Visibility-Based Simplification of Objects in 3D
Scenes

Jérome Grasset
3IL Ecole d’Ingénieurs
43 rue Ste Anne
87000 Limoges, France

grasset@a3il.fr

Dimitri Pléménos
Laboratoire MSI, Université de Limoges
83 rue d’lsle
87000 Limoges, France

plemenos@unilim.fr

ABSTRACT

We present a method to perform occlusion culling on moving rigid objects in a 3D scene. This method computes
potentially visible sets of polygons (PVS) from cells that are based on a bounding box of the object and have the
particularity to be overlapping. The visibility is pre-processed from several renderings of the object. The
implementation is easy, with a data structure that does not require additional memory compared to the original
data used to describe the object. It provides interesting acceleration and smooth animation even when the list of
polygons sent to the display device has to be updated. Since it is not an exact method, we discuss the errors that

may occur and the ways to fix them.

Keywords

Visibility culling, Occlusion culling, Simplification, Bounding Box.

1. Introduction

The visualization of 3D scenes made of polygons
uses “hidden surface removal” algorithms, like the Z-
Buffer method that is integrated in common graphics
cards. But, even if these hardware Z-Buffers are very
fast, it is still interesting to decrease the number of
polygons they have to process by determining that
some are “obviously” invisible: that is the point of
visibility culling. It is composed of three phases :

- view-frustum culling, to reject the objects
which are outside the view frustum

- back-face culling to remove the polygons that
do not face the camera , for closed opaque objects

- occlusion culling to suppress polygons that are
hidden behind others.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Short papers proceedings, ISBN 80-903100-9-5
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.

Copyright UNION Agency — Science Press

69

The first two steps are very easy to implement,
the last one is much more difficult. The approach is
usually to do some preprocessing to determine which
polygons are potentially visible from different
subspaces of the viewpoints space. Then, when the
camera is in a subspace, only the potentially visible
polygons associated with this subspace are sent to the
display device. Subspaces are called “cells” and
polygons are grouped into “Potentially Visible Sets”
(PVS), a PVS being associated with each cell.

Various classifications of visibility culling
methods are described in the survey by [Coh03a]. We
will use the following terminology, which is slightly
different but more simple and sufficient for our
needs:

- exact method : a PVS contains all the visible
elements and none of the invisible ones

- conservative method : a PVS contains all the
visible elements, but maybe some invisible ones
too

- aggressive method : a PVS may lack some visible
elements, but it does not include any invisible one

- approximate method : a PVS may lack some
visible elements and may include invisible ones.

2. Previous Works

One can refer to [CohO3a] for a detailed survey on
occlusion culling, or [Dur0Oa] for the more general
scope of visibility computation.

Theory — Exact Methods

The exact methods use the concept of “visual events”.
This is the base of aspect graphs ([Egg92a]),
visibility skeleton ([Dur02a]), or the method
proposed by [Nir02a].

Exact methods are, in theory, the ideal. Using their
implementation experience, authors that proposed
such methods explain that they are difficult to
implement and require long computation time and
large data structures ([Nir02a], [Dur02al]).

Non-Exact Methods

The non-exact methods come from the ideal frame
and trade some precision against computation speed
and implementation easiness. The usual approach
here is to define the cells first and then to compute
the visibility from each one. The visibility is not
constant in each cell: the problem is to calculate all
the polygons that can be seen from at least one
viewpoint of the cell.

The first algorithms ([Tel91a], [Lue95a]), were made
for architectural scenes. More recent works address
general scenes. A major direction of research is the
detection of good “occluders”, that are polygons or
sets of polygons that hide numerous other polygons
(see for example [Sch00a], [Won0Oa]).

Application Fields
The occlusion culling methods are mainly dedicated
to virtual walkthrough applications. Some properties
of occlusion culling methods are to be mentioned to
help situate the differences with our work:

- the global scene is static, moving objects - like
cars in the streets - are not simplified

- objects that are inside a cell are entirely in the
PVS of the cell

- the scene is very complex but it also has to be
“highly occluded” : from the common viewpoints
most of the polygons can not be seen.

3. Visibility Through Bounding Box

Differences From Existing Methods

Our method is not dedicated to simplify large
complex models like a whole town, and it does not fit
for such a goal. We want to simplify moving objects
(for example cars), or “small” objects around which
the virtual walker can move. The simplification is

70

pre-processed for each object individually and is
stored with it.

Another difference is the viewpoints space: our 3D
objects are seen from the outside while the scenes of
previous works are seen from their interiors.

The objects that we consider are not “highly
occluded” so the simplification ratio is very different.

Visibility Pre-processing

[}
[}
| A
!
[}

@}

Figure 1. 2D schema of 4 half spaces (A,B,C,D) around
a bounding rectangle

The viewpoints space is the whole space minus the
interior of the bounding box. The cells are 6 infinite
half spaces defined by the plane of each face of a
bounding box of the object (see figure 1 for a 2D
schema). Considering a mathematical approach, these
cells do not define a partition since they overlap.

For each cell the bounding box is supposed closed
except for its face lying in the plane defining the cell
(see figure 2).

Figure 2. Bounding box with a unique open face

The first step is to compute which polygons of the
object are visible through each face of the bounding
box. This defines our PVS. Then, to display a scene
we will only consider the polygons of the PVS
associated with every face of the box that are visible
from the current viewpoint. With figure 1, if the
observer can see the faces ‘a’ and ‘d’ then the union
of the PVS associated with areas A and B have to be
displayed.

The viewpoints space is sampled. That is why our
method is “aggressive”: the PVS do not contain any
invisible polygons, but they may miss visible ones.

For each face of the bounding box, the sampling
viewpoints are disposed on the surface of a half
ellipsoid. If all the viewpoints of this surface could be
taken into account the PVS would be exact: there is
no need to move the camera further or closer.

To pre-process the visibility for each face we use the
hardware Z-Buffer. Every polygon is given a unique
colour and an image is rendered from each sample
viewpoint: the colours in the image denote the visible
polygons. The PVS of a half space is made of the
polygons detected in at least one image.

Data Structure and Display

Since the cells overlap, if we just sent “raw” PVS to
the display device there would be redundancies for all
the polygons visible through several faces. To avoid
this we define an intermediate data structure that
insures that a polygon can only be sent once to the
display device for a given frame.

The idea is to store for each polygon the list of PVS it
belongs to, instead of storing for each PVS the list of
polygons it includes. There are 6 half spaces, so 6
PVS. Using a binary code we can associate each
polygon with a 6 bits number, where a bit indicates if
a polygon belongs to a PVS (see table 1). Every
polygon is given a code, and there are 2° different
codes: an easy way to store this information is to
create a set of polygons for each of these codes. Then
a polygon belongs to one an only one set. The storage
of the pre-processed visibility is only a classification
of the polygons: no extra data is needed.

Faces through whicha | Label of the set it
polygon is visible belongs to (6 bits)
6 faces
0,1,2,3,4,5 111111
5 faces
0,1,2,3,4 011111
0,1,2,3,5 101111
No visible face
/ 000000

Table 1. Classification of the polygons

To display the object from any viewpoint, we first
create the bit mask of the visible faces of the
bounding box, using the same coding as for the PVS.
Then the obtained mask is applied with a logical

71

“and” to the label of every set of polygons: if the test
succeeds the set has to be displayed.

We implemented this technique with the OpenGL
display lists to represent the sets of polygons: the
storage cost is reduced to the use of 64 display lists.
The same has been implemented with Direct3D
vertex buffers, with the same negligible cost.

4. Results

Overall Performance and Motion Fluidity
The time needed to compute which faces of the
bounding box of an object are visible is definitely
negligible (6 tests on the normals of these faces), so
the gain in frames per second (FPS) is the same as the
simplification ratio in polygons count. That is why in
the following table we present only the FPS values.

Figure 3. Two objects : a tree and a “tea fountain”

Since the set of polygons sent to the display device
has to be changed when the observer crosses a half-
space border one could worry about potential
freezing in animation. With the proposed data
structure and implementation there is no delay at all,
the motion is smooth. Of course if a much higher
number of polygons has to be displayed the motion
may slow down, but there is no extra latency induced
by the change of active display lists or vertex buffers.

Pre-processing Time

In our implementation, the precomputation time
depends on the size of the images rendered to pre-
process the visibility because most of the time is
spent reading every pixel to know which polygons
have been seen. It varies from about 1 min 15 s when
using 9 viewpoints by face and a resolution of 800 x
600 to about 14 min with 25 viewpoints in 1280 x
1024.

The test material is a Pentium IV 2.8Ghz with an ATI
Radeon 9600 Pro.

Culling and Errors

For the results presented here we use a resolution of
1280x1024 for visibility pre-processing and 25
viewpoints for each face of the bounding box. The
display resolution is 1024x768.

4.3.1 Culling results

The table 2 gives the the worst FPS, the best one, and
the one obtained when the observer is in front of the

object. The percentages indicate the gain in FPS and
therefore the amount of polygons that were discarded.

without with culling
culling FPS / gain
Object Faces | FPS Worst Best
Tree 49534 | 72 85-152% | 117-38.5%
Cup 11290 | 273 | 290- 5.8% | 520-47.5%
Ship 31216 | 112 | 145-22.7% | 200 - 44%
Character | 18984 | 175 | 222-21.1% | 455-61.5%
Fountain | 78984 | 47 77-39% | 300 -84.3%

Table 2. Culling results

Back face culling is always off, since it can not be
applied to most of our objects (incompatible for
example with the leafs of the tree or with the teapots).

The culling ratio directly depends on the number of
faces of the bounding box that are visible. As a
consequence the bounding box should be oriented to
show a number of faces as small as possible from the
most common viewpoints. For instance, for an object
usually on the floor the bounding box should have a
face on the floor.

4.3.2 Errors

Since our method is aggressive (see section 1), it is
important to study the errors it makes.

First of all, with the parameters given above, most of
the objects do not exhibit any error.

The first cause of errors is the sampling of the
viewpoints space. When some polygons can only be
seen from a very restricted area (“critical area”) they
are missed if the viewpoints are not in this area.

The second sampling is made when the visibility is
preprocessed: we render images to detect visible
polygons. If several polygons are in the same pixel
only one is rendered, and thus only one is detected.

These two types of errors can be significantly
reduced or suppressed, by increasing the appropriate
sampling rate.

5. Conclusion and Further Works

We presented a method to perform occlusion culling
on rigid 3D objects moving in a scene. Existing
methods mainly focus on static scenes and do not
deal with objects inside them. Our method, based on
a preprocessing of visibility through a bounding box
using Z-Buffer techniques, is easy to implement. It
does not increase the amount of memory used by the
objects since the wvisibility data are stored as a
classification of the polygons in various display lists.

72

The obtained culling is quite efficient. This method
can be applied in any application that needs a 3D
scene visualization. It can also be a complement of a
method of occlusion culling of the whole scene.

Further works should aim at reducing preprocessing
time and maintain the culling rate as close as possible
as the best one, obtained when only one face of the
bounding box is visible. Furthermore, some other
particular problems should be addressed, like objects
with transparent parts.

6. References

[Coh03a] Cohen-Or, D.; Chrysanthou, Y.; Silva, C.;
Durand, F. A survey of visibility for walkthrough
applications. IEEE Transactions on Visualization
and Computer Graphics 2003

[Dur00a] Durand, F. A multidisciplinary survey of
visibility. ACM Siggraph course notes Visibility,
Problems, Techniques, and Applications 2000,

[Dur02a] Durand, F.; Drettakis, G.; Puech, C. The 3D
visibility complex. ACM Trans. Graph. 2002, 21,
176-206

[Egg92a] Eggert, D. W. ; Bowyer D.W.; Dyer C.R
Aspect graphs: State-of-the-art and applications in
digital photogrammetry. In Proc.SPRS 17th
Cong.: Int. Archives Photogrammetry Remote
Sensing, pp 633-645, 1992.

[Lue95a] Luebke, D.; Georges, C. Portals and
mirrors: simple, fast evaluation of potentially
visible sets. Proceedings of the 1995 symposium
on Interactive 3D graphics 1995, 105-ff.

[Nir02a] Nirenstein, S.; Blake, E.; Gain, J. Exact
from-region visibility culling. Proceedings of the
13th Eurographics workshop on Rendering 2002,
191-202

[Sch00a] Schaufler, G.; Dorsey, J.; Decoret, X.;
Sillion, F. Conservative volumetric visibility with
occluder fusion; ACM Press/Addison-Wesley
Publishing Co.: 2000; pp 229-238

[Tel91a] Teller, S. J.; Séquin, C. H. Visibility
preprocessing for interactive walkthroughs.
Proceedings of the 18th annual conference on
Computer graphics and interactive techniques
1991, 61-70

[Wil03a] Williams, N.; Luebke, D.; Cohen, J. D.;
Kelley, M.; Schubert, B. Perceptually guided
simplification of lit, textured meshes; ACM Press:
2003; pp 113-121

[Won00a] Wonka P; Wimmer M; Schmalstieg D

Visibility preprocessing with occluder fusion for
urban walkthroughs. Rendering Techniques
2000: 11th Eurographics Workshop on
Rendering, pages 71-82, June 2000.

	IPC_2005.pdf
	IPC_2005.pdf

	!WSCG2005_Short_Final_Stamped.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	!WSCG2005_Short_Final.pdf
	J37-full.pdf
	J37-full.pdf
	INTRODUCTION
	CUBIC BEZIER APPROXIMATION
	Control point search
	Recursive Segment Subdivision

	OUTLINE CAPTURING PROCESS
	Outline Extraction
	Corner Detection
	Outline Approximation

	RESULTS DEMONSTRATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	J61-full.pdf
	INTRODUCTION
	QUADRATIC B-SPLINES (QBS)
	APPROXIMATION TECHNIQUE
	Step 1 – Initial Data Points
	Step 2 – Knot Insertion
	Step 3 – Error Minimization

	RESULTS DEMONSTRATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	E43-full.pdf
	F43-full.pdf
	I23-full.pdf
	I31-full.pdf

