix as a product F = M [e]x where M is non-
singular matrix and [e]x is any skew-symmetric 
matrix, with e corresponding to the epipole in the 
first image. To guarantee the fundamental matrix 
properties in such matrix F, a constraint on F is 
added. Matrix F can be computed from the image 
point correspondences and known epipole e by 
minimization. [Hartley, Zisserman] The estimation 
inaccuracy can be evaluated by an algebraic error ε. 
It describes a transformation which maps the 
estimate of the epipole ei to the algebraic error εi : R3 

→ R8. The exact epipole is unknown, in reality. We 
acquire it’s estimate using iterative methods. The 
Levenberg – Marquardt iterative method can be used 
[Numerical Recipes], [Pollefeys]. An estimation of 
the fundamental matrix F0 is calculated using 
different methods (the 8-point linear algorithm) to 
get the zero approximation of the epipole e0 (a right 
null vector of matrix F0). Each iteration aims to 
change ei so that the value ||εi|| is minimized. 



6. IMPLEMENTATION 
The aim of our implementation is to determine a 
sufficiently correct method to obtain the fundamental 
matrix, which is fast for available data. It is assumed, 
that points are assigned by operator (manually). 
The 8-point normalized algorithm is fast and easy to 
implement method. Usually, it offers quite precise 
results. It is very suitable as the first step for iterative 
methods. If higher precision is required, the algebraic 
error minimization method is recommended. 
Distance minimization method using Sampson error 
is appropriate as an alternative algorithm. 
Methods were implemented using a Borland C++ 
Builder application. For calculation of a singular 
decomposition of matrix and inverse matrix a 
suitable library was chosen (Open Computer Vision 
Library [OpenCV]). The reconstructed points and 
predefined faces can be visualized in a 3D scene 
generated by the OpenGL library. 
The images used were not made by wide-angle lens. 
Information about a barrel distortion is available for 
some of them. The elimination of deformation did 
not produce increase of results correctness. 

Used data 
A couple of images with different accuracy and 
resolution were used to test implemented methods. 
Synthetic data, pictures from tutorial of 
PhotoModeler [PhotoMod] and self-made pictures 
done by a standard camera were used. Examples of 
used  scenes are on figure 1. 

Figure 1: Scenes 
“Bench” (Res. 280x1024, Foc.l. 6.97mm), 
“Boxes” (Res. 2272x1704, Foc.l. 7.19mm), 
“Car” (Res. 2267x1520, Foc.l. 30.75mm). 

7. TESTS AND RESULTS 
Error computation 
To evaluate precision of acquired fundamental 
matrix residual error is calculated. The tests 
performed show the dependency of the error value on 
the increasing number of corresponding points. It is 
important to evaluate the error over a wider group of 
matched points, not just for the point 
correspondences used to compute F (first 8 points). 
This is shown in a shape of graph curves. The 
comparison of errors of two tested methods are 
displayed in figure 2. 

Figure 2: Graphs of methods residual error. 
The graphs show the impossibility to decide 
positively, which method is more accurate, 
considering the residual error. In scenes, which are 
considered less stable (i.e. where the used matched 
points are almost coplanar) linear method works 
better. In scenes defined with higher precision 
algebraic minimization method is more accurate (e.g. 
in scene “Car” the result is much better). 
The fundamental matrix estimate used as initial step 
in the first iteration is the essential part for iteration 



method. If the initialization is too deflected, the 
method diverges or converges seemingly. 

Synthetic data 
An idealized scene was created to understand the 
methods and their convergence better (Figure 3).  

Figure 3: Synthetic scene. 

The residual error was quantified here for the linear 
method and algebraic minimization too. Moreover, 
exact fundamental matrix derived from the known 
geometry of the scene was applied (Figure 4). 

Figure 4:Graph of error for synthetic scene. 
The algebraic minimization seems more suitable in 
this situation. All the error values are 10 times lower 
than in the real scenes. It is caused by much more 
precise selection of matching points. 

Visual results 
An indirect proof of the calculation accuracy is a 
visualization of the results as a graphical depicting  
of the reconstructed 3D position of the points in a 
virtual world. Such a visualization shows how much 
the reconstruction fits, that is, how the fundamental 
matrix fits. An experienced operator uncovers in 
visualization which pair of corresponding points is 
set incorrectly or improperly.  

8. CONCLUSION 
This work compares two methods for acquisition of 
the fundamental matrix by 8 points marked in two 
pictures of a scene. Linear method and the method of 
algebraic minimization were exploited. The 
presented comparisons show similarity of the 
methods results. Well-defined scenes have 
significantly better results with the fundamental 

matrix improved by algebraic minimization starting 
from a matrix given by the linear method. If the 
scene is described by improper set of points, the 
linear method is more suitable. It is possible to 
recognize this case by a monitoring of several 
properties of computation and of partial results. The 
choice of another set of marked points can be more 
efficient step to get the accurate fundamental matrix. 

Standard camera suffices to take two pictures of any 
scene and to reconstruct its geometry. Some of 
camera parameters are required to be known 
(published usually by the producer). Much more 
importance is given to right choice of pictures. The 
user ought to arrange the scene to be heterogenous 
enough, to take pictures suitable for selection of 8 
non-coplanar points placed in the scene uniformly. 
Another important condition is the precise 
determination of marked points in images. 
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