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Abstract

This paper addresses communication problems in a distributed virtual reality system. The paper presents
VOODIE, a system that provides a framework for distributed virtual environments and overcomes the
communication load problems by computing as much as possible at the user end. It then concentrates on
the communication load generated by a shared virtual world in a general purpose network and proves that
the use of intelligent objects can reduce communication in a distributed system to a minimum. It also
measures the effect of end user interaction on the network load.
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1 Introduction

In recent times, many systems [Grims91, Carls93,
Green95, Reitm99, Singh99] have been developed that
allow many users to access a common virtual world.
Such systems can be used for instance for entertain-
ment, cooperative work at distance, or cooperative vi-
sualization.

The first systems of this type were ad hoc solu-
tions for the specific task [Shaw93, Singh94]. In
the last decade, several generic systems have been
developed to support a broad range of applications
[Kazma93, Kazma95, Hubbo96, Freco98]. In paral-
lel, middleware for the communication among objects
in a distributed environment like CORBA [OMG98]
or DCOM [Eddon98] have been specified. These mid-
dleware solutions, however, usually do not meet the
real time requirements of a Virtual Reality applica-
tion. There are, however, real time implementations
[Schmi99]).

With the growth of the Internet, and of course of band-
width, it is nowadays practicable to move out dis-
tributed virtual world applications from specialized re-
search laboratories to the end user, connected to the
Internet at home. PC technology is cheap and fast
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enough, and fast Internet connections are getting af-
fordable. Already nowadays, on the Internet there
are shared worlds available to a community of users
[Tpres, Activ].

However, the problem of such worlds relies in the huge
amount of communication necessary to simulate and
synchronize a virtual world shared by many users lo-
cated geographically at distance. Smart mechanisms
have to be found that minimize the communication
among the workstations participating to the shared en-
vironment.

There are two parameters that influence the commu-
nication in a distributed system: the topology of the
network and the amount of information that has to be
sent across the network so that each user has the same
representation of the virtual world at a given time.

In terms of topology a communication network can be
structured as a client-server system. In this case the
server acts as central data store and as a crossroad for
communications. The advantage of such a topology
is the possibility of simple synchronization between
the participants. All changes take place on the cen-
tral server and the server then informs all participants.
Clearly the central server becomes the bottleneck of
the whole system in case of a large number of partici-
pants. Ideally, system load is better balanced in a sys-



tem having no central entity. Fully distributed systems
with participants having equal rights therefore have the
advantage of being better scalable. On the other hand,
synchronization becomes inevitably more complex.

Since 1997, we are working on a system named
VOODIE (Virtual Object Oriented Distributed Inter-
active Environment) that takes the fully distributed ap-
proach. In a nutshell, in VOODIE the world is repli-
cated and simulated locally at the user end. This im-
plies the creation of replication mechanisms capable of
insuring the consistency of the world at the user end.
The world itself is seen as a collection of objects which
modify their own state according to preset rules or to
interaction events generated by the end users.

The objects constituting the world need to be intelli-
gent enough to avoid as much as possible transmitting
the objects current state across the network, because
the number of objects that have to be synchronized
equals the number of users using them.

Interaction with a virtual world implies also that users
are allowed to directly modify the state of objects be-
longing to the shared world. However, in this case
user actions are unforeseeable and more communica-
tion has to take place on the net to maintain the consis-
tence between the object replicas across the network.

This paper focuses on exactly these two last issues, and
addresses communication problems in a totally dis-
tributed system. The paper concentrates on the com-
munication load generated by a shared virtual world
in a general purpose network, proves that the use of
intelligent objects can reduce communication in a dis-
tributed system to a minimum, and measures the effect
of end user interaction on the network load. Tests are
run on a network of up to thirty workstations simulat-
ing different usage configurations.

In section 2 we describe a general system for simula-
tion which is based on active objects and interaction
rules. The distribution of such a simulation system
can be done in a natural and effective way which is
presented in section 3. Section 4 deals with the inter-
actions between objects in such a simulation system.
In Section 5 we present the evaluation of our ideas in
practice. Finally in section 6 we point out conclusions
and starting thoughts for further research.

2 Virtual worlds as a simulation system

In many applications, Virtual Reality is used to model
and visualize interactive environments. Such environ-
ments usually are constituted by entities the behavior
of which is either simulated by the system, or by ex-
ternal interactions provided by the users of the system.
To provide a correct behavior of the environment, the
system has to know the functions ruling the evolution

of the entities in time, and the effects of user interac-
tion on the entities. The key here is that each entity
of the virtual world is in fact a distinguishable object
having its behavior in time ruled deterministically by
a certain function. Thus, a virtual world is basically a
collection of independent active objects each of which
has a function ruling its behavior. Such functions will
be called behavior function of the active object.

Similarly, also user interaction, which is mediated by
the input devices of the system, can be represented by
avatars, i.e. special objects representing the users, the
behavior of which is ruled by the external actions of
the users, which are not predictable in advance.

The global behavior of the simulated environment re-
sults from only three basic types of evolution of the
objects. For single isolated objects that have no inter-
actions with their environment the deterministic func-
tion ruling their behavior is applied to determine the
state of the object at the end of the time interval con-
sidered. For objects that interact with each other -in
case, for example, of a collision - the state of the ob-
ject is determined by the effect of the interaction rules
among objects. Finally, the state of objects interacting
with avatars is changed by the effect of the interaction
rules with them. Here, interactions are punctual events
which change the state of the involved objects.

Such a system boils down therefore to an object ori-
ented simulation system which runs on the time axis.
Note that the idea of an interaction based simulation
system is not new. For example, Bryson describes
an interaction driven virtual environment [Bryso91].
However, in his system, the objects are simple passive
data not integrating behavior.

In the case of a system allowing access to many users,
and which in general has unpredictable bandwidths
available to the end user, it makes sense to decentralize
as much as possible, and therefore limit network load
[Urnes99]. Many objects of the environment are active
objects, and the sequence of their states can be com-
puted deterministically: therefore it can be computed
locally at the user end with a minimal load in commu-
nication. Objects and all computations regarding their
autonomous behavior can be replicated and distributed
on the machine where the end user is located.

3 Replicating objects to achieve distribution

In general, replicating objects having a time depen-
dent state in a distributed system is not the simplest
thing to do. The biggest problem here is maintain-
ing the consistency of the replicas across the network.
Since object behavior is deterministic in most cases,
and the precision of computers with respect to time
is high, especially considering the fact that in a vir-
tual world frames have to be displayed at a relatively



low frame-rate, the synchronization of active objects
across the network can take place at a quite sparse
pace, and therefore communication can be reduced to
a minimum for active objects.

The replication method used in VOODIE is very sim-
ple, and is based on subscription. The subscription
mechanism is used to replicate objects on a num-
ber of separate simulation hosts (stations). If a sta-
tion (slave-station) wants to create a replica of an ob-
ject which is currently simulated on another station
(master-station), the slave-station first requests infor-
mation about all existing objects on the master-station.
The master-station returns a list of object-related in-
formation. Each entry of this list contains the unique
name and the type of an object. With these entries
the slave-station can create replicas of remote objects
by instantiating local objects of the same type as the
remote objects. A newly created local object then sub-
scribes to its master-object by sending a subscription
request to the object on the master-station. The master-
object then sends update information to the subscribed
object when it is necessary. Note that every station can
act as both master and slave-station. Since the distribu-
tion works on an per-object-basis, the role a particular
station might play differs from object to object.

Each station manages a set of connections to the other
stations participating in the virtual environment. These
connections are channels for messages. The objects on
the stations use these channels to exchange messages.
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Figure 1: Sample subscription tree topology.

As the number of subscribed objects grows, it is clear
that the master-object becomes overloaded. To pre-
vent this, objects are able to forward subscription re-
quests to already subscribed objects on other stations.
This leads to a structure that we call a subscription
tree. Figure 1 shows an example. The nodes of such
a subscription tree are unique objects which reside on
different stations and which are replicas of the master
object.

All nodes of one subscription tree form an object-
group. All members of such an object-group use the

same behavior function, because they are instances of
the same object-type. The behavior is used to calculate
the state of the object at each time decentrally on each
station. Furthermore the objects of an object-group are
synchronized by exchanging their state from time to
time so that the decentral object-state-calculation can
be kept synchronized.

As an example consider an object representing time.
Such a clock-object can be modeled by using a time-
stamp as the state of the object. The behavior function
of such an object might calculate the difference of that
time-stamp and the current time on the station the ob-
ject resides on. To distribute such an object we have to
build a synchronized group of clock objects. For this
purpose the master object is subscribed on all remote
stations. This means that a subscriber object is created
as a replica of the master object on a given station. The
replica then requests the state of the master object. In
our example this state is the time-stamp of the master
object, and no more synchronization is needed.

This is only possible if all involved stations have a
common timing synchronization. Zyda and Singhal
pointed out that such a synchronization of time is im-
portant in networked virtual environments [Singh99].
Already in 1978, Lamport described how to syn-
chronize time and events in a distributed system
[Lampo78].

In VOODIE, we have implemented time synchroniza-
tion in terms of the subscription mechanism described
above. Synchronization is done similarly to NTP
[Mills89], but without the need of a central time server.
Time synchronization is achieved by calculating the
time differences between each pair of stations. Each
station keeps track of the difference between its local
time and the local time of the stations to which it has
an active connection. This time offset is used to cor-
rect the time-stamps of all incoming messages. Time-
stamps are used to achieve simultaneous behavior of
the active objects so that not only the new values are
transmitted but also the time at which the change took
place. The slave-objects use this information to adjust
their own behavior simulation if necessary.

Note that synchronous behavior is achieved without a
central entity holding a global time. The shared global
time is achieved by local corrections of time between
each pair of stations. Synchronous behavior is guaran-
teed because of the time corrections performed on the
stations where slave objects reside. The measurements
shown in section 5 are based on the synchronization
explained above.

4 Interaction in a simulation system

Most of the time, the behavior of an object is determin-
istically described by its behavior function. But the be-



havior function is not sufficient to determine the object
state when interaction - be it with other active objects
or with avatars - occurs. As mentioned above, usually
interaction occurs punctually on the time scale, and
modifies punctually the state of the objects involved in
the interaction.

When only objects with deterministic behaviors are in-
volved in the interaction, there is no need to commu-
nicate the event across the subscription trees, since the
object state is computed locally through the participat-
ing user stations. Every station has all the data for
computing the result of the interaction locally.

A different situation occurs in the case of a non-
predictable user input. Here, since the interaction is
not foreseeable, it has to be communicated to all par-
ticipating stations, and therefore it generates network
load. In VOODIE, the interaction itself is not di-
rectly communicated (in other words, there is no spe-
cial message telling the subscribers that an interaction
took place). Instead, the new state of the involved ob-
jects is propagated in the subscription tree, so that the
object replicas on the other stations can be updated ac-
cordingly.

Note that the number of possible interactions in such a
world is as big as the power set of all master objects of
the virtual environment. If only interactions between
two objects are considered, however, then their num-
ber is the square of the number of master objects in
the environment. For resolving interactions, VOODIE
tests whether an interaction has occurred for all cou-
ples of objects.

5 Implementation and measurements

To validate the main ideas of the system presented
above, we have performed tests on the VOODIE so
as to analyze the network load when varying different
parameters. First of all, it is tested which influence the
topology of a subscription tree has on latency, i.e. de-
lay in time in reaching a certain state between the mas-
ter object and its slaves, within an object group. Sec-
ondly, the latency differences are tested when the ob-
jects are predictable active objects or avatars. Thirdly,
tests are performed to measure network load by vary-
ing tree topology. Finally, network load is measured in
the case of active objects or of avatars.

We have built a prototype to prove the concepts de-
scribed above in practice. The simulation system,
some simple active objects, interaction rules and the
subscription mechanism were included in the pro-
totype. The implementation was done in Python
[Lutz96, Rossu]. Python was chosen for two reasons:
first python is very appropriate for rapid prototyping
and second Python allows for code-transfer across a
network at runtime.

The results and measurements were produced in a het-
erogeneous local area network. A number of SGI
workstations and Linux-PCs acted as the hardware
platform for the tests. All stations were connected via
Ethernet. The test environment consists of an avatar
and a ball moving on a floor. Since the aim of this re-
search is to prove that active objects reduce network
load, it is not necessary to use more than one object of
each type. The simulation of behavior, the interaction
test and resolution, the graphical output and the com-
munication over the network are decoupled and were
executed in parallel. This is achieved by the imple-
mentation of these tasks as separate threads. Focus of
the tests was to examine the synchronization between
objects which were distributed over a number of sta-
tions under different circumstances.
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Figure 2: Position-time diagram of the master-
objects used in all tests

Figure 2 shows the position time diagram for the two
objects we have used for all tests. Note that the avatar
object moves faster in the first part of the test. The
avatar is moved 20 times per second by 0.05 units. In
the second phase of the test the avatar is moved by 0.05
units 5 times per second.
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Figure 3: Latency of updates for an avatar ob-
ject (27 involved stations).

The results showed in Figure 3 were achieved by per-
forming three different tests. In all tests, an avatar-
object on station 0 changes its position due to user-



input. The frequency of the change is higher in the
first part of the test. These changes are unpredictable
by the slave-objects. Therefore the changes must be
transmitted via update-messages to the slave-objects.
The number of involved stations was 27. Each line
in the diagram shows the difference between the time
of position-change of the master-object and the time
this position-change is noticed by the last slave-object.
This difference can be seen as the update-latency.

In the first test each object updates exactly one slave-
object. In this case the resulting subscription tree is a
chain. The length of this chain is 26.

In the second test each object has a maximum of two
subscriber-objects. The resulting subscription tree has
a maximum depth of four. If the objects can update a
maximum of five objects, as tested in the third test, the
depth of the tree is maximally two. These tests show
that the latency depends on the length of the subscrip-
tion chain (or update path) each message has to travel
along.
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Figure 4: Average latency of updates for an
avatar object for a growing number of involved
stations and certain subscription tree topolo-
gies.

Figure 4 displays latency by varying the maximum
number of subscribers of a single node in the sub-
scription tree. This influences the underlying topology
of the tree. The maximum number of subscribers has
been set to one, two and five. The three lines in figure
4 show the average latency of avatar updates. If the
number of involved Stations is Si, a maximum of one
subscriber leads to an subscription chain with a length
of Si� 1. If the object can update two other objects,
the resulting subscription tree has a depth of approxi-
mately log2(Si). The depth of the subscription chain is
approximately log5(Si) in the case of five subscribers.
Therefore with 27 involved stations the longest path in
the subscription tree is 26, 4 and 2 respectively for one,
two and five subscribers. Latency depends on number
of involved stations but also on the depth of the sub-
scription tree.

Note that the network-traffic generated on a station is
best balanced in the case of one subscriber. If an ob-
ject has more subscribers, this object has to send more
updates. This of course increases the network-traffic
on the station this object resides on.

The measurements show that the latency is nearly the
same with a maximum of two and five subscribers.
Having two subscribers is a good compromise be-
tween update latency and network-load generated on
the station.

Latency is a critical parameter of interactive systems.
We also tested how the use of active objects can reduce
the latency perceived by the user.
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Figure 5: Position-time diagram for a group of
synchronized ball objects on the different sta-
tions (10 involved stations and a maximum of
one subscriber per object – the subscription tree
is a single subscription chain in this case).

Figure 5 shows the traces of ball objects on differ-
ent stations with respect to time. A ball object was
subscribed from nine other stations. The maximum
number of subscribers per object was one. So the up-
dates were propagated from station to station. The be-
havior of the ball is calculated locally on every sta-
tion. No update is needed as long as no interaction
occurs. In the case of an interaction, some data of the
ball is changed. That is, the start-position, start-speed
and the time stamp of the ball. The behavior func-
tion uses these values to calculate the state of the ball.
The changed values have to be transmitted to the other
objects. The solid horizontal line in the diagram rep-
resents the floor. Note that the slave objects on the
slave stations do the interaction resolution in parallel.
Therefore the normal case should be that the state of
a slave-object is already set to the state it receives via
the update. The latency of an update is therefore not
observable by the user.

It is notable that some object-traces lie below the floor.
This results from the fact that the interactions were
detected after they occur and the behavior simulation,
interaction resolution, and the position measurements



are done in parallel threads. Moreover, the frequency
on the time scale of these tasks are different. The small
differences in time which can be observed in Figure
5 are resulting from the dynamic synchronization of
time between the stations. The error could be reduced
by increasing the network-traffic needed to synchro-
nize the time.
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Figure 6: Position-time diagram for a group of
synchronized avatar objects on the different sta-
tions (10 involved stations and a maximum of
one subscriber per object – subscription topol-
ogy is a chain in this case.

Figure 6 shows the traces of the avatar objects on the
different stations. In contrast to Figure 5 the latencies
are much higher. The reason for the higher latencies
is the unpredictable character of the state-changes of
the avatar-object. Since the movement of the avatar is
user-based, this movement can’t be pre-calculated. In
this case the latency of an update is directly observable
in the simulation.
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Figure 7: Amount of incoming and outgoing
messages on the different stations in the case
of different subscription tree topologies (27 sta-
tion involved).

Figure 7 shows the number of messages each involved
station has sent or received. Three test cases each with
27 involved stations were made. One can see that net-
work load is equally distributed over all stations in the
case that every object is subscribed by one subscriber.

The higher the number of subscribers, the higher is the
load on those stations which must update a number of
other stations.
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Figure 8: Position of a ball object and amount
of incoming messages on a slave station.
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Figure 9: Position of an avatar object and
amount of incoming messages on a slave sta-
tion.

Figure 8 shows network load with only a ball object
and Figure 9 shows network load with an Avatar ob-
ject subscribed on a slave station. It is observable that
the synchronization of a ball-object needs only a few
messages, since the ball-object is only updated after
an interaction has occurred. The avatar object needs
many more updates due to the unpredictable behav-
ior of that object. Note that the amount of messages
depends on the update-frequency. Furthermore, if the
avatar is not moving, no update is sent.

Globally, the use of subscription trees and of active ob-
jects proved to be a very flexible mechanism for dis-
tributing computations for a shared distributed virtual
environment.

Moreover, the use of active objects considerably re-
duces network load, and diminishes latency in the
synchronization of the objects, because the necessary
calculations are made by the station at the user end.
Whenever external user interaction occurs, network



load and latency increase because of the unpredictabil-
ity of user input.

This is a disadvantage present also in all existing im-
plementation philosophies. Whether using a central-
ized server or a distributed system, user input has to
be propagated always across the system and generates
network load.

6 Conclusion and future work

In this paper we presented a simulation system which
is based on active objects and interaction rules. We
showed that such a simulation system can be used to
build a virtual environment. We presented a way to
distribute and synchronize such a simulation system
over a number of computers connected through a com-
munication network.

The distribution of the simulation is based on dis-
tributing the world. It allows dynamic environments
where objects can be added and removed at runtime.
The subscription mechanism, presented in this paper
is very flexible, due to object-based distribution and
to the highly configurable topology of the subscription
tree.

Our paper has tested the efficiency of the solutions
adopted in balancing the usage of resources across a
heterogeneous network. In particular, active objects
contribute to minimize network load. Network load
is one of the main bottlenecks in distributed hetero-
geneous systems. The solutions proposed are easily
scalable, and easily adaptable to different application
situations and different internal topological configura-
tions.

Actually, this paper opened more problems than it
solved. First of all, a mechanism is needed to reduce
the number of interaction tests, which at this point rep-
resent the real computational problem of a distributed
interactive virtual environment. Work has to be done
on looking forward functions to predict interactions in
advance, and to limit the tests that actually have to be
done.

Second, it would be interesting to know the extendibil-
ity limits of such a system under real world usage. An
attractive test environment involving real world users,
such as for example a shared physically based inter-
action environment, should be made available. Then
it will be possible to deduce the behavior of such a
system and to extract consequences on the topologies
implemented.

The ideas presented in this paper are relevant to a wide
range of cooperative applications that go well beyond
the field of virtual environments. This is in fact the
major challenge opened by this paper.
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