Consistent orientation of segmented models recovered from
digitized data

M. Vanco

Guido Brunnett

Computer Graphics and Visualization
TU Chemnitz
Germany
Marek.Vanco@informatik.tu-chemnitz.de

Guido.Brunnett@informatik.tu-chemnitz.de

ABSTRACT

Reverse Engineering addresses the problem of creating a CAD model for an existing physical
object. In the data acquisition phase of the reconstruction process a discrete set of points on the
boundary of the original object is created that serves as the database for all consecutive steps.
The authors have developed a method to collect these points into segments that form the basic

elements of a B-rep model for the 3D object.

In this paper we consider the important question of how to obtain a consistent orientation of the
segmented model. For this three different methods are presented that are based on the following
principles: orientation propagation, orientation via the boundary curves and orientation induction
from surrounding 3D space. For these three strategies a detailed description of the corresponding
algorithms on the segmented model are given. The performance of these methods for several

benchmark objects is discussed.

Keywords: Reverse Engineering, Surface Reconstruction, Consistent normal orientation

1 Introduction

The problem of building a 3D model from an un-
structured set of points measured from the sur-
face of a given physical object appears in many
areas including computer graphics, computer vi-
sion and reverse engineering [5]. Building such a
model is a problem of growing importance since
efficient 3D scanning technologies such as laser
range scanning become more and more available.
In order to sample 3D objects adequately, mul-
tiple scans have to be taken. Merging the mea-
surements of each scan results in a large set of un-
structured data points. Now, the challenge is to
derive a surface model from the measured points
automatically.

Before surfaces can be fitted to the data points, it
is necessary to group these points into appropri-
ate subsets, a process which is referred to as seg-
mentation [9]. An automatic segmentation can
be based on geometric properties as normals or
curvatures, which have to be estimated from the

data points. The efficient computation of these
properties requires to build up a data structure
that allows fast solution of elementary geomet-
ric operations as e.g. nearest neighbor search. A
common way to achieve such a data structure is to
compute a polyhedral approximation of the initial
object based on the digitized point set [1, 6]. This
approach may also be used to define an initial pa-
rameterization in the surface fitting step of the re-
construction process. However, the computation
of the polyhedral approximation is expensive with
respect to time and memory requirements.

In this paper we follow a different approach that
avoids the construction of the polyhedral approx-
imation. For the computation of k-nearest neigh-
bors we employ a very efficient method that is
based on median subdivision and a hashing strat-
egy [7]. The corresponding data structure of this
method serves as the basic data structure of our
segment oriented reconstruction strategy, which
is described in section 2.1.

Using the neighborhood information it is possible
to estimate the normal vector in each data point.
We implemented three different methods for nor-
mal vector estimation, because the quality of the
segmentation method depends on the accuracy of
the estimated normals. The description of these
methods together with critical evaluation of the
results obtained can be found in section 2.2.

The segmentation method described in section 2.3
follows a region growing approach, i.e. each seg-
ment is built from a seed point by recursively
adding neighboring points as long as the desired
criteria are fulfilled. The criteria involve the an-
gle between the normals of neighboring points as
well as the angle between the current point nor-
mal and a reference vector of the current segment.

This initial segmentation is not completely satis-
fying because of the appearance of a large number
of small segments accompanying the larger rea-
sonable segments. Therefore we developed a se-
quence of cleanup procedures in order to remove
these flaws in the segmentation. As the result of
these procedures small segments are joined with
neighboring larger ones until remaining small seg-
ments correspond to characteristic features of the
surface as sharp edges or regions of high curva-
ture. In order to simplify the segmentation these
small segments are then joined into so called ‘con-
nected segments’. If the object contains sharp
edges (which will be very often the case) it is im-
portant to recompute the normals close to the
edges. For this purpose we developed a proce-
dure that operates with modified neighborhoods
for points that lie close to the edges of the current
segmentation. A crucial issue of this method is to
avoid the recomputation of normals in situations
where neighboring segments occur with a smooth
transition.

In section 3 we address the important problem of
creating a consistent orientation of the segmented
model. Three different principles are considered:

1. Orientation propagation. In this ap-
proach the orientation of one segment is
arbitrarily chosen and propagated over the
whole surface.

2. Orientation based on oriented bound-
aries. A boundary model of a 3D object
is correctly oriented if the common bound-
aries of adjacent faces appear in both orien-
tations in the boundary model. In order to
utilize this principle for our segment model
it is necessary to create oriented boundary
curves for the segments. This is done by

creating a triangulation of segments and ex-
tracting the boundary curve from the trian-
gulation. Note, that the triangulation of a
segment is in itself a complex reconstruction
problem. However, for the purpose of orien-
tation it is not necessary to reconstruct the
exact boundaries of the segment. There-
fore, we developed a fast heuristic algorithm
that provides an approximation of the seg-
ment boundaries.

3. Orientation induced from 3-space.
The basic idea of this method is to find
the extreme points of the data set. Under
the assumption that the object to be re-
constructed is closed these extreme points
can be used to specify the orientation of
the corresponding segments. In order to
increase the number of extreme points we
perform a subdivision of the bounding box
of the data set and apply the strategy to the
subset in a similar fashion. Note, that this
method can also be applied to objects that
possess only a few number of small holes,
since the orientation flaws will only appear
in the neighborhood of the holes and will
not spread over the whole surface. There-
fore these flaws can be detected and re-
moved by a postprocess.

In section 3 of this paper we provide a detailed de-
scription of the algorithms that correspond to the
mentioned orientation principles. The advantages
and shortcomings are discussed and a practica-
ble orientation method is obtained by combining
these principles. The results of the methods are
illustrated for several examples.

2 Creating segmented models from digi-
tized data

2.1 k-nearest neighbors computation

The segmentation process is based on geometric
properties of the surface of the object to be recon-
structed. In order to estimate these properties it
is necessary to know the local neighborhood of
each surface point. In our approach we approx-
imate the neighborhood of a point P by the set
of k-nearest neighbors of P. This set provides
sufficient information on the local behavior of the
surface and it can also be used for point-based
parsing of the whole object.

Our method for the computation of k-nearest
neighbors is based on the following steps:

Data organizing:

e Subdivision of the bounding box of the
point set into non-overlapping rectangular
regions. During the subdivision a binary
tree is created, whose leaves are the regions
with points. For the subdivision the me-
dian value is used in order to guarantee that
every region contains the same number of
points (up to one point).

e For every region a hash table is allocated
and all points of the region are projected
into this table.

Searching:

e Find in the binary tree the region which
contains the point P.

e Search in the corresponding hash table for
k-nearest neighbors and use the k¢, neigh-
bor to determine the searching sphere.

e If the searching sphere intersects or contains
adjacent regions, search in the hash tables
of these regions.

For detailed description see [7].

Note that with our algorithm, we also could com-
pute the approximate nearest neighbors by ex-
tending the procedure with a tolerance parameter
€.

There it has been shown that our method com-
putes the k-nearest neighbors very efficiently with
linear memory complexity. Compared to other
efficient searching method based on KD-Tree [4],
our algorithm proved to be superior for k < 25,
which is sufficient for the applications in surface
reconstruction.

2.2 Approximation of the normal vectors

In the following we will assume that the set N(P)
of k-nearest neighbors of a point P computed
with respect to the Euclidean distance is the same
as the set of the k-nearest neighbors of P with re-
spect to geodesic distance, i.e. on the surface of
the initial object. Note, that it is this assump-
tion that allows to estimate higher order surface
properties as normal vectors from the data set.

Since the quality of the segmentation highly de-
pends on the accuracy of the estimated normal

vectors, we implemented and compared several
methods, in order to find a reliable technique to
approximate the normal vectors from the neigh-
borhoods.

A very common approach to approximate the
normal in P is to compute the plane of regres-
sion R (or best-fit plane), see [2], of the data set
N(P) U {P} and to use the normal of R as the
approximation. In [8] we introduced three dif-
ferent methods for the normal vector estimation
based on the following principles: local centre tri-
angulation (LCT), local Delaunay triangulation

(LDT) and approximation with a analytic surface
(AwAS).

In the LCT we compute the centre of mass C),
of the neighborhood N(P) and an appropriate
projection plane E (for details for computing E
see [8]) . We project N(P) and Cy, to E, obtain-
ing planar points. For all planar points we take
two adjacent points (in the sense of polar coordi-
nates direction) and create a triangle containing
these two points and C),. We map all triangles
back to the 3D space, compute their normal vec-
tors and the estimation of the normal vector in
P is the normalized sum of normal vectors of all
triangles.

The LDT method is similar as the LCT (N(P)
is projected to E), but Delaunay triangulation
of the planar points is performed. The normal
vector estimation is the normalized sum of the
normal vectors of all triangles incident with P.

The AwAS uses a first estimation of the normal
vector Ny in P, that can be obtained from LCT
or LDT. We define a new local orthogonal coor-
dinate system, so that P is the origin and N,
coincides with the z-axis of this coordinate sys-
tem. The neighborhood of P and P are trans-
formed from this new coordinate system into the
global coordinate system and approximated by a
quadratic or cubic surface z = f(z,y) using the
least square method. The estimated normal in P
is the inverse transformation of the normal vector
of the surface in P.

For artificial data set without noise the LDT es-
timates the normal vectors very well, even if the
normal vectors have to be approximated close
to the edges. However, for noisy data sets this
method showed stability problems. A further dis-
advantage results from the fact that the complex-
ity increases fast with the size of the neighbor-
hoods.

The LCT method works faster than the LDT but
provides normals that are less exact. On the other

hand, it works more stable than the LDT for noisy
data sets.

The AwAS estimates the normal vectors per-
fectly, if they belong to a smooth surface without
noise. For noisy point sets it works more stable
than the LCT.

Our tests have shown, that the appropriate neigh-
borhood size for point sets with noiseless sam-
pling is in the range of ¥ = 10. For this neigh-
borhood size the estimation was incorrect only on
sharp edges. Increasing of the neighborhood size
results in a smoothing effect of the normal vectors
in the vicinity of the edges, but did not improve
them on smooth surfaces.

For noisy data sets the neighborhood size has to
be increased in order to obtain satisfactory re-
sults. However, these large neighborhoods result
in a strong smoothing close to the edges. Ex-
tensive tests showed, that the optimal choice of
the estimation method should be made depend-
ing on the surface shape. In general the most re-
liable method for badly scanned objects seems to
be the combination of best-fit-plane with AwAS,
where the neighborhood size should be chosen in
the range of 20-30 neighbors.

2.3 Segmentation of the surface based on
normal vectors

Our segmentation method is based on the normal
vectors and uses two angles a, 8 to subdivide the
surface into point clusters such that the following
angle criteria are fulfilled:

e the angle between the normal vectors
N,., N; of two adjacent points P., P;; P; €
N(P.) has to be smaller than a ;
(L(Nw, ;) <).

e the angle between the normal vector N; of a
new point P;, which is to be added, and the
reference vector N,.; of a segment has to
be smaller than 3 (Z(N;, Nyer) < 3). Note,
that the reference vector IV,.s of a segment
is the normalized sum of normal vectors of
all points in the segment.

This initial segmentation has the following unde-
sirable property: besides the larger segments (of
a size mainly controlled by 3) that provide a rea-
sonable segmentation of the data set, a huge num-
ber of small segments (number of points < 20) are
produced that are certainly unwanted. In order

to reduce the number of small segments we im-
plemented three procedures to clean up the seg-
mentation. The first of these procedures joins a
small segments with a neighboring larger one, if
this process violates the §-criterion only by a pre-
scribed tolerance €. More precisely we proceed as
follows:

Cleaning-up, pass 1:

For all small segments Sy do:

e Consider the set NP of all neighbors of all
edge points of Sy. Store for each segment
the number of points of N P that it contains.
We call this entry the neighborhood index.

e Examine all segments with a neighborhood
index bigger than a specified threshold (e.g.
40% of all neighbors). Among these find
the segment S with the smallest angle de-
viation 7 between its reference normal and
reference normal of Sy. If n < B+ ¢ join Sy
and S. Update the reference normal of S.

Remaining small segments are processed by a sec-
ond procedure that intends to reduce the size of
a small segment by repeatedly extracting its edge
points.

Cleaning-up, pass 2:

Let S; denote a small segment,

e Search for an edge point P; of S; with a
neighbor @);; that belongs to a large (regu-
lar) segment S, with reference normal N,...

e If such a point exists and the relations
Z(NP”NQU) <a A Z(Npi,Nref) <pP+e
hold, then add P; to Ss and update the list
of edge points of Sy

e Repeat until the list of edge points of Sy is
empty or all of its points are marked as not
extractable.

Small segments that still remain after execution
of the second cleaning-up procedure belong in
general to one of the following categories:

a) they describe regions with high curvature or
bad sampling, where the normal vector es-
timation procedure failed even for extended
neighborhoods.

b) they occur along sharp edges of the object.

The third procedure intends to simplify the seg-
mentation by joining the remaining small seg-
ments. If one small segment has at least one edge
point with a neighbor in a second small segment,
these segments are connected. Segments that re-
sult from the process of joining small segments to
one segment are called connected segments. Small
segments that cannot be joined with other seg-
ments are called isolated. All other segments are
referred to as regular ones.

2.3.1 Recomputing of the normal vectors

During the normal vector estimation the normal
vectors close to the edges are estimated inaccu-
rately because the neighborhoods contain points
on both sides of the edge. This is especially the
case if the data set results from a poor sam-
pling that requires the use of large neighbor-
hoods. These normal vectors often strongly af-
fect the segmentation process and can cause a
large number of small segments. Therefore we
implemented a procedure for normal vector re-
computation, which searches for the points in the
vicinity of sharp edges and improves the estima-
tion of their normal vectors by modification of the
point neighborhood.

Since the current segmentation provides rough in-
formation about the object’s surface, we can ap-
proximately detect edges or regions with high cur-
vature. Therefore the neighborhood of a point P
in a regular segment can be temporarily adjusted,
so that N(P) does not contain neighbors beyond
sharp edges.

For every segment a list of its segment neighbors
is created and the normal recomputation proce-
dure proceeds as follows:

e Take a point P; of a segment 5.

e Mark all segment neighbors Sy, of S;, with
the property /(jfgf,Nﬂef) < 6, where
Nye; and Nf,'ef are the reference vectors of

the segments Sy, and S; resp. and ¢ is a
threshold.

o Check if all neighbors of P; belong to the
marked segments. If not, remove them from
N(F;).

e If the neighborhood was not changed, con-
tinue with a next point. Otherwise extend
N(PF;) to a full neighborhood as follows:

— Take the neighbors of the points in
N (P;), which belong to marked segments
and have not yet been included into
N(P).

e Estimate the normal vector of P from the
modified neighborhood using one of the de-
scribed estimation methods and discard the

modified neighborhood.

The procedure recomputes only normal vectors
of regular segments (normal vectors in connected
segments can be recomputed e.g. by increasing
of the neighborhood). The whole process (seg-
mentation with subsequent recomputing) can be
repeated, but as the tests have shown, more than
two repetitions gives only very small improve-
ments.

The recomputation works very fast (the worst
case complexity is O(n), but in general only nor-
mal vectors of edge points are recomputed) and
for an object with many sharp edges it provides
good improvement of the normal vector estima-
tion. If the transition between two segments is
smooth, then the normal vectors of the boundary
points of these segment were well estimated with
the initial estimation procedure and it is undesir-
able to recompute these normal vectors. It is the
role of the angle § to avoid the modification of
the neighborhoods on this situation.

Figure 1 shows the effect of normal vector recom-
putation for an object with a hole and many sharp
edges.

3 Creating a consistent orientation

In this section we address the problem of creating
a consistent orientation of our segmented model.
If one considers the possible arrangements of nor-
mal vectors of two adjacent points it is apparent,
that the orientation problem cannot be solved
without additional surface information or some
restrictions, see Figure 2: Nok is an already ori-
ented normal vector and N- is the normal vector
to be oriented. In the example a) in both cases
the angle between Nogx and N- is the same, but
the orientation of N> on the left side should be
inverted, while on the right N is oriented cor-
rectly. The same problem occurs in the example
b) where N- lies perpendicular to Nog: it cannot
be decided directly which orientation of N+ is the
correct.

In the following we investigate three approaches
for consistent normal vector orientation, which

SRR

I

Figure 1: First step normal estimation (up-
per image) and the normal vectors after re-
computing (lower image)

a)

b)

Figure 2: Normal vector orientation problems

are based on the following principles: orientation
propagation, orientation via the boundary curves
and orientation of extreme points.

3.1 Orientation propagation

The basic idea of the orientation propagation is
to choose the orientation of one normal vector
arbitrarily and to propagate this orientation over
the whole surface following a path of minimal an-
gles between adjacent normal vectors. An im-
plementation of this strategy has been described
in [3], where a minimal spanning tree (MST) of
all points in the point set is computed and the
edges of the tree are weighted by the angles be-
tween corresponding normal vectors. For smooth
surfaces this method works very well, however,

if a sharp edge occurs in the surface it is neces-
sary that a smooth transition of the normals is
created artificially. This is done by choosing a
huge neighborhood that causes a blending pro-
cess of the normals on both sides of the edge. In
complex objects with many high curvature parts
this huge neighborhood can cause wrong normal
vector estimation and the propagation procedure
fails.

Therefore we try to orient the normal vectors
consistently by using the reference vectors of the
segments. The procedure works analogously to
the method with MST of angles between adja-
cent normal vectors: we build a minimal span-
ning tree of the angles between reference vectors
of the segments. It is obvious, that we have the
same problem as the MST of the normal vector
angles: if the minimal angle between the reference
vector Nyer(S) of a segment S and its neighbors
S, with the reference vector Ny.¢(Sy) falls into
an interval (7,7 — 7) it cannot be decided from
the MST, which direction of the Ny..z(Sy) is the
correct. The threshold v divides the whole angle
interval [0, 7) into three subintervals:

e interval [0,7]: Nper(S,) is oriented cor-
rectly with regard to Ny.z(S)

e interval [m —v,7): Nyer(Sy) is oriented op-
posite with regard to Ny.z(S)

e interval (y,7 — 7): it is unreliable to de-
termine to correct orientation of Ny.y(Sy)
with regard to Nyey(S)

For the third case we implemented another
method based on the segment boundaries, which
is introduced in the next section.

3.2 Orientation based on oriented seg-
ment boundaries

3.2.1 Triangulation of the segments

The angle 8 in the segmentation process limits
the maximal curvature of the segment. We use
such values for this angle, so that a 2%D triangu-
lation is possible. Our triangulation tool works
basically as follows:

A triangulation is created for each of the regular
segments. This is done by projecting the points
of the segments to a plane, creating a Delaunay
triangulation of this point set and modifying this
initial triangulation such that the intuitive shape
of the point set is approximated by the resulting

triangulation. This planar triangulation is then
back-mapped into 3D space.

It is known that the Delaunay triangulation tri-
angulates the convex hull of the point set. The
segments are not convex in general and therefore
some triangles have to be removed from the tri-
angulation in order to approximate the segment
shape. As mentioned before, for the purpose of
orientation it is not necessary to reconstruct the
boundary of the segments exactly. Therefore we
developed a heuristic method based on the his-
togram of the edge lengths, see Figure 3.

e The whole interval of possible edge lengths
(the interval between the shortest and
longest edge) of the triangulation is divided
into subintervals (the number of intervals is
a parameter of the procedure).

e Fach edge length is projected into the corre-
sponding interval and the occurrences of the
projections in every interval are counted.

e The interval containing the last maximum
number of occurrences (for detailed expla-
nation see paragraph below) is found and
from the position of that interval the criti-
cal length L. is computed. L. is the length
of the largest edge, that is not removed from
the triangulation.

o If the length of any edge of a triangle is
longer than L. the triangle is removed from
the triangulation.

o If the length of any edge of a triangle is
longer than ks L. and the triangle lies on the
boundary of the triangulation, the triangle
is removed from the triangulation.

maximum I Last allowed

maximum

I
1
1
3 |
Q |
S l
g !
= |
8 |
o l
I 1 L % Length
C

Figure 3: Edge length based triangle re-
moval from a triangulation using histogram

As the last interval containing the maximum
number we take an interval whose number of pro-
jections deviates from the real maximum value of

a constant k1, i.e. the last interval with the num-
ber of projections greater than x, *Max, where Max
is the maximum number of projections and k1 is
a parameter. This interval is taken as the posi-
tion for the computation of the critical length (in
Figure 3 the value I; is the position, from which
L. is computed). This parameter helps especially
for convex segments, where the histogram has a
shape similar to a Gaussian distribution of the
lengths and it could happen, that the maximum
would occur in the beginning of the histogram
(in Figure 4 the value M;) and too short critical
length (computed from I;) could cause removal
of many inner triangles, which belong to the seg-
ment shape.

The second parameter ko specifies the tolerance
of the computed critical length L. for triangles
on the boundary of the triangulation. The criti-
cal length is chosen such that no undesirable holes
in the segment result, which do not belong to the
shape. Therefore from the boundary of the tri-
angulation triangles with shorter edges than L.
can be removed, but not from the inside (i.e. the
triangles in the interior of the triangulation have
bigger weight than the boundary ones).

Occurrences

Length

1
Figure 4: Convex segments length distribution

Figure 5 shows a quite complex segment after tri-
angle removal.

The triangle removal method works very sat-
isfactory and automatic for the most segment
types. Only if there are various sampling depths
in one segment, which strongly differ each other,
this method creates many holes in the interior
or leaves many triangles with long edges on the
boundary, see Figure 6, where undesirable holes
in the interior of the segment were created.

3.2.2 Orientation of segment boundaries

It is obvious that the normal vectors in two neigh-
boring segments are oriented consistently if their

el
B
N AT
e A
GRS
AT,
RS
S

LT

S e
EAE N TI AN

A A,

A¥,
N
P
AT T
arar
S
UGS

o
A)
RS

Pl oo
T
AT
Ses

Figure 5: Segment shape of a real object
after edge removal

Figure 6: A circular segment with variable
sampling depth

triangulations are oriented consistently, i.e. the
neighboring parts of the boundaries are traversed
in opposite directions (see Figure 7).

Assume the segment Sy in the Figure 7 was al-
ready oriented correctly and we are going to ori-
ent the segment Ss:

e Find on the boundary of the S; a chain
of points (1-2-3-4-5-6; at least two), whose
neighbors lie on the boundary of the seg-
ment Ss.

e Make from these neighbors a chain of points
(a-b-c-d-e-f-g) and compare both directions:
1—>6anda— g

e If they are not opposite, invert everything in

Sy (normal vectors of points, triangulation,
boundary and reference vector).

We tried to orient the segments consistently based
on their triangulation boundaries. However, we
found that the result depends on the shape of the
segment. For several special cases: degenerated
segment shapes (e.g. thin triangulation), overlap-
ping triangulations, many small segments, where
the common point chains could be found, etc. this
strategy was not successful.

Point neighbors

Segment edge

Figure 7: Making consistent orientation of
So according to S;

Therefore we developed a method that com-
bines the principles of orientation propagation
and boundary orientation.

If we detect, that the current minimal angle of
the MST falls into the third interval (mentioned
in the section 3.1), i.e. (y,7 —), we take all
marked (already oriented) neighbors of a segment
S;, which is to be oriented and sort them in an
array by the size (the biggest one in the begin-
ning). Then we take the first neighbor segment
S; from the array and try to orient S; according
to S; using the boundaries of both segments. If
it fails we take the next neighbor segment and so
on. If the boundary orientation procedure fails
for all neighbor segments in the array, we mark
S; as “hard to orient” segment. At the end of
the whole process we take all “hard to orient”
segments and try to orient them again (the ma-
jority of their neighbors has been marked and the
probability for a success is higher).

3.3 Orientation induced from 3-space

To make our orientation procedure more robust
and stable we search for places on the object,
where we can determine the normal vector ori-
entation without neighborhood information.

The main idea is based on the fact that the nor-
mal vector orientation on the surface of a closed
object can be determined uniquely for 6 extremal
POintS (Xmina Xmax’ Ymin’ Ymaxa Zmina Zmax)' In
ideal case we could start with 6 correctly ori-
ented segments, which is not enough for com-
plex objects, therefore we subdivide the bounding
box of the object into non-overlapping boxes un-
til every box contains maximally m points. Dur-
ing the subdivision for every box its 6 neighbors
are stored in a appropriate data structure. If a
box contains zero points and it has less than 6
box neighbors, i.e. it lies on the boundary (exte-
rior box), this box is deleted. Except for boxes
with nonzero number of points, the boxes with
zero points and 6 box neighbors remain (interior
boxes), see Figure 8 for an example for a 2D sub-
division.

A B C D E F G H
RER
. | ® —_
bP0 $ X
°
[
T 1. u... > o
% o o] o
4_000.- .za_, N
°
4—0...'0 _..’. =
° L2
'4—.. [] 3 a
[Y
v i I ole® B N
<—..!.‘ - o0

°
X4
. Interior, boxes with 0 points
|:| Exterior, boxes that were deleted

Figure 8: Subdividing the 2D bounding box
into boxes

After the space subdivision has been created, the
procedure proceeds as follows:

e We denote the current minimal angle
(Mca) as a segment variable, which spec-
ifies the minimal angle between a point
of the segment and a unit direction

((17 03 0)7 (_17 03 0)7 (03 17 0): o) In the be-
ginning this variable is initialized with the
~ threshold, see section 3.1.

e Take a first box B; with nonzero number
of points and check its box neighbors. If
in some direction the neighbor is missing,
i.e. B;is a boundary box, find the extremal
point in B; in the specified direction: in the
Figure 8 e.g. the box B1 has two free direc-
tions: the positive Y and the negative X.
Thus, two points are searched: the first one
with the maximal Y coordinate (P;) and
the second one with the minimal X coordi-
nate (P).

The angle between the normal vector of P;
and the vector (0, 1) is computed (thereafter
analogously between the normal vector of
P, and the vector (—1,0)).

If the angle is smaller than the Mg 4 of the
segment containing P, the M¢ 4 is updated
with the new angle.

If the angle is greater than m — Mg 4, ev-
erything in the segment is inverted (normal
vectors, the reference vector and the trian-
gulation) and the M¢ 4 is updated.

Otherwise continue with the next box.

Note that this procedure works only for closed
objects. The extension of the procedure for open
3D objects is the topic of our present and future
work.

4 Results

The next three figures (Figure 9, Figure 10, Fig-
ure 11) illustrate the results of the segmentation
and orientation procedures. All objects consist of
triangulated Gouraud-shaded segments with the
same color. Connected segments were not dis-
played. Fandisk and Dino are closed point sets
with sharp edges (Dino in the area of its feet).
Although Thor is an open point set (at the bot-
tom of his feet), we performed tests for it because
of its complexity (orientation with the MST of the
normal vectors based method was not successful).
Because this point set is open our orientation pro-
cedure oriented a few segments on his both feet
incorrectly (on his right foot marked with black
half-circles, on the left foot the segments cannot
be seen).

‘.v\\§§\‘ \§§§

Figure 9: Consistent orientation of a data
set ‘Fandisk’, 16,475 points

-

i
Py,

L

Figure 10: Consistent orientation of a data
set ‘Dino’, 19,521 points

REFERENCES

[1] Bajaj, Ch., Bernardini, F. and Xu,
G.: Automatic reconstruction of surfaces
and scalar fields from 3D scans, Computer
Graphics Proceedings, SIGGRAPH 95, An-
nual Conference Series, 1995, 109-118

[2] Faugeras, O.D. and Herbert, M.:
The representation recognition and locat-
ing of 3D objects, International Journal of
Robotics Research 5, 1986, 27-52

[3] Hoppe, H., DeRose, T., Duchamp,
T., McDonald, J. and Stuetzle, W.:
Surface Reconstruction from Unorganized
Points, Proceedings SIGGRAPH 93, 1993,
19-26

Figure 11: Consistent orientation of a data
set ‘Thor’, 71,292 points

[4]

[5]

[7]

8]

[9]

Jensen, H. W.: Global illumination us-
ing photon maps, Proceedings Seventh FEuro-
graphics Workshop on Rendering, June 1996

Mencl, R., Miiller, H.: Interpolation
and Approximation of Surfaces from Three-
Dimensional Scattered Data Points Research
Report No. 662/1997, December 1997

Schreiber, T., Brunnett, G. and Issel-
hard, F.: Two approaches for polyhe-
dral reconstruction of 3D objects of arbitrary

genus, International Journal of Vehicle De-
sign, Vol. 21, 1999, 292-302

Vanco, M., Brunnett,
G. and Schreiber, Th.: A hashing strat-
egy for efficient k-nearest neighbors compu-
tation, Proceeding CGI 1999, 1999, 120-128

Vanco, M., Brunnett, B.
and Schreiber, Th.: A Direct Approach
Towards Automatic Surface Segmentation of
Unorganized 3D Points, Proceedings SCCG
2000, 2000

Varady, T., Martin, R.R. and Cox, J.:
Reverse Engineering of Geometric Models
- An Introduction Computer-Aided Design,
Vol. 29, April 1997, 255-268

