Computer Graphics Forum, Vol.28, No.6, pp.1529-1540, ISSN 0167-7055, 2010

COBRA: Compression of basis of PCA represented
animations

L. Vasa' and V. Skala'

! Department of Computer Science and Engineering, Faculty of Applied Science, University of West Bohemia, Czech Republic

Abstract

In this paper we present an extension of dynamic mesh compression techniques based on PCA. Such representa-
tion allows very compact representation of moving 3d surfaces, however it requires some side information to be
transmitted along with the main data. The biggest part of the side information is the PCA basis, and since the data
can be encoded very efficiently, the size of the basis cannot be neglected when considering the overall performance
of a compression algorithm.

We present a pioneering work in this area, as none of the papers about PCA based compression really addresses
this issue. We will show that for an efficient and accurate encoding there are better choices than even sophisticated
algorithms such as LPC.

We will present results showing that our approach can reduce the size of the basis by 90% with respect to direct
encoding, which can lead to a 25% increase of performance of the compression algorithm without any significant

loss of accuracy.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Animation

1. Introduction

Compression of dynamic meshes is a topic which has gained
increased attention during the last period. The problem can
be seen as equivalent to static mesh compression, however
with dynamicity there appears a whole new group of prob-
lems to solve and properties to exploit.

Generally, the task of dynamic mesh compression is the
following: The input is a series of static triangular meshes
M ..My, where each mesh has the same connectivity, yet dif-
ferent geometry. The set of meshes represents a temporal de-
velopment of some surface, thus there are no sudden changes
in the geometry. The task is to find an approaximate repre-
sentation of the input data which will take smallest possible
number of bits, and which will introduce smallest possible
error to the data.

The problem has been addressed by many research pa-
pers in the past, and even currently there is quite intensive
research in the field. One of the most efficient approaches
is to use principal component analysis to represent the ani-
mation by a PCA basis and some coefficient vectors, which
either describe the desired combination of eigenShapes or

eigenTrajectories. Most of the approaches then focus on the
efficient encoding of the coefficient vectors, while the PCA
basis is encoded directly, because the effect of lossy encod-
ing of the basis is not easy to predict.

However, in our experiments we have found out that when
the coefficients are encoded efficiently, then the basis can
take up to 50% of the encoded data size. Therefore, we have
derived a compression scheme for the basis, which is based
on non-uniform quantization and non-least squares optimal
linear prediction, which addresses this issue.

The rest of the paper is organized as follows: Sec-
tion 2 will briefly describe existing approaches to dynamic
mesh compression with special detail about PCA based ap-
proaches. Section 3 will sketch some possible approaches
and derive the choices we have made to construct our algo-
rithm. Section 4 will give detail about the non-uniform quan-
tization we are using to increase efficiency. Finally, section 5
will present results of our approach applied to one algorithm
based on temporal PCA and section 6 will draw conclusions
and directions for future work.

Skala
Obdélník

Skala
Obdélník

Computer Graphics Forum, Vol.28, No.6, pp.1529-1540, ISSN 0167-7055, 2010

2

2. Related work

First attempt to dynamic mesh compression has been pub-
lished in the paper by Lengyel [Len99], who suggested sub-
dividing the mesh into clusters in which the movement can
be described by a single transformation matrix.

Ibarria and Rossignac [IR03] later suggested a spatio-
temporal prediction schemes ELP and Replica, which were
used to predict next vertex position during a mesh traversal
using the EdgeBreaker state machine. A similar approach
has been used by Stefanoski in his angle preserving predic-
tor. The position of the new vertex is expressed in local co-
ordinate system defined by a neighboring triangle.

A predictor based approach has been improved by
Mueller et al. [MSK*06, MSK*05] by including spatial sub-
division using an octree data structure. For each cell an
appropriate predictor is selected, which best suits the given
cell, or the cell is further divided when the behavior is pre-
dicted badly.

Wavelet theory has been used for dynamic mesh compres-
sion in the work of Payan [PAOS], who suggested treating
separate vertex trajectories as sampled signal. However, their
method did not use the spatial coherence present in the data.

A different class of approaches has been pioneered by
Alexa and Mueller [AMO0], who suggested using PCA in
the space of frames, expressing each frame as a linear com-
bination of eigen frames. However, this method had prob-
lems with rigid movement, which had to be compensated in
preprocessing step, where a transformation matrix for each
frame has been found using the least squares approach.

The method has been subsequently improved by Karni
and Gotsman [KGO04], who suggested exploiting the tem-
poral coherence of the PCA coefficients by encoding them
using linear prediction coding (LPC), thus achieving lower
entropy of the encoded data. Another improvement has been
proposed by Sattler et al. [SSKO5], who suggested using
PCA in the space of trajectories, and finding clusters of ver-
tices where PCA worked well (Clustered PCA). However,
their iterative clustering method did not always reach the
same clustering, because it has been randomly initialized.

Another addition to the PCA based method has been pro-
posed in 2007 by Amjoun [Amj07], who suggested using
trajectory based analysis along with expressing each trajec-
tory in a local coordinate frame defined for each cluster. Ad-
ditionally, a bit allocation procedure is applied, assigning
more bits to cluster where more PCA coefficients are needed
to achieve desired precision.

Finally, Vasa and Skala [VSO7] have presented a
trajectory-based PCA coding combined with EdgeBreaker-
like [R0s99] predictor. Their Coddyac algorithm predicts the
PCA coefficients by the well known paralellogram local pre-
dictor, which allows better performance than the clustering
based approaches.

Mamou [MZP06] has proposed an approach similar to
PCA, called skinning based compression. The mesh is first
segmented to parts that move in an almost rigid fashion.
Each cluster’s movement is expressed by a transformation
matrix, and subsequently each vertex is assigned a vector
of weights, that tells how to combine the transforms of the
neighboring clusters to obtain the movement of the vertex.

A resampling approach has been proposed by
Briceno [BSM*03] in his work on Geometry Videos.
The idea is an extension of the previously proposed Ge-
ometry Images [GGHO2]. The geometry of the object is
unwrapped and projected onto a square, which is regularly
sampled. The resulting image is encoded using some off the
shelf algorithm. The extension to videos solves the problems
of finding a single mapping of a moving content onto a
square while minimizing the overall tension. Generally, the
method is not easy to implement and suffers from some
artifacts, especially for objects with complex geometry.

Recently, there are also scalable approaches appearing,
such as the scheme proposed by Stefanoski et al. [SLKOO7].
These approaches allow progressive transmission of level of
detail of the dynamic mesh, and also achieve better compres-
sion ratios by using sophisticated local predictors which use
the data from coarser detail levels.

3. Algorithm derivation

We will demonstrate the effect of basis compression on a
representative of the class of PCA based compression algo-
rithms, the Coddyac scheme. We will breifly describe it in
order to make the basis compression easy to understand.

The input of the algorithm is a series of F' frames of un-
changed connectivity, which has T triangles and V vertices.
The algorithm first stores all the data in a matrix M of size
V x 3F, where each row represents a trajectory of a single
vertex over the duration of the animation:

T
M = [MI,MZ,...,MV} (€))]
Mi=[X{,... X¢p.Yi,... . YE, Z . ZF) @)

Subsequently, PCA is performed. As a first step, a mean
value for every column is computed and subtracted from the
corresponding column, so that the data is centered around
the origin. The vector of the means m is encoded into the
output stream.

An autocorrelation matrix MM is constructed and its
eigenvectors are found. These eigenvectors are then used as a
new basis of the row space of the matrix M. The key property
of the new basis is that the components of the original data
are uncorrelated when expressed in this basis, and moreover
most of them are close to zero.

Each row (trajectory t) is then expressed in the new basis,

Skala
Obdélník

Skala
Obdélník

Computer Graphics Forum, Vol.28, No.6, pp.1529-1540, ISSN 0167-7055, 2010

while only a user-specified number Np of most important
basis vectors is used. At this point, each vertex of the shared
connectivity has assigned a vector of PCA coefficients. The
connectivity is traversed in the EdgeBreaker fashion, and
the coefficient vectors are predicted using the parallelogram
rule. The residuals are finally quantized and encoded into the
output stream using some kind of entropy coding.

The decompression is then quite simple. The decoder ex-
tracts the connectivity and the basis in a form of Np x 3F
matrix B. Then it traverses the connectivity in the same order
as the encoder, performs prediction and correction of coeffi-
cient vectors, and finally reaches the state when each vertex
has a vector ¢ of Np assigned.

The final trajectory of each vertex is then computed by a
simple matrix multiplication:

t=B.c +m (3)

The key observation for following derivations is that the
basis vectors, which need to be encoded, still retain the char-
acter of trajectories. In other words, if one inteprets one basis
vector as a trajectory of a moving point, then the point moves
smoothly. Figure 1 shows the first basis vector of the chicken
sequence interpreted as three trajectories, one for each coor-
dinate.

0,08

0,06

0 1 ; . - T T T
w 101 151 201 251 3,(')1\/ V
. . I

Figure 1: First basis vector of the chicken sequence. The
sudden jump in frames 250-300 is the chicken popping eyes,
the subsequent sinusoidal development of the X axis is the
Sflapping of wings.

This observation has been made previously by Karni and
Gotsman in [KGO04], who noticed this behaviour of PCA co-
efficients of subsequent frames (note that they have used an
eigenshape based PCA). Their suggestion was to apply lin-
ear predictive coding, LPC, to predict and encode the values.
The LPC concept is based on predicting a given value in a
series as a linear combination of a given number of previous
values. The same set of combination coefficients is used for
the whole sequence (or for multiple sequences of the same

3

behavior) and their values are found in a least squares op-
timization process applied by the encoder on the whole se-
quence. For more details see the original source.

- o "“"“' - R - R O- R - R Ro) R .
[— L e
Q
‘ ‘ V(f— |)

Figure 2: The two linear predictors for a given data set
(each data point is represented by a circle).

We have first followed this suggestion for the basis as
well, however we have found that for the purposes of effi-
cient encoding it is sub-optimal. Imagine a situation depicted
in figure 2. In this simplified scenario, we are given a value
vy_1 (preceeding value, one of the XYZ coordinates) and
we want to predict the value v by a linear formula

ve=kvy_1+gq “4)

The LPC algorithm suggests to apply least squares mini-
mization to find the values k and ¢, in our case we will get
the dashed line. If we now quantize the residuals, then unless
we get all zeroes, we’ll get residual entropy as follows:

E ==Y plog(p) ©)
2 2 2 2 1 1

:—(glogz(g)—i-glog2(§)+§log2(§)) ©)

— 1.522[p)] %)

However, if we construct a different linear predictor, such
as the one drawn in the figure as a dotted line, we get follow-
ing entropy of the residuals:

E=-Y plog(p) (®)
3 3 1 1 1 1
=*(glogz(g)Jr510g2(§)+§10g2(§)))

= 1.379[] (10)

This rather artificial example shows that there are cases,
when least squares solution leads to sub-optimal prediction.
Indeed, it is a generally known problem [Wei02] of the least
squares optimization that the solution can be lead astray by

Skala
Obdélník

Skala
Obdélník

Computer Graphics Forum, Vol.28, No.6, pp.1529-1540, ISSN 0167-7055, 2010

A v(f)

Figure 3: Least squares solution is lead away from a good
predictor of most of the data by an outlier.

outliers, because the squared difference of these has a large
influence on the overall solution. Figure 3 shows a more re-
alistic case, when most of the data points are linearly de-
pendent and can be accurately predicted by the dotted line,
however the least squares solution will be twisted by the out-
lier point, which will cause a significant increase of residual
entropy.

0,4 -
vif) = 0,946v(f-1) - 4E-05

-0,4 04

04
Figure 4: Real data prediction.

Figure 4 shows a real world example. The dataset is the
PCA basis of the first 100 frames of the chicken sequence.
The samples show the dependency of a basis value (v axis)
on its predecessor (vy_1 value) where appropriate prede-
cessor is available. A least squares fitting of such data pro-
duced the depicted line, which can be used to predict v from
Vi_1- However, if we consider the real situation, we can de-
rive a simple formula in a form pred(vy) = vy_1, which is
least-squares sub-optimal, however it delivers residuals with
smaller entropy.

In a similar way, we can fit the triplets (vy_o,vy_1,vy),
where vy_» is a value from frame f —2, vy_ is the value
from frame f — 1 and vy is a value in frame f which we’re

trying to predict. We can either use least squares fitting, or
linear movement prediction in a form

pred(vy) =vi_1+ (Vi1 —vy_a) =2vp_1 —vs_a (11)

The last predictor that we have experimented with uses
three preceding values (vy_3,vy_2,vy) to predict the current
value vy, estimating the speed s and the acceleration a to
obtain prediction as follows:

S=Vfo1—Vfa (12)

a=(vp_1—vp-2)— (vy—2—vy-3) (13)
=V 3—2vp 2+vi g

pred(ve) =vi_1+s+a=3vr_1 =3vr o +vr_3 (14

The overall prediction algorithm must also prevent er-
ror accumulation by using quantized values in the encoder.
Thus, the general scheme is as follows:

input: basis vector B;

input: quantization constant Q; (its computation will be
described in the following section)

input: order of prediction o, i.e. the number of
preceding values needed by the predictor

for coord < 0 to 2 do

for j < (1+coord «F) to (o + coord « F) do

q «— round(B; j/Q;) ;

send ¢ to entropy coder;

Bij—q*Qi

end

for j < (0+ 1 +coord x F) to (F + coord x F) do

pred « predictor(B; j_1,B; j—2,...,Bij—0):

residual < B; ; — pred,

q < round(residual | Q;);

send ¢ to entropy coder;

Bj j < pred +q*Q;;

end

end

4. Quantization

The final step in encoding the values is quantization. The
predictor produces a floating point value, which is divided
by a quantization constant, the result is truncated and passed
to an entropy coder for encoding.

However, we have found out that careful treatment of ba-
sis quantization may lead to further improvement of com-
pression ratio. Recall the decompression equation 3. It can
be expanded to following form:

t=B|.ci+By.cy+--+Byy.cyy, +m (15)

Skala
Obdélník

Skala
Obdélník

Computer Graphics Forum, Vol.28, No.6, pp.1529-1540, ISSN 0167-7055, 2010

where B; represent the rows of the matrix B, i.e. the basis
vectors. The error introduced by the quantization of the PCA
coefficients ¢; is equal for each term of equation 15, as all the
coefficients are quantized with equal quantization constant.

We can also see that the error is generally additive, and
therefore we want it to be equal for every term. However,
the size of the coefficients ¢; varies very significantly. For-
tunately this variance can be well predicted - the first coeffi-
cient is usually much bigger than the second, which is bigger
than the third etc., which is a behavior caused by the nature
of PCA.

Thus, if we had used an uniform quantization, we can ex-
pect the error of half the quantization constant, which will
be multiplied by a very large constant in the first term. Such
behavior is undesirable, and thus we must use finer quanti-
zation for the more important basis vectors, while the less
important ones can be quantized more coarsely.

100000

10000

1000

100

10

. Illlll.l_
I

Figure 5: Coefficient sums.

When given a quantization constant Q from user, we can
split this constant to the given number of terms of equa-
tion 15, however we should follow the magnitudes of cor-
responding coefficients ¢;. To do this, we can first compute
the average

1 ,
a = % Z llci

v=1..V

| (16)

of absolute values of each coefficient over all vertices
v1.v. This gives an approximation of how many times will
an error be repeated in the final decompressed sequence. Fig-
ure 5 shows the summed absolute values of the PCA coef-
ficients in the chicken sequence, note that the scale of the
figure is logarithmic.

If we want to keep the error of the terms in equation 15
equal, then we must use quantization constants inversely

proportional to the averages of coefficients. Thus, the quan-
tization constant for i-th basis vector should be computed as:

__9 a !
Ng+1"

Qi a7

In this equation i is the order of the basis vector and Q is
the quantization constant, which must be divided into Np + 1
parts, since the equation 15 has Np + 1 terms.

We could use an exact value for each coefficient, however
that would require to transmit the quantization constant with
each basis vector. To avoid this, we have decided to use a
power function approximation to compute the quantization
constants for each basis vector at both encoder and decoder.
We perform a least squares minimization to obtain the con-
stants k and g in the equation 18.

ki = Q; (18)

Since the quantization of the first basis vector is of biggest
importance, we subsequently shift the approximation curve
by a constant a so that the first quantization constant per-
fectly fits the user specified intended error:

kl'+a=k+a=0 (19)
a=0,—k (20)

This way, we only need to transmit the constants k, ¢ and
a, and we get a series of increasing quantization constants,
that well fits the distribution of absolute values of PCA co-
efficients, and for the first coefficient gives exactly the user
specified error amount.

This derivation can be directly applied to compression of
the means vector, which is transmitted along with the ba-
sis. Its components can be predicted using either equation 11
or equation 14 and the residuals should be quantized using
quantization constant Qy,:

_ 0
N3+1

Om ey

5. Results

We have tested the derived algorithm with an implemen-
tation of the Coddyac compression scheme. We have used
a direct encoding of the basis (64 bits per double preci-
sion value), the prediction schemes defined by equations 11
(denoted "linear") and 14 (denoted "accelerated") combined
with uniform quantization and with non-uniform quantiza-
tion. We are also comparing to LPC approach of order 2 and
order 3. As an entropy coder for the residuals we have used
a simple implementation of Huffman coding [Huf52].

Skala
Obdélník

Skala
Obdélník

Computer Graphics Forum, Vol.28, No.6, pp.1529-1540, ISSN 0167-7055, 2010

First, we have used the well known chicken crossing se-
quence of 3030 vertices and 400 frames. For this sequence,
we have used 50 basis vectors. Second, we have performed
tests with the human jump sequence [SMP03, AG04], which
consists of 15700 vertices and 222 frames. For this dataset,
we have used 60 basis vectors. We have also used other
datasets (cowheavy, dolphin, humanoid, dance etc.), with
equivalent results.

0,48

046 L B\ \\
(AR
LA
VLA
NN

036

KG error [%]

0 20 40 60 80 100 120
Encoded basis size [kB]

-m-Non-uniform accelerated-#Uniform linear
~#-Non-uniformLPC 3

=+~Non-uniformlinear
=*Uniform accelerated —*-Non-uniform LPC 2

Figure 6: Chicken sequence compression accuracy.

For the accuracy testing, we have used the KG-error met-
ric proposed by Karni and Gottsman [KG04]. This metric is
basically a normalized mean squared error, however it pro-
cesses the XYZ coordinates separately and thus it is not ro-
tation invariant, and its value also depends on the length of
the sequence. We are aware of the drawbacks of this error
metric, however it has been accepted by the dynamic mesh
compression community, and therefore we use it to provide
results comparable with competing algorithms.

We have used several datasets to test the performance, but
for each dataset we have used constant settings for the com-
pressor, as we’re not testing the performance of the compres-
sion scheme, but of the basis compression. We have selected
such settings that have produced a KG error of about 0.5%,
which is considered unnoticeable.

Figure 6 shows the accuracy testing for the chicken se-
quence with uniform and non-uniform quantizations. The di-
rect coding of the basis would take

400[vertices| * 3[coordinates) * 50[basisvectors]...
«8|bytes/doublevalue] = 480kB

and the error value in such case is about 0,371% (this er-
ror is introduced by truncating the basis and by quantiza-
tion of the coefficients). The figure clearly shows that the
non-uniform quantization largely outperforms the uniform
case. Surprisingly, the linear prediction scheme provides bet-
ter results than the accelerated one, however both of these
straightforward schemes outperform the LPC approach sig-
nificantly.

700

600 —

500 —

400 E—

basis

size[kB]

B connectivity

m geometry

200 -

B -:.
0 - T

cobra uniform direct

Figure 7: Relations in the chicken sequence compression.
Accuracy of the examples is equal £1%.

0,61

0,605

0,6
0,595

A
\
\
\
\
S~

0,59

0,585

—
|ttt

KG error [%]

0,58
0,575

!
0,57 \
3 \-_l

0,565

0,56

0 10 20 30 40 50 60 70 80 90 100
encoded basis size [kB]

=+Uniform sampling -@-Non-uniformsampling

Figure 8: Jump sequence compression accuracy.

The gain of the linear prediction scheme can be explained
by the fact that in such case less values need to be encoded
directly, and it moreover seems that the third preceding value
brings more distortion than accuracy into the prediction. An-
other explanation is that the chicken sequence has been cre-
ated artificially, and as such does not necessarily follow the
rules of mass dynamics.

Figure 7 shows the relation of the parts of which the com-
pressed representation of the chicken sequence consists. It
shows that when not treated appropriately, the basis may
cause a significant performance loss.

Figures 8 and 9 are equivalent results for the jump se-
quence. We are not showing the result of acceleration based
predictor, as in this case it is almost identical to the result
of the linear predictors. This supports our explanation that
the efficiency of the acceleration predictor follows from the
physical properties of the data, because the jump sequence
is a result of scanning a real human.

Skala
Obdélník

Skala
Obdélník

Computer Graphics Forum, Vol.28, No.6, pp.1529-1540, ISSN 0167-7055, 2010

1200

1000 —

600 basis

size [kB]

B connectivity

m geometry
400 -

200

cobra uniform direct

Figure 9: Relations in the jump sequence compression. Ac-
curacy of the examples is equal +1%.

6. Conclusions and future work

We have presented a pioneering work in the area of com-
pression of basis for PCA represented animations. The pre-
sented algorithm can be directly applied to multiple current
approaches ([SSKO05, AmjO7, VS07]), where it delivers an
improvement of performance, which depends on the char-
acter of the animation, and can reach up to more than 50%
compared to direct encoding.

Our main contribution is the result of testing of the LPC
method, which despite its sophistication provides sub opti-
mal results with respect to encoding and residual entropy.
Our second contribution is the non-uniform quantization
technique, which is mathematically based and practically
proven to be efficient.

In the future we can focus on further compression of the
basis exploiting its smoothness by tools like wavelet decom-
position and scalable encoding.

7. Acknowledgements

This work has been supported by EU within FP6 under Grant
511568 with the acronym 3DTV and by the Ministry of Ed-
ucation, Youth and Sports of the Czech Republic under the
research program LC-06008 (Center for Computer Graph-
ics) and project 1P04LA240.

The chicken character was created by Andrew Glassner,
Tom McClure, Scott Benza and Mark Van Langeveld. This
short sequence of connectivity and vertex position data is
distributed solely for the purpose of comparison of geometry
compression techniques.

References

[AG04] ANUAR N., Guskov I.: Extracting animated
meshes with adaptive motion estimation. In VMV (2004),
pp- 63-71.

7

[AMOO] ALEXA M., MULLER W.: Representing anima-
tions by principal components. Computer Graphics Fo-
rum 19, 3 (2000).

[Amj07] AMJOUN R.: Efficient compression of 3d dy-
namic mesh sequences. In Journal of the WSCG (Feb.
2007). to appear.

[BSM*03] BRICENO H., SANDER P., MCMILLAN L.,
GORTLER S., HOPPE H.: Geometry videos: A new repre-
sentation for 3d animations. In ACM Symposium on Com-
puter Animation 2003 (2003).

[GGHO2] Gu X., GORTLER S., HOPPE H.: Geometry
images, 2002.

[Huf52] HUFFMAN D.: A method for the construction of
minimum-redundancy codes. 1098-1101.

[IRO3] IBARRIA L., ROSSIGNAC J.: Dynapack: space-
time compression of the 3d animations of triangle meshes
with fixed connectivity. In SCA ’03: Proceedings of
the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation (Aire-la-Ville, Switzerland, Switzer-
land, 2003), Eurographics Association, pp. 126—135.

[KG04] KARNI Z., GOTSMAN C.: Compression of soft-
body animation sequences. In "Computers & Graphics
28, 1" (2004), pp. 25-34.

[Len99] LENGYEL J. E.: Compression of time-dependent
geometry. In SI3D ’99: Proceedings of the 1999 sympo-
sium on Interactive 3D graphics (New York, NY, USA,
1999), ACM Press, pp. 89-95.

[MSK*05] MULLER K., SMoLIC A., KAUTZNER M.,
EISERT P., WIEGAND T.: Predictive compression of dy-
namic 3d meshes. In ICIP05 (2005), pp. I: 621-624.

[MSK*06] MULLER K., SMOLIC A., KAUTZNER M.,
EISERT P., WIEGAND T.: Rate-distortion-optimized
predictive compression of dynamic 3d mesh sequences.
SP:IC 21, 9 (October 2006), 812-828.

[MZP06] MAMOU K., ZAHARIA T., PRETEUX F.: A
skinning approach for dynamic 3d mesh compression: Re-
search articles. Comput. Animat. Virtual Worlds 17, 3—4
(2006), 337-346.

[PAO5] PAYAN F., ANTONINI M.: Wavelet-based com-
pression of 3d mesh sequences. In Proceedings of IEEE
ACIDCA-ICMI’2005 (Tozeur, Tunisia, november 2005).

[R0os99] ROSSIGNAC J.: Edgebreaker: Connectivity com-
pression for triangle meshes. IEEE Transactions on Visu-
alization and Computer Graphics 5, 1 (/1999), 47-61.

[SLKO07] STEFANOSKI N., L1U X., KLIE P., OSTER-
MANN J.: Scalable linear predictive coding of time-
consistent 3d mesh sequences. In 3DTV-CON, The True
Vision - Capture, Transmission and Display of 3D Video
(may 2007), vol. 0.

[SMP03] SAND P., MCMILLAN L., PoroviC J.: Contin-
uous capture of skin deformation. In SIGGRAPH ’03:

Skala
Obdélník

Skala
Obdélník

Computer Graphics Forum, Vol.28, No.6, pp.1529-1540, ISSN 0167-7055, 2010

ACM SIGGRAPH 2003 Papers (New York, NY, USA,
2003), ACM Press, pp. 578-586.

[SSKO5] SATTLER M., SARLETTE R., KLEIN R.: Sim-
ple and efficient compression of animation sequences.
In SCA °05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer anima-
tion (2005), ACM Press, pp. 209-217.

[VSO7] VASA L., SKALA V.: Coddyac: Connectivity
driven dynamic mesh compression. In 3DTV Conference
Proceedings (2007).

[Wei02] WEISSTEIN E. W.: Least squares fit-
ting, 2002. From Mathworld — a Wolfram Web
Resource. http: //mathworld.wolfram.com/

LeastSquaresFitting.html

Skala
Obdélník

Skala
Obdélník

