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ABSTRACT

The paper examines the parallel implementation of iteration type global illumination al-
gorithms. The steps of iteration depend on each other, thus their parallel implementation
is not as straightforward as for random walks. This paper solves the interdependency
problem by applying stochastic iteration. In this framework two fundamental questions
are investigated: how many processors can be efficiently used in an algorithm and how
often the processors should exchange their information. These questions are answered by

a theoretical model and also by simulations.
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1 Introduction

Global illumination algorithms, which aim at
the physically correct simulation of the light
propagation, solve the rendering equation

L=L°+TL,

which expresses the radiance L(Z,w) of a
point Z at a direction w as a sum of the emis-
sion and the reflection of all point radiances
that are visible from here. The reflection of
the visible points is expressed by an integral
operator T L(Z,w) which is also called as the
light transport operator.

Global illumination algorithms can be classi-
fied as random-walk and iteration techniques.
Random walk algorithms are based on the
Neumann series expansion of the rendering
equation

[ee]

L= T'L°

=0
where 7 is the light transport operator and
L¢ is the emission. The terms have intuitive

meaning since 7°L¢ describes the i-bounce
transfer. The terms of this series are ever in-
creasing high-dimensional integrals that are
estimated by Monte-Carlo quadrature in or-
der to avoid exponential core. Since the sam-
ples in the integral quadrature are computed
independently, this method may be executed
on as many processors as samples are needed.
If the samples are available, then the results
should be joined by the combination of the in-
dependent samples. Summarizing, random-
walk algorithms are the optimal candidates
for parallelization since only the final com-
bination requires some inter-process commu-
nication. This feature, which is an obvious
advantage for parallelization, is also a draw-
back, because it shows the inherent property
of random walks that they are unable to reuse
previous information. Iteration techniques,
on the other hand, realize that the solution
of the rendering equation is the fixed point of
the following iteration

L(m) = L* + TL(m — 1),



thus the radiance can be obtained as a limit-
ing value:
L = lim L(m).
m—00

To store the radiance estimates during it-
eration, finite-element approaches should be
used. Since the complete radiance function
is used in each step, iteration can poten-
tially reuse coherence and previous informa-
tion, thus it can be much faster than random
walks. On the other hand, due to the de-
pendence on the complete radiance function
iteration is not as appropriate for paralleliza-
tion as random walk [6, 2]. If different parts
of the radiance function is computed on dif-
ferent processors, then their results should be
combined after each iteration (or at least af-
ter every few iterations), which requires in-
tensive inter-process communication and can
result in a bottleneck. This approach is fea-
sible if the decomposition takes advantage of
the separation of strongly and weakly cou-
pled regions, such as, for example, the rooms
inside a bigger building [3, 5].

These problems can be solved by randomiz-
ing the iteration. The formal basis of the
randomization of iteration methods is the
stochastic iteration [7]. It means that in the
iteration sequence a random transport oper-
ator is used instead of the light-transport op-
erator, which gives back the light-transport
operator in the average case:

L'(m)=L¢+T*L(m —1), E[T*L]=TL

This scheme does not converge but L'(m) will
fluctuate around the real solution. To find
the converged solution, before advancing to
the subsequent step, the radiance is obtained
as the average of all preceding radiance esti-
mates:

L(m) = -Z:L’(z') =

%.L/(m” (1_ %) - L(m —1).

Merging the stochastic iteration and averag-
ing steps together, we can also obtain:

L(m) =

(L4 T Lim—1)) + (1 _ %) L(m—1).

1
m

In order to understand how iteration works,
let us examine its first few steps with the as-
sumption that L(0) = L*:

L) = I

L) = 1@+ ro)+ (1-1) Lo
_ eaTre,

L@ = %-(Le+7'2*L(1))+<1—%>~L(1)

1 1
— Le+§(7'1*Le+75*Le)+575*7'1*L6'

Note that each iteration introduces a new
one-bounce transfer 7;*L¢ and advances all
previous transfers, i.e. obtains a k+1 bounce
transfer 77,7 ...7;7L¢ from each transfer
Ty -+ TiyL¢ of length k. The proof that the
stochastic iteration scheme converges to the
real solution has been proven in [7].

2 Parallel execution of Monte-Carlo
algorithms

Monte-Carlo algorithms generate the solu-
tion of a problem in the form of a random
variable. The mean of this random variable
is the real solution and the variance converges
to zero with increasing the computational ef-
forts. In this section, we justify that these
methods are generally suited for parallel exe-
cution. Suppose that two independent ver-
sions of a Monte-Carlo algorithm are exe-
cuted for the solution of the same problem us-
ing N samples each, providing random vari-
ables &1, &5. The means of these random vari-
ables are the same. Generally, the variance of
a Monte-Carlo method will be inversely pro-
portional to the number of independent sam-
ples used. Thus the variance % will be the
variance o of a single sample divided by the
number of samples, i.e. 02/N. Suppose that
at the end of the parallel computation, the
random variables of the parallel threads are
averaged. The mean does not change, how-
ever, the variance of the final estimator is:

52 — D2 [51 ;52] _

(D*[&]+ D?[] +2- Cov(&1,6)) =

N
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where is Cov(&1,&2) is the covariance of the
two random variables. If the two random
variables are independent, then the covari-
ance is zero and thus the variance is halved.
This independence can usually be provided
by inserting a different seed to the random-
number generators used by the two processes.

Since the Monte-Carlo estimate is a sum of
many independent or weakly correlated sam-
ples, it can be supposed to have normal distri-
bution according to the central limit theorem.
Examining the shape of the Gaussian proba-
bility density, we can conclude that this type
of random variables are closer to their mean
than three times the standard deviation &
with probability 0.997. Thus with 99.7% con-
fidence we can say that the probabilistic error
bound of the algorithm is 3 - 6.

If different parallel implementations need to
be compared, the error bound, i.e. the stan-
dard deviation is a good measure for com-
parison. Note that in our case, the algorithm
should simultaneously evaluate the 1-bounce,
2-bounce, etc. transfers, and obtain the final
result as their sum. The importance of differ-
ent bounces are not the same, since higher or-
der bounces have less contribution to the final
results. Thus it is worth assigning a weight
to the number of samples used for the evalua-
tion of different bounces when different algo-
rithms are compared. The contribution of a
k order bounce is in average the contribution
of a k — 1 order bounce times the contraction
ratio of the integral operator. Let us denote
this contraction ratio by a. In global illumi-
nation rendering this factor is determined by
the average albedo of the scene and by how
open the environment is.

Thus if the total contribution of the 1-bounce
transfers is C', then the average contribution
of the i-bounce transfers is a*~! - C. Suppose
that a given algorithm generates N7 samples
for the estimation of the 1-bounces, Ny for
the 2-bounces, etc. and N, samples for the
n-bounces while not providing any samples
for the bounces of order greater than n. Since
the algorithm does not compute the bounces

greater than n, the radiance estimate will be
biased. The order of this bias error is

an+1

ebiaS=C~(a”+1+a”+2+...)=C- .

1—-a
Comparing the primary estimators of two dif-
ferent bounces, we can notice two important
differences. On the one hand, a higher or-
der bounce has smaller expected value due to
the o'~ ! factor. On the other hand, the esti-
mator of the higher order bounce is a higher
dimensional random variable. If we can as-
sume that the second effect is not relevant
for the variance of these estimators, then the
variance of the i bounce is a20~1 . 62 where
o? is the variance of the primary estimator
of the first bounce. Assuming that the esti-
mates for the different bounces are indepen-
dent, the variance of the computed radiance
1S:

As stated, the stochastic error bound is 3
times the standard deviation with 99.7%
confidence level, thus the probabilistic error
bound of the Monte-Carlo estimate is

; 1 a2 gt q2(n—1)
eMc = 307- E—FE-I-E—F...-I- N,

The total error of the algorithm is €5 + €M
in the worst case. Since the total contribution
of all bounces is in the order of C/(1—a), the
relative error is:

01 + + a2(n—1)
N,

When a parallel algorithm is designed, this
error must be minimized taking into account
the constraint of the computational time and
processing power. Parameters such as the
contraction a and the relative variance of
the first-bounce o1/C depend on the scene
to be rendered. However, parameters n,
Ni,...,N, are defined by the rendering al-
gorithm, thus they can be controlled to min-
imize the error.




3 Computational model for parallel
stochastic iteration

Suppose that a stochastic iteration scheme
is executed on P processors. Each proces-
sors iterates I steps independently, then they
exchange their results and averaging takes
place. For huge scenes, information exchange
could mean heavy data transfer. To be
general, let us suppose that only Sth por-
tion of the total information is transferred to
each processor during an exchange. Setting
S to specific values different communication
strategies can be modeled. For example, if S
is 1, then we get a star topology where each
processor can get the results of all other pro-
cessors. If S is equal to 1/P, then we can
model a round robin scheme, where a proces-
sors sends its results only to a single other
processors. Finally with arbitrary § < 1
value, we can simulate the case when only
a fragment of the data is read from each pro-
cessor in order to reduce the communication
overhead.

If there is an exchange after each Ith step,
then the total available time T is devoted to
N number of iterations and N/I number of
exchanges. A single iteration and exchange
require T; and P - S - T, times, respectively.
Thus the total time T is:

N-P-S

T=N-T;
* 1

T, (1)

from which the number of iterations is

T-1

N = .
T,-I+T.-P-S

(2)

Crucial design decisions are the appropriate
selections of P, S and I, i.e. determining
the number of processors that can effectively
be used, the fraction of the information ex-
changed, and after how many iterations the
processors should exchange their results. In-
creasing the number of processors adds more
computational power but also increases the
communication time, thus we can reach a
level where adding new processors does not
increase the speed. The frequency and the
scale of information exchange are also a mat-
ter of contradicting criteria. On the one
hand, if I is too small or S is too big, then

the frequent information exchange may slow
down the process. On the other hand, if I is
large or S is small, then the samples produced
by the different processors are not combined
with each other, which decreases the number
of samples. In the next section, this prob-
lem is approached as an optimization prob-
lem, and the optimal I and S values are de-
termined.

4 Calculation of the sample numbers

Let us first consider an iteration when the
processors run independently, and let us de-
note the number of generated paths of length
k at step n by s, (k). Since in each step each
processor introduces a new 1-bounce sample:

Sp+1(1) = s, (1) + P (3)

On the other hand a single processor stores
every Pth transfer and each processor ad-
vances all transfers by one while also keeping
the previous samples, thus we can write:

sn (k)
P

Smpr(k+1) =P +osp(k+1) =

sn(k) + sn(k +1), k>1.  (4)

Now we assume that before executing a sin-
gle iteration step, the processors exchanged
their information. As before, each processor
introduces a new 1-bounce sample:

sn+1(1) = sp(1) + P. (5)

On the other hand, a single processor stores
now every Sth previous transfer and each
processor advances all the stored transfers by
one while also keeping the previous samples,
thus we can write:

Sns1(k+1) = P-S-sp(k)+sn(k+1), k> 1.
(6)

A complete run of the algorithm consists of

N T

K(I) =2 = .
(D=7 T, I+T, P-S

number of phases. Having applied the pre-
vious formulae, the stochastic error can be



obtained at the end of the algorithm. The
error will be a function of P,I and S. The
design objective is to minimize the variance
as a function of the free parameters.

In order to demonstrate the results, we car-
ried two kinds of numerical experiments.
First, we assumed that the available compu-
tation time is 1 minute, measured the iter-
ation and exchange time on a Origin 2000
SG computer (T; = 4.5 sec, T, = 0.05 sec)
and obtained the number of iterations ac-
cordingly. Figures 1 and 2 show the error
curves for different number of processors for
different length of independent operation.

error

Figure 1: Stochastic error as a func-
tion of the processors P for different
contractions (T' = 1 min, 01/C = 1,
P=8,5=1)

Figure 2: Stochastic error as a func-
tion of the length of the independent it-
eration cycles for different contractions
(T=1min, P=8,5=1)

Note that according to the error curves the
introduction of a new processor increases the
accuracy and the length of independent cy-
cles and the fraction of the exchanged infor-

error

Figure 3: Stochastic error as a func-
tion of the fraction of information ex-
changed after each step (T = 1 min,
P=8,I1=1)

mation do not affect the error significantly.
This phenomenon can be explained in the
following way. Exchanging information in-
creases the samples used for the higher or-
der bounces, which are significant only if the
contraction is close to one. On the other
hand, frequent and large scale information
exchanges steal time from the processors thus
they can compute less number of samples,
which increases both the Monte-Carlo error
and the bias if the contraction is close to one.
The two effects seem to well compensate each
other.

In the second kind of experiments, the error is
fixed to 10% and we examined the computa-
tion time required by 1-16 processor systems.
The results are in figure 4, which exhibits an
interesting feature. If the contraction is high,
then the introduction of additional proces-
sors only slightly decrease the computation
time. This is due to the fact, that higher or-
der bounces need high iteration numbers in
which parallelization cannot help.

5 A simplified analytic model: effec-
tive sample number

In the previous section an algorithm was pre-
sented to find the sample numbers and finally
the stochastic error. Unfortunately, the re-
sult of this algorithm cannot be obtained in
closed form and used directly as an analyti-
cal goal function. In this section a simplified



Figure 4: Computation time as a func-
tion of the number of processors

approach is used that allows analytical treat-
ment. For the sake of notational simplicity,
we assume that S is 1. Since the variance is
a quadratic operator, we shall assume that
the contribution of a k£ bounce to the general
variance of the estimator is a?* times the con-
tribution of the 1-bounces. This leads to the
definition of effective sample number, which
is the weighted number of samples used for
the estimation of different bounces:

E= Zs(k) -k (7)

where s(k) is the number of samples gen-
erated for the estimation of the k-bounces.
When developing parallel algorithms, this ef-
fective sample number is intended to be max-
imized.
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Figure 5: Effective sample number as a

function of the inverse standard devia-

tion

In figure 5 the effective sample number was
plotted against the stochastic error obtained
by the formulae of the previous section. Note
that there is a monotonous dependence be-
tween the two quantities for any practical

contraction value, i.e. they can be used in-
stead of the other when ranking different al-
gorithms.

Let us first consider an iteration when the
processors run independently. Using equa-
tions 3 and 4 a recursive expression can be
obtained for the number of effective sample
number &, 1:

Sna1(1) + 841 (2)a” + ...+ spp1 (n 4+ 1)a® ") =

(sn(1) + P) 4+ ...+ (sn(n) + sp(n + 1))+ =
P+ (a®> + 1)&,.

This recursive expression can be expanded,

thus the effective number after I — 1 steps is

Er_1 =P+ (a2 + 1)81_2 =

P+ (@®+1)(P+ (a> + 1)E—3) =
P+(a?+1)P+...(a>+1) =D P+ (a®>+1)UVg =

a? + 1) —1
plt ;
Assume that before executing a single itera-
tion step, the processors exchanged their in-
formation. Substituting equations 5 and 6
into the formula of effective sample numbers
we can obtain £,11 = P + (Pa? + 1)&,.

+(a®+ 1)V

Now a complete phase is examined which
starts with a combined step then executes
I — 1 independent steps. Merging the previ-
ous results together, the effective sample &
number at the end of the phase is:

2 (I-1) _
plt 1212 1+(a2+1)(1_1)(P+(Pa2—|—1)51) =
@+ -1, I-1)(p,2
P (@)D (P + 1) = A+BE,

A complete run of the algorithm consists of
K(I) number of phases, thus the effective
sample number at the end of the algorithm
can be obtained as

En=A+BEN_=A+ B(A + BEN_QI)) =

BK -1
B-1

since & is zero. Note that this formula is
available in analytic form, thus its derivative
can be made equal to zero in order to find
the optimum point.

A+BA+B*A+...BX 144+ BKg, = A



6 Results

To demonstrate the theoretical model a par-
allel version of a Monte-Carlo radiosity algo-
rithm was considered [4]. In each step this al-
gorithm selects bundles of parallel rays that
are parallel with a random direction. The
radiosity of the patches that see each other
in this direction are exchanged, multiplied
with the diffuse reflection and averaged to
the patch radiosity. In three different experi-
ments the total numbers of samples, so called
bundles, were 50, 100 and 200, respectively.
In a P processor system one processor com-
puted 50/P, 100/ P and 200/ P samples. The
information of different processors was com-
bined just once at the end of the run. The
simulations were executed on a Origin 2000
SGI computer with shared memory. For the
50, 100 and 200 total sample numbers, fig-
ure 6 shows the RMS errors against the dif-
ferent independent operation lengths I and
the computation times against the number
of processors P. Note that according to the
theoretical results, the lack of frequent com-
binations for multi-processor systems caused
just a negligible error increase and the algo-
rithm scales well on multi-processor systems.
The less the albedo, the less significance the
higher order inter-reflections have, thus the
need for exchanging information between the
processors diminishes. Figure 7 shows two
images computed with 1 and 8 processors, re-
spectively. The number of samples was 200.
The scene has 1166 polygons that were di-
vided to 19792 patches. The scene in fig-
ure 8 has 1130 polygons that were divided
to 102804 patches. We used 200 bundles and
the total execution time was 204 seconds with
8 processors. The same scene was computed
with a single processor in 1282 seconds.

7 Conclusions

This paper presented a theoretical model for
the analysis of the efficiency of stochastic it-
eration global illumination algorithms. The
model allowed to study the effect of the algo-
rithm parameters and parallelization strate-
gies on the error of the computation, and also
to propose optimal settings for these param-

eters. Using theoretical considerations and
also simulations, we concluded that stochas-
tic iteration can handle the interdependency
problem of classical iteration algorithms. It
means that with the proper randomization of
the algorithm, the threads of different proces-
sors can run almost independently and we do
not have to slow down them with frequent
information exchange.
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Figure 6: (a) Error versus the length of independent cycles I and (b) computation time
versus the number of processors number for 50, 100 and 200 bundles.
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Figure 7: Images obtained with 200 bundles. The total execution time was (a) 838
seconds with 1 processor and (b) 99 seconds with 8 processors

Figure 8: Image obtained with multipath with 200 bundles. Radiosities were computed in
204 seconds with 8 processors and in 1282 seconds with a single processor.



