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ABSTRACT
Colored reflections are governed by the Fresnel term, which can be expressed from the refraction index of the
material. This function, especially for metals where the refraction index becomes a complex number, is rather
computation intensive. This paper presents an accurate simplification, which can also cope with complex
refraction indices. In order to establish the approximation, Schlick’s formula is rescaled and the residual error is
compensated by a simple rational approximation. The resulting formula can present realistic metals and is simple
enough to be implemented on the vertex or pixel shader, and used in games.
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1. INTRODUCTION

Material models are usually defined by Bidirectional
Reflectance Distribution Functions (BRDFs) that
describe the chance of reflection for different pairs of
incoming and  outgoing  light  directions.
Programmable vertex and pixel shaders allow
sophisticated material models instead of the simple
Phong-Blinn reflection model. Unlike the Phong-
Blinn model, these sophisticated models can be
physically plausible, that is, they do not violate basic
rules of optics, including the Helmholtz symmetry
and energy conservation.

2. PHYSICALLY PLAUSIBLE BRDF
MODELS

A microfacet based specular BRDF model usually

has the following product form [Cook81, He91]:
P(N-H)-G(L,N,V)-F(L-H, 1),

where A is the wavelength of light, N is the surface

normal, L is the illumination direction, V' is the

viewing direction and H is the halfway vector

between the illumination and viewing directions.

Microfacet distribution P(]V : IEI) defines the roughness
of the surface by describing the density of
microfacets that can ideally reflect from the
illumination direction to the viewing direction.
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Geometric term G(L,N,V) shows how much of these
ideal reflections can actually occur, and is not
blocked by another microfacet (called masking or
self-shadowing). The geometric term is independent
of the material properties, and it causes a general
reduction of the specular term for certain illumination
and viewing directions. Such reduction should be
compensated in the diffuse reflection, since we can
assume that photons reflected on the microfacets by
multiple times contribute to the diffuse (also called
matte) part. It also means that the matte and specular
parts are not independent, as assumed by most of the
BRDF models, but are coupled by an appropriate
weighting, which depends on the viewing direction
[Ashik00, KeleO1].

Fresnel term

Finally, Fresnel term F (L-H,2) equals to the
probability that a photon is reflected from the
microfacet considered as an ideal mirror. According
to the law of ideal reflection, the normal of those
microfacets that can reflect from illumination
direction L to viewing direction V' is exactly the
halfway vector H=(V'+L)/|V +L|. This is why we
included the angle of the halfway vector and the light
direction in the Fresnel function, which depends on
the angle of light incidence.The Fresnel term is the
only factor that is wavelength dependent, thus it is the
primary source of coloring. That is why the accurate
computation of the Fresnel term is so important to
present realistic look for materials.

The Fresnel term can be obtained as the solution of
the Maxwell equations assuming an ideal planar
surface. The formula of an arbitrary polarization can
be expressed from two basic solutions, when the
oscillation is parallel or perpendicular to the surface.



In the final result for these cases, the complex

refraction index n+kj also plays a crucial role:

’ cos8' —(n+kj) cosf ?

cos@' +(n+kj) cosd
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In these formulae, @ is the angle of incidence and 6’
is the angle of refraction. Assuming that the light is
not polarized, the ratio of the reflected and incident

radiance can be expressed by the Pythagoras
Fo+F

theorem: po_% "7 |

Using Snell’s law, the angle of refraction can be
eliminated from the formula, thus the Fresnel term
depends on three arguments: » and k are the real and
imaginary parts of the refraction index, respectively,
and 6 is the angle of incidence for the given
microfacet. Expressing the absolute value of the
complex numbers, the following form of the Fresnel
formula can be obtained [Glass95].

P ~a’+b* —2acosf +cos’ O

s
a® +b% +2ac0s0 +cos> 0

2, 2 . .2 2
F_pd +b* —2asin@tanf +sin” Gtan” 6

r " a® +b% +2asinOtan @ +sin® Otan’ 9

where a and b are defined by the following equations:

207 = (1 —k* = sin )% + 4rPk> + (n* — k* —sin® )

262 = \J(n? —k* —sin? O) +4n*k? — (n* —k* —sin® 0)

The computation of the exact Fresnel is quite
expensive even on the graphics hardware. In real time
applications we need its approximation, which is
much cheaper to evaluate, but is accurate enough not
to destroy image quality [NV02]. The main objective
of this paper is to propose such Fresnel
approximations.

3. PREVIOUS WORK ON FRESNEL
TERM APPROXIMATION

For many non-metallic materials, the extinction
coefficient & is quite small, which allows us to ignore
the imaginary part altogether. The assumption of the
extinction coefficient being zero has also been made
by Schlick, who has found the following simple
rational approximation for the Fresnel term [Schl94]:

(n-1* +4n(1-cosd)’
(n+1)?

‘T'his tormula provides a fairly good approximation 1f

the extinction coefficient is really zero (k&=0), and n is

in the range 1.4...2.2 (outside this range the relative

error increases sharply, see Figure 5).

FSchlick(n,cos@) =

Now let us concentrate on metals or other materials
having complex refraction index (£ > 0) (Figure 1).
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Figure 1. Complex refraction indices for different
metals, for different wavelengths (4=400..800 nm)

For complex refraction indices, the Fresnel term can
have various characteristics (Figure 2). For small
extinction coefficients, for example, the Fresnel term
is a monotonous function of cosé, with increasing
values at cos@d =1 when £ is increasing. Furthermore,
for larger & values there exists a local minimum.
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Figure 2. The Fresnel function (n=1.5, k=0..10)

If we apply Schlick’s formula for metals, the result
will be erroneous, with a significantly large error at
cos@=1 (Figure 3 and Figure 4).

In the followings we propose two improvements to
significantly reduce the error of the original Schlick’s
approximation.
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Figure 3. A copper ring rendered with the original
Fresnel term and with Schlick’s approximation
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Figure 4. The Fresnel term, Schlick’s formula and
our new approximation for n=1.5, k=5



4. THE NEW FRESNEL TERM
APPROXIMATION FOR METALS

Rescaling the Schlick’s function

To reduce the error of the approximation we shall
rescale Schlick’s formula so that it will obey the
value of the original function not only at cos&=0, but
at cos@=1 as well (Figure 4).

To achieve this, we compute the exact and
approximated function values at cos@=1, as follows:
4n
(n+ 1) +k?
(n-1°  4n
S+ (n+1)

F, :=1- Fresnel(n,k,cosf =1) =

S, :=1- FSchlick(n,cosf =1) =1

ko (n+1)?

Thus the scaling factor is: —L=— """~ .
S, (n+D?+k?

Now the modified (rescaled) Schlick’s formula can
be expressed as follows:

F*(n,k,cos0):=1- g(l — FSchlick(n,cos8)) =
1

i 4n(1—(1-cos6)’) _ (n—=1)7% +4n(1-cosf)’ + k*
(n+17% +k? (n+1)% +k?

The resulting formula is able to deal with complex

refraction indices and is simple enough for practical

applications:

(n-1?*+4n(1-cos0)’ +k?

F*(n,k,cos@) =
( ) (n+D)?+k*

After examining the relative error of the modified
approximation (Figure 5) we can conclude that this
simple modification enables us to extend the original
Schlick’s formula to complex refraction indices
without significant increase of the relative error
(compare error for k=0 and £>0). Note that for i=0
we get back Schlick’s original formula.

relative error
of Schlick's
approximation

relative error

0.4 of our proposal
e
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Figure 5. Relative error of the rescaled Schlick’s
formula for different n and k values
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Error compensation

Since our approximation is unable to follow the local
minimum of the original Fresnel function, metals with
large (n, k) values (e.g. aluminum) may have a
noticeable error. To improve our approximation, we
shall compensate the error term — the difference
between the original Fresnel function and the rescaled
Schlick’s formula — with a rational approximation
that is simple enough to enable fast calculation and its
shape is close to the shape of the error function
(Figure 6). After examining the error term we chose
the following approximation:

—ax(1-x)%,
where x=cosé. The derivative of this expression at
x=0 and 1 equals to -a and 0, respectively. The
expression has a local minimum atx = 1/(1+a) .
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Figure 6. Error term for n=1.5, k=5 and a rational
approximation with parameters a=3 and =7

To determine the parameters a and a, we will have to
set up two constraints.

Unfortunately, we cannot easily reproduce the local
minimum of the error term. However, for most (7, k)
values, the local minimum of the error term is located
somewhere in the range of 0.1..0.15. (The only
exceptions are those (n, k) pairs where both » and &
are small, but in these cases — as we have seen earlier
— the error term is negligible.) So the rational
approximation should obey the value of the original
error function at x=cos@ =0.15 (which is close to its
local minimum).

Our second constraint will be the equality of the
derivatives at x=0. For large & values — that is where
error compensation becomes necessary — we can use
the following approximation: —a = —2n, where value
—2n is a quite good approximation for the derivative
of the original Fresnel term at x=0. (The derivative of
the modified Schlick’s formula is assumed to be
zero.) As shown below, the relative error can be
reduced below 5% even with this assumption, so
there is no need to calculate the exact derivative.
Note the dramatic improvement in case of aluminum.

relative rescaling approx. exact
error only derivative derivative

copper ‘ 4,9% 4,1% 1,9%
gold ‘ 5.4% 5,0% 5.2%
silver 9,0% 5,1% 4,4%
alu | 17.5% 2,6% 2,0%



Values a and o should be regarded as derived
material properties. When the CPU program instructs
the GPU to use a different material model, it should
compute these parameters and download them to the
GPU as uniform variables.

According to our tests, the proposed simplifications
do not reduce image quality, but reduce rendering
times to their half or third. The following table
summarizes the relative computation times:

Fresnel formula ’ 100%
Schlick’s formula 28%
Rescaled Schlick’s formula 33%
Error compensation 54%

5. CONCLUSIONS

This paper proposed two new approximations of the
Fresnel function. Unlike previous approaches, we did
not assume that the imaginary part of the refraction
index is negligible, thus our model can be applied for
a wider range of materials, e.g. metals. Our two
approximations differ in accuracy and cost of
evaluation. The more accurate approximation (called
“error compensation”) is worth applying if there is a
significant back lighting in the scene. In other cases
the rescaled model provides satisfactory results.

Schlick’s model

Figure 7. Copper, silver and aluminum rings rendered with different Fresnel approximations.

Rescaled model
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